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Abstract. In this paper we generalize a model for stochastic hybrid
systems. First, we prove that this model is a right Markov process and
it satisfies some mathematical properties. Second, we propose a method
based on the theory of Dirichlet forms to study the reachability problem
associated with these systems.
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1 Introduction

In this paper we extend the stochastic hybrid system (SHS) model introduced
by Lygeros et. al. in [15]. We call this new model extended stochastic hybrid
systems (ESHS) (see section 2). In the first step we prove that this model is a
Borel right process with the CADLAG property (section 3). In a second step
we mainly study the reachability problem for ESHS (section 4). In a probabilis-
tic framework, the reachability problem consists in determining the probability
that the system trajectories enter some prespecified set starting from a certain
set of initial conditions with a given probability distribution. Our investigation
begins with a simple observation, namely, an ESHS is interleaving between a
jump process and some diffusion processes. Therefore, studying the reachabil-
ity problem for this model requires two reachability problems to be solved: one
for the jump process and another one for the diffusion processes. Dealing with
the standard apparatus of Markov processes (hitting times, hitting probability,
harmonic measure), solving the reachability problem seems to be quite difficult.

This work promotes a new method, based on the theory of Dirichlet forms [14,
17], for the reachability problem. It has already been proved in the literature that
Dirichlet forms constitute a powerful tool for studying Markov processes (see, for
example, [1,17] and the references therein). Dirichlet form techniques have found
striking applications in the study of stochastic partial differential equations [1,
8]. This is mainly due to the fact that they allow to develop a highly nontrivial
stochastic analysis under some minimal regularity hypothesis, for instance, on
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Extended Stochastic Hybrid Systems and Their Reachability Problem 235

very irregular spaces without differentiable structure like fractals, or on infinite
dimensional spaces like path spaces or spaces of measures.

For Dirichlet forms, a lot of work was carried out on axiomatizations and
representation results. This provides a mathematical vehicle for zooming in and
out at different levels of abstraction in a consistent way. For example, in the most
abstract view, the Dirichlet spaces can be seen as mixing a linear space structure
with a partial order structure, by providing simple compatibility axioms. In more
concrete applications a Dirichlet space defines a logical type of functions with an
inner product given explicitly by a logical expression. The advantage of Dirichlet
forms which derives from this is that they can be easily implemented. There
are two main streams: one is symbolic (like using a model-checker or a theorem
prover or their combination like PVS [13]) and another one is numerical [10]. For
the reachability problem the symbolic approach has been intensively applied (see
e.g. the papers in [18]), especially because the accessible states can be generated.
In the case of PVS, we can link these techniques with the huge mathematical
libraries made available by the theorem provers.

The basic idea of the reachability method proposed here is to employ the
correspondence between some ‘nice’ Markov processes (like our process) and
some quadratic forms, called Dirichlet forms, defined using the process generator.
Each (quasi-regular) Dirichlet form can be expressed as the sum of its parts:
continuous, jumping and killing corresponding to the same parts of the Markov
process considered. A Dirichlet form comes with the so-called notion of capacity,
which is, roughly speaking, a nonlinear extension of a measure. The capacity
associated with a Dirichlet form is in a very close connection with the hitting
times of the corresponding Markov process. We investigate the possible benefits
of applying a Dirichlet form based method to study the reachability problem of
ESHS. Developing a reachability analysis methodology for this model will involve
dealing with its two characteristics: forced jumps and diffusion segments between
two consecutive jumps. In what follows, we will work with the corresponding
jumping and continuous Dirichlet forms. Usually a target set E in the state
space is a level set for a given function F , i.e. E = {α|F (α) > l} (F can be
chosen as the Euclidean norm or as the distance to the boundary of E). The
probability of the set of trajectories which hit E until time horizon T > 0 can be
expressed as P{ sup

t∈[0,T ]
F (αt) > l}. An upper estimation for this probability will

be given in terms of the Dirichlet form induced by F on R. This form corresponds
to the process F (αt). One might, for instance, use the small induced processes
rather then the huge original process to deal with the reachability problem.
The induced Dirichlet form capacity (of E∗ = (l,∞)) plays an essential role
in obtaining the reach event probability estimation. Intuitively, this capacity
is the Laplace transform of the hitting time of the target set. If the model H
is discretized then the induced process is a one-dimensional jump process and
therefore the computation of Laplace transform and the mean level-crossing
time is feasible. It is interesting to note that the capacity of the target set is
subadditive. So even if the target set were very complex, then the capacity of
target set is at most the sum of capacities of its parts.
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2 Stochastic Hybrid Model

Stochastic Hybrid Systems (SHS) introduced in [15] are a class of non-linear,
continuous-time stochastic hybrid processes. In this section we give a general-
ization of SHS called extended stochastic hybrid systems (ESHS). ESHS will be
object for the reachability problem studied in section 4. ESHS can be considered,
as well, a generalization of the model used in [4].

2.1 Model Description

ESHS involve a hybrid state space, with both continuous and discrete states. The
continuous and the discrete parts of the state variable have their own natural
dynamics, but the main point is to capture the interaction between them.

The time t is measured continuously. The state of the system is represented by
a continuous variable x and a discrete variable i. The continuous variable evolves
in some ‘cells’ Xi (open sets in the Euclidean space) and the discrete variable
belongs to a countable set Q. The intrinsic difference between the discrete and
continuous variables, consists of the way that they evolve through time. The
continuous state is governed by an SDE that depends on the hybrid state. The
discrete dynamics produces transitions in both (continuous and discrete) state
variables x, i. Transitions occur when the continuous state hits a predefined set
of the state space (forced transitions). Whenever a transition occurs the hybrid
state is reset instantly to a new value. The value of the discrete state after the
transition is determined uniquely by the hybrid state before the transition. On
the other hand, the new value of the continuous state obeys a probability law
which depends on the last hybrid state. Thus, a sample trajectory has the form
(q(t), x(t), t ≥ 0), where (x(t), t ≥ 0) is piecewise continuous and q(t) ∈ Q is
piecewise constant. Let (0 ≤ T1 ≤ T2 ≤ ... ≤ Ti ≤ Ti+1 ≤ ...) be the sequence of
jump times at which the continuous and the discrete part of the system interact.
This time sequence is generated when the state of the system passes through a
set of ‘marked states’ called set-interface.

2.2 Mathematical Model

Definition 1 (Extended Stochastic Hybrid System). An ESHS is an ex-
tended automaton H = (Q, X, Dom, D, b, σ, Init, G, R) where

– Q is a countable set of discrete variables1;
– X = R

n is the continuous state space and B(Rn) its σ-algebra Borel;
– Dom : Q→ 2X , Q � i �→ Xi ⊂ X, with Xi a relatively compact open set;
– D : Q→ 2X assigns to each i ∈ Q a measurable subset (an interface set) Di

of X such that ∂Xi ⊂ Di.
– b : Q×X → R

n, σ : Q×X → R
n×n;

– Init : B(Q×X)→ [0, 1] is an initial probability measure on (Q×X,B(Q×X))
concentrated on ∪i∈Q {i} ×Xi;

1 Q can be taken as the set of natural numbers.
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– G : Q×Q→ 2X maps each (i, j) ∈ Q×Q into G(i, j) ⊂ X such that
(∀) (i, j) ∈ Q×Q, G(i, j) is a measurable subset of Di (possibly empty);
(∀) i ∈ Q, the family {G(i, j) | j ∈ Q} is a disjoint partition of Di;

– R : Q × Q × X → P(X) assigns to each (i, j) ∈ Q × Q and x ∈ G(i, j) a
reset probability kernel on X concentrated on Xj.

To describe the dynamics, we need to consider an n-dimensional standard
Wiener process (W (t), t ≥ 0) in a complete probability space (Ω,F , P ).

Assumption 1 The functions b(i, x) and σ(i, x) are bounded and Lipschitz con-
tinuous in x. For all i, j ∈ Q and for any measurable set A ⊂ Xj, R(i, j, x)(A)
is a measurable function in x.

The first part of the Assumption 1 ensures, for any i ∈ Q, the existence and
uniqueness (Theorem 6.2.2. in [2]) of the solution for the following SDE

dx(t) = b(i, x(t))dt + σ(i, x(t))dWt,

where Wt is a n-dimensional standard Wiener process. Moreover, the assumption
on R ensures that events we encounter later are measurable w.r.t. the underlying
σ-field, hence their probabilities make sense.

We can introduce the ESHS execution.

Definition 2 (ESHS Execution). A stochastic process αt = (q(t), x(t)) is
called a ESHS execution if there exists a sequence of stopping times T0 = 0 ≤
T1 ≤ T2 ≤ . . . such that for each j ∈ N,

– α0 = (q(0), x(0)) is a Q ×X-valued random variable extracted according to
the probability measure Init;

– For t ∈ [Tj , Tj+1), q(t) = q(Tj) is constant and x(t) is a (continuous) solu-
tion of the SDE:

dx(t) = b(q(Tj), x(t))dt + σ(q(Tj), x(t))dWt (1)

where Wt is a n-dimensional standard Wiener process;
– Tj+1 = inf

{
t ≥ Tj : x(t−) ∈ Dq(Tj)

}
(which is equal to +∞ if the process

never hits the target Dq(Tj));
– x(T−

j+1) ∈ G(q(Tj), q(Tj+1)), where x(T−
j+1) denotes limt↑Tj+1 x(t);

– The probability distribution of x(Tj+1) is governed by the law
R

(
q(Tj), q(Tj+1), x(T−

j+1)
)
.

Remark 1. The continuous post jump location x(Tj+1) is given by R and the
hybrid state before jump, but the discrete post jump location q(Tj+1) depends
only on the hybrid state before jump. In the stochastic model from [4], both
continuous and discrete post jump locations depend on the hybrid state before
jump and some i.i.d. random variables, which are independent of Wt.
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3 Model Summary

3.1 Hybrid State Space

Let us define the hybrid state space and its ‘boundary’ as follows:

S =
⋃

i∈Q

{i} ×Xi; S = S∪∂S;

∂S =
⋃

i∈Q

{i} ×Di =
⋃

i∈Q



{i} ×
⋃

j∈Q,j �=i

G(i, j)



 .

Let us denote Si = {i} × Xi, ∂Si = {i} × Di for every i ∈ Q. We can refine
the last notation as follows: ∂Si =

⋃
j∈Q,j �=i ∂Sij where ∂Sij = {i} ×G(i, j) for

i �= j. Define B(S̃) as the σ-algebra on the set S̃ = Q×R
n generated by the sets

{2Q × B(Rn)}. Let B(S) be the σ-algebra on S induced by B(S̃). It is possible
to define a metric ρ on S in such a way that ρ(αn, α) → 0 as n → ∞ with
αn = (in, xn), α = (i, x) if and only if there exists m such that in = i for all
n ≥ m and xm+k → x as k →∞. The metric ρ restricted to any component Xi

is equivalent to the usual Euclidean metric [12]. Then (S,B(S)) is a Borel space2.
A cemetery point ∆ /∈ S is adjoined to S as an isolated point, S∆ ≡ S ∪ {∆}.
Using the Lebesgue measure λ on R

n, we define a measure m on B(S) such that
for each i ∈ Q the projection of m to Xi is exactly λ|Xi

.

m(Q′ ×A) := cardQ′ · λ(A), Q′ ⊂ Q, A ∈ B(Rn).

One can then consider the reset probability kernel of an ESHS as a transition
measure R : S×B(S)→ [0, 1] such that: (i) R((i, x), ·) = 0, for all (i, x) ∈ S\∂S;
(ii) for all A ∈ B(S), R(·, A) is measurable; (iii) for all (i, x) ∈ ∂S the function
R((i, x), ·) is a probability measure concentrated on {j} × Xj where j is the
unique value of the discrete state such that x ∈ G(i, j).

In short we have, the stochastic execution is given by

dx(t) = {b(q(t), x(t))+
∞∑

j=0

[x(Tj)− x(T−
j )]δ(t−Ti)}dt + σ(q(t), x(t))dWt;

q(t) =
∞∑

j=0

[q(Tj)− q(T−
j )]1(Tj≤t)

where δ is the Dirac measure and

x(Tj)(ω) = Ψ(ω, (q(T−
j ), x(T−

j )(ω)); q(Tj)(ω) =
∑

i∈Q

i1G(q(T −
j ),i)(x(T−

j )(ω))

2 Recall that a Borel space is a topological space which is homeomorphic to a Borel
subset of a complete separable metric space.
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3.2 Markov Property

In this subsection we prove that any ESHS is a Borel right process (i.e. a right
Markov process whose semigroup maps B(S)3 into itself). A right process was
originally defined by P. A. Meyer [19] as a process satisfying two hypothèses
droites HD1 and HD2. A right process is a strong Markov process with the
following properties: (i) The state space is Lusin4 (i.e. it is isomorphic to a Borel
subset of a compact metrizable space); (ii) It is right continuous; (iii) The p-
excessive functions (p > 0) of the process are almost surely right continuous (If
Pt is a Markov semigroup then a function f is p-excessive if it non-negative and
e−ptPtf ≤ f for all t ≥ 0 and e−ptPtf ↗ f as t↘ 0).

Let H be an ESHS. We use the same notations as in the subsection 3.1.

Proposition 1. Under the standard Assumption 1, any Extended Stochastic
Hybrid System, H is a Borel right process.

Proof. First we prove that H is a right Markov process. Clear, the state space S

is Lusin space (it is a Borel space and its closure can be embedded in a compact
space). We have a countable number of state spaces (Si)i∈Q provided with the
Feller semigroups5 (P i

t )i∈Q associated with the diffusion processes defined by
(1). ∆ can be considered adjoined to all these spaces. The spaces Ω, Ωi are
taken as the canonical realizations with values in S, Si (see the remark below).
We provide Ω with the measures Pα, α ∈ S such that if α ∈ Si the measure Pα

is equal to Pα corresponding to Ωi (Pα is a measure on Ω supported by Ωi).
Since S is a Borel space, then S is homeomorphic to a subset of the Hilbert
cube, H6 (Urysohn’s theorem, Prop. 7.2 [6]). Moreover, X is a homeomorphic
with a Borel subset of a compact metric space (Lusin space) because it is a
locally compact Hausdorff space with countable base (see [12] and the references
therein). The ESHP model is obtained by ‘melange’ operation [20] of the diffusion
processes (i, x(t))i∈Q, each one defined on Si. Since each diffusion is, in particular,
a right process, then the whole process is a right Markov process (Th.1 in [20]).
The ‘renaissance’ kernel Ψ [20] used to mix the diffusion processes is given by

Ψ(ωi, A) = R((i, x(T−
i )), A), A ∈ B(S)

where ωi is a diffusion trajectory and x(T−
i ) is its boundary hitting point.

Secondly, we prove that H is a Borel right process. Let (Pt) be the transition
semigroup of (αt) i.e. Ptf(α) = Eα[f(αt)], α ∈ S, where Eα is the expectation
w.r.t. Pα, for all functions f for which the right-hand sides make sense.
Let be f a bounded Borel function on S and fj the restriction of f to Si. Let
t > 0. Then t ∈ [Ti, Ti+1) where (Tj)j∈N is the sequence of stopping times from
definition 2. The construction of H implies the following equality

Ptf(α) = Eα[f(αt)] = Eα[f(αq(Ti)
t )|Ti ≤ t < Ti+1] = P

q(Ti)
t fq(Ti)(α)

3 here B(S) is understood as the set of all real Borel functions defined on S.
4 This condition is missing in other Markov process monographs, see e.g. [7].
5 i.e. the function α → P i

t f(α) is continuous for each t ∈ R+ if f is a bounded
continuous function.

6 H is the product of countable many copies of [0, 1].
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where (αq(Ti)
t ) is the restriction of (αt) to [Ti, Ti+1). Note that if α /∈ Sq(Ti) then

Ptf(α) = 0. Therefore Ptf is supported by Sq(Ti) where it is a Borel function
(P q(Ti)

t is Feller). Then Ptf is a Borel function.

Remark 2. It is clear from the construction, that an ESHS has the CADLAG
property (i.e. its trajectories are right continuous with left limits). Then the
underlying probability space Ω can be taken, in a canonical way, equal to
D[0,∞)(S)7.

3.3 Process Generator

We denote by Bb(S) the set of all bounded measurable functions f : S→ R. This
is a Banach space under the norm ‖f‖ = supα∈S

|f(α)|. Associated with the
semigroup (Pt) is its strong generator which, loosely speaking, is the derivative
of Pt at t = 0. Let D(L) ⊂ Bb(X) be the set of functions f for which the following
limit exists

lim
t↘0

1
t
(Ptf − f) (2)

and denote this limit Lf . The limit refers to convergence in the norm ‖·‖, i.e.
for f ∈ D(L) we have

lim
t↘0
||1

t
(Ptf − f)− Lf || = 0.

The results from [3] give us the possibility to write the generator of any
process as the sum of its corresponding continuous and jump parts. For f ∈
C2(Q× R

n) = {f : Q× R
n → R| f(i, ·) ∈ C2(Rn) for all i ∈ Q} the expression

of the ESHS generator [21] is

Lf(α) = Lcf(α) + Ljf(α)

where

Lcf(α) =
1
2

n∑

k,m,l=1

σkl(α)σml(α)
∂2f

∂αk∂αm
+

n∑

k=1

bk(α)
∂f

∂αk

and Lj is the Lévy operator, given by

Ljf(α) =
∫

∂S

(f(β)− f(α))R(α, dβ).

Since any ESHS is a right Markov process, according to [5], there exists a
Lévy system associated to the process. Recall that a Lévy system (n, dHt) for a
process (αt) is a kernel n(α, dβ) and a perfect continuous additive functional Ht

(see the definition in [7]) such that such that for all α in the state space S, for
7 D[0,∞)(S) is the space of all right continuous functions on [0, ∞) with left limits

taking values in S.
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all stopping times T, and for all positive Borel measurable functions f on S× S

that are 0 on the diagonal, the Lévy system identity holds:

Eα
∑

0<t≤T

f(αt−, αt) = Eα

∫ T

0

∫
f(αt, β)n(αt, dβ)dHt (3)

where both sides may be infinite. We will assume without loss of generality that
Ht(ω) = t for all t and all ω, since one can always perform a time change on αt

[3]. For our process the Lévy kernel n can be chosen to be equal with R.

Remark 3. [17] Let D[L] be the domain of the generator L. Under the assump-
tions 1, since (αt) is a right Markov process8, there exists a quasi-regular Dirichlet
form9 (E , D[E ]) on L2(S, m) associated with the process, given by

{
D[L] ⊂ D[E ]
E(u, v) = (−Lu, v), u ∈ D[L], v ∈ D[E ].

We can think of a Dirichlet form E as a recipe for a Markov process (αt)t≥0, in
the sense that E describes the behavior of the composed process u(αt) for every
u in the domain of E . There is no guarantee that the ‘coordinates’ (u(αt))u can
be put together in a consistent way to form a process with reasonable sample
paths.

3.4 Jump Measures

Assumption 2 For any ε > 0, x ∈ S, j(·, S\Bε(x)) is a locally integrable func-
tion w.r.t. m.

For each B(S)-measurable function u, let us define Ru(α) :=
∫

S
u(β)R(α, dβ),

α ∈ S. It is clear that Ru satisfies some properties as below: (i) Ru is a B(S)-
measurable function. (ii) If α ∈ ∂S (there exist i �= j such that α = (i, x) and x ∈
G(i, j)) then Ru(i, x) =

∫
Sj

u(j, y)R((i, x), (j, dy)). Moreover, if supp(u)∩Sj = ∅
then Ru(i, x) = 0. If u = 1A, A ∈ B(S) then R1A(i, x) = R((i, x), A∩{j}×Xj).
(iii) Ru(α) = 0 if α ∈ S\∂S or supp(u) ∩ S = ∅.

Let us define for any u, v ∈ B(S), the following energies

−→E R(u, v) =
∫

S

u(α)Rv(α)m(dα) (4)

←−E R(u, v) =
∫

S

Ru(α)v(α)m(dα) (5)

Some simple computations give

−→E R(u, v)=
∫

S

u(α){
∫

S

v(β)R(α, dβ)}m(dα)=
∫

∂S

u(α){
∫

S

v(β)R(α, dβ)}m(dα)

8 In Meyer’s sense, i.e. the state space S is Lusin.
9 See the definition 3.1 from [17]
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=
∑

i∈Q

∫

∂Si

u(i, x){
∑

j∈Q

∫

Sj

v(j, y)R((i, x), (j, dy))}(i, λ(dx))

=
∑

i∈Q

∑

l∈Q,l �=i

∫

∂Sil

u(i, x){
∑

j∈Q

∫

Sj

v(j, y)R((i, x), (j, dy))}(i, λ(dx))

=
∑

i∈Q

∑

j∈Q,j �=i

∫

∂Sij

u(i, x)
∫

Sj

v(j, y)R((i, x), (j, dy))(i, λ(dx))

=
∑

i∈Q

∑

j∈Q,j �=i

∫

∂Sij

∫

Sj

u(i, x)v(j, y)R((i, x), (j, dy))(i, λ(dx)). (6)

←−E R(u, v) =
∑

i∈Q

∑

j∈Q,j �=i

∫

∂Sij

∫

Sj

v(i, y)u(j, x)R((i, y), (j, dx))(i, λ(dy)). (7)

Letting in (6) u = 1∂Sij
, v = 1Sj for i �= j, we get

∫
S

u(α)Rv(α)m(dα) =
λ(G(i, j)). Therefore, if u = 1∂Si

, v = 1S then
∫

S
u(α)Rv(α)m(dα) =∑

j �=i λ(G(i, j)) = λ(Di). In the last, if u = 1∂S
, v = 1S then∫

S
u(α)Rv(α)m(dα) =

∑
i∈Q λ(Di). Analogously, letting in (7) u = 1∂S

, v = 1S

then
∫

S
Ru(α)v(α)m(dα) = 0.

Remark 4. If the energy
−→E R(u, v) (resp.

←−E R(u, v)) is nonzero then supp(u) ∩
∂S �= ∅ and supp(v) ∩ S �= ∅ (resp. supp(v) ∩ ∂S �= ∅ and supp(u) ∩ S �= ∅).
R induces a positive jump measure J and a positive symmetric jump measure
J̃10 on S×S\d (d is the diagonal set) by

∫

S×S\d

f(α, β)J(dα, dβ) =
∫

S

∫

S

f(α, β)R(α, dβ)m(dα); f ∈ C0(S×S\d); (8)

∫

S×S\d

f(α, β)J̃(dα, dβ) =
1
2

{∫

S

∫

S

f(α, β)R(α, dβ)m(dα)

+
∫

S

∫

S

f(α, β)R(β, dα)m(dβ)

}

.

Remark 5. In the theory of stochastic processes the most frequently used jump
measures are defined by means of symmetric transition kernels R (i.e. the energies
defined by (4) and (5) are equal). In our case the computations (6) and (7) show
10 The symmetric Dirichlet form associated with J̃ on L2(S, m) is given by the following

formula

E(u, v) =
∫

S×S\d

(u(α) − u(β))(v(α) − v(β))J̃(dα, dβ)

D[E ] = {u ∈ L2(S, m), E(u, u) < ∞}.

where D[E ] is called the domain of E .
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that we can have equality between the two above energies only in some special
cases. Necessarily this kind of equality implies that the Lesbesgue measure of
the interface sets must be zero. But, this will sequentially imply that the energy
should be zero, which is a very trivial case.

Remark 6. A simple computation gives the following:
∫

S×S\d

f(α, β)J̃(dα, dβ) =
1
2

{∫

∂S

∫

S

f(α, β)R(α, dβ)m(dα)

+
∫

∂S

∫

S

f(α, β)R(β, dα)m(dβ)

}

=
1
2

{∫

∂S

∫

S

f(α, β)R(α, dβ)m(dα)

+
∫

∂S

∫

S

f(α, β)R(β, dα)m(dβ)

}

=
∫

∂S

∫

S

f(α, β) + f(β, α)
2

R(α, dβ)m(dα).

4 Reachability Problem

In this section we study the reachability problem for ESHS. Recall from our
paper [9] the reachability definitions in the stochastic framework. Let E be a
Borel set of the state space S. Define the reachable “events” associated to E:

ReachT (E) = {ω ∈ Ω | ∃t ∈ [0, T ] : αt(ω) ∈ E}
Reach∞(E) = {ω ∈ Ω | ∃t ≥ 0 : αt(ω) ∈ E}.

where T > 0 is a finite positive time horizon. The measurability of these events
can be easily obtained using the CADLAG property of the process and the fact
that the underlying probability space is a Borel space. We deal in this section
with the issue of the computation of reach set probabilities.

To compute the reach set probabilities, we propose a Dirichlet form based
approach, which takes into consideration the two main features of the hybrid
executions: (1) forced jumps; (2) diffusion segments between consecutive jumps.

First we summarize the main ideas of the computation method of the reach
event probabilities. Let B, E be two Borel sets, where B is the initial condition
set and E is the reachability target set. We can suppose that E ⊂ Si, i ∈ Q
(otherwise E can be written as a partition

⋃

i∈Q

(E ∩ Si)). Then the reachable

event associated to E is the intersection of two other events:

1. the set of all trajectories which jump in Si, i.e. the ‘jump’ reachable event,
denoted by Reachj

T (Si);
2. the set of all diffusion paths (corresponding to Si) which reach E, i.e. the

‘continuous’ reachable event, denoted by Reachc
T (E).
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Let be E the quasi-regular Dirichlet form associated to (αt) (see remark 3). Each
quasi-regular Dirichlet form11 can be expressed as the sum of three parts: diffu-
sion Ec, jumping Ej and killing Ek: E = Ec +Ej +Ek (Beurling-Deny Formulae).
The continuous part is used to study the continuous part of the process (i.e. it
corresponds to the continuous pieces of process trajectories). The jumping part
corresponds to the trajectory discontinuities of the process and finally, the killing
part is connected with those trajectories which go the cemetery point.

We employ the first two parts of E to solve the reachability problem:
(i) the jump part Ej given by the jump measure (8) is used to compute

P [Reachj
T (Si)].

(ii) the diffusion part Ec is employed to compute P [Reachc
T (E)].

Intuitively, the probability of the reachable event P (ReachT (E)), E ⊂ Si,
is a conditional probability, which is equal to the probability of Reachc

T (E)
conditioned by the event Reachj

T (Si). It is clear that the probability to jump in Si

is given by the reset probability kernel of ESHS, R. Since R also defines the jump
measure J̃ , then the above jump probability should be related with the the jump
component of the associated Dirichlet form. To compute P [Reachc

T (E)] we use
the function F (which gives E as a level set) to obtain the induced Dirichlet form
of Ec|Si . The induced Dirichlet forms are easy to deal with because their state
space is R. The Dirichlet form expression associated to different kind of diffusion
is well known in the literature [14,17]. Therefore, the induced Dirichlet forms
have nice representation formula [16], which allow to translate the computation
problem of the ‘continuous’ reachable event probability from the initial state
space to the ‘induced’ state space.

Suppose that B and Si are disjoint. More exactly, the computation steps are:

(A) compute the probability that the process, started in B, jumps in Si, using
the estimation (11) of the Prop. 3 from below;

(B) give an upper bound for the probability that the process, arrived in Si, hits
E, using the estimation (13) of Prop. 4 from below.

4.1 Computation of ‘Jump’ Reachable Event Probabilities

For A ∈ B(S) define processes p, p∗ and p̃ as follows:

p(t, A) =
∞∑

k=1

I(t≥Tk)I(αTk
∈A); p∗(t) =

∞∑

k=1

I(t≥Tk);

p̃(t, A) =
∫ t

0
R(αs−, A)dp∗(s) =

∑

Tk≤t

R(αTk−, A).

Note that p, p∗ are counting processes and p∗(t) = k if t ∈ [Tk, Tk+1), k =
0, 1, 2, ... where T0 = 0. p̃(t, A) is the compensator of p(t, A) (see [12] for more
explanations). The following process is a local martingale.

q(t, A) = p(t, A)− p̃(t, A). (9)
11 See [14,17] for the theory of symmetric and non-symmetric Dirichlet forms.
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Proposition 2. For each α ∈ S we have

Pα(Reachj
T (Si)) = Eαp̃(T, Si)

Proof. If in the Lévy system identity (3) we take f(α, β) = 1Sc
i
(α) · 1Si(β) then

the first member will give the expectation of the set of all trajectories which
jump in Si in the time interval [0, T ], i.e. Pα(Reachj

T (Si))

Pα(Reachj
T (Si)) = Eα

∫ T

0

∫
f(αt, β)R(αt, dβ)dt

= Eα

∫ T

0

∫

Si

1Sc
i
(αt)R(αt, dβ)dt = Eα

∫ T

0
1Sc

i
(αt)R(αt, Si)dt

= Eα
∑

Ti≤T

R(αT −
i

, Si) = Eαp̃(T, Si).

Remark 7. The proof of the Prop. 2 can be derived using the martingale property
of q defined by (9).

For a Borel set G of state space we define the first hitting time TG := inf{t >
0|αt ∈ G}. Let τG denote the first leaving time from G, i.e. τG = T

S\G is the
first hitting time of S\G. Let pG

t be the transition function of the restriction of
the process (αt) to G. Dealing with the jump times we use the following result:

Lemma 1. [14] Let G be a relatively compact open set. For any h, f, g bounded
positive Borel functions on S such that supp[h] ⊂ G, supp[f ] ⊂ G and supp[g] ⊂
S\G we have

Eh·m(f(ατ−
G
)g(ατG

); τG ≤ T ) = 2
∫ T

0

[∫
pG

t h(α)f(α)g(β)J̃(dα, dβ)
]

dt (10)

where , Eh·m is the expectation given by the probability Ph·m(A) =∫
S
Pα(A)h(α)m(dα).

Proposition 3. Let ∂S→i be the subset of ∂S from where the process (αt) can
jump in Si (i ∈ Q). For any Borel set B ⊂ Si (resp. B ⊂ S

c

i ), h = 1B, we have

Ph·m(τSi
≤ T ) =

∫ T

0

[∫

∂S→i

∫

Si

p(β, t, B)R(α, dβ)m(dα)
]

dt

(resp. Ph·m(TSi ≤ T ) =
∫ T

0

[∫

∂S→i

p(α, t, B)m(dα)
]

dt). (11)

Proof. By setting f = 1Si , h = 1B , B ⊂ Si, g = 1
S\Si

in (10) we get the
probability to remain in Si until time horizon T, if the process has started in Si
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Ph·m(τSi ≤ T ) =
∫ T

0

[ ∫

∂S

∫

S

{pSi
t h(α)f(α)g(β)

+pSi
t h(β)f(β)g(α)}R(α, dβ)m(dα)

]

dt

=
∫ T

0

[ ∫

∂S\∂Si

∫

Si

pSi
t h(β)R(α, dβ)m(dα)

]

dt

=
∫ T

0

[∫

∂S→i

∫

Si

pSi
t h(β)R(α, dβ)m(dα)

]
dt

=
∫ T

0

[∫

∂S→i

∫

Si

p(β, t, B)R(α, dβ)m(dα)
]

dt.

Letting f = 1
S

c
i
, h = 1B , B ⊂ S

c

i , g = 1
Si

the probability to hit Si until T is

Ph·m(TSi
≤ T ) =

∫ T

0

[ ∫

∂S

∫

S

{pS
c
i

t h(α)f(α)g(β)

+p
S

c
i

t h(β)f(β)g(α)}R(α, dβ)m(dα)

]

dt

=
∫ T

0

[∫

∂S\∂Si

∫

Si

p
S

c
i

t h(α)R(α, dβ)m(dα)

]

dt

=
∫ T

0

[∫

∂S→i

p
S

c
i

t h(α)R(α, Si)m(dα)
]

dt

=
∫ T

0

[∫

∂S→i

p
S

c
i

t h(α)m(dα)
]

dt

=
∫ T

0

[∫

∂S→i

p(α, t, B)m(dα)
]

dt.

Remark 8. (11) gives the probability of hitting Si through the Borel set B.
Similar arguments as those used in the Prop. 3 lead to Ph·m(τG ≤ T ) =
∫ T

0

[∫
∂S→i

∫
G

p(β, t, B)R(α, dβ)m(dα)
]
dt for any open set G ⊂ Si, h = 1B ,

B ⊂ Si. This estimation can be useful when G is known as a safety set of
the state space. An interesting problem would be to find h or B maximizing the
above probability. It is known that the transition probabilities p(β, t, ·) for the
diffusion12 are the solutions of Kolmogorov backward equations [2].

4.2 Computation of ‘Continuous’ Reachable Event Probabilities

Suppose that the given Borel set E ⊂ Si can be written as a level set {α ∈
Si|F (α) > l}, where F : Si → R is a given function. Note that, in general,
12 The restriction of the process to G is a diffusion process.
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F (αt) is not itself a Markov process (see [22]). The computation of probability
of Reachc

T (E) means, in fact, the computation of Pm( sup
t∈[0,T ]

F (αt) > l).

We consider the restriction (αi
t) of our process to Si. This is a diffusion

process and the properties of the corresponding Dirichlet form Ei are well known
[14,17]. Moreover, we can suppose that Ei is a regular symmetric Dirichlet form
[11]. Let B∗ denote the σ-algebra Borel of R and let m∗ denote the image of m
under F . We construct a form E∗

i on D[E∗
i ]×D[E∗

i ] ⊂ L2(R, m∗)×L2(R, m∗) by

E∗
i (u∗, v∗) : = Ei(u∗ ◦ F, v∗ ◦ F ), u∗, v∗ ∈ D[E∗

i ],
D[E∗

i ] = {u∗ ∈ L2(R, m∗)|u∗ ◦ F ∈ D[Ei].
Suppose that F is chosen such that E∗

i is a regular Dirichlet form [16]. Then
there exists a certain R-valued Markov process, (αi∗

t ) associated with E∗
i . Note

if E∗ is open in R and E = F−1(E∗) then we can consider the two first hitting
times TE and TE∗ . We define for p > 0, the p-capacity of E∗

Cap∗
p(E

∗) = inf{E∗
i (u∗, u∗) + p(u∗, u∗)m∗ |u∗ ∈ D[E∗

i ], u∗ ≥ 1 m∗ − a.e. on E∗}
where (u∗, u∗)m∗ is the inner product of L2(R, m∗). To give an upper estimate
on Pm(TE ≤ T ) we need the following assumption:

Assumption 3 We suppose that m(Si) <∞, 1 ∈ D[Ei] and E∗ ⊂ R is an open
subset of finite Cap∗-capacity such that E = F−1(E∗).

The Prop. 1.24 from [16] becomes in our case as follows:

Proposition 4. For all p > 0, we have:

Pm(TE ≤ T ) ≤ ep{Em∗
e−pT ∗

E∗ /T + Tp−1
∫

R

Ere−pT ∗
E∗ /T k∗(dr)}; (12)

Pm(TE ≤ T ) ≤ p−1ep min{TE∗
i (u∗, u∗) + p(u∗, u∗)m∗ |u∗ ∈ D[E∗

i ], (13)
u∗ ≥ 1, m∗ − a.e. on E∗}.

where k∗ is the killing measure associated with the killing part of E∗
i .

Since we deal with the restriction of the process to Si, the estimations (12), (13)
still remain true if we replace Pm with P g·m, where g = 1Si .

5 Conclusions and Further Work

In this paper we have extended and developed a stochastic hybrid system model
introduced in [15]. The contributions of the paper are twofold: to prove cor-
rectness of this model (existence of the solution process which is a Borel right
process), and to build mathematical tools for computing the probability of reach-
ing a given set. The first contribution is necessary for any kind of mathematical
exploration and serves as foundations for the development of the results. The
second contribution can be viewed as a stochastic version of reachability. The
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method suggested is based on computation of so-called Dirichlet forms (already
used for this purpose in stochastic analysis).

The possibility of implementation of the Dirichlet forms in a theorem prover
leads to new directions in the stochastic hybrid system reachability study. On
the other hand, for a stochastic hybrid system H with the Markov property,
endowed with the corresponding Dirichlet form E , using an appropriate proper
map Φ from the state space S onto a ‘smaller’ space S

∗, one can construct the
induced Dirichlet form E∗ associated to a simpler system H∗ (the image of H
through Φ). The reachability problem for H and the target set E ⊂ S can be
reduced to the reachability problem for H∗ and the target set Φ(E). Therefore, it
is possible to introduce a notion of bisimulation of stochastic hybrid systems via
Dirichlet forms, which is a relatively new issue in the probabilistic framework.

One of the possible approaches which derives from this work is to study the
reachability problem for ESHS with control. To solve this problem, it could be
possible to use a cross-fertilization method which combines the Dirichlet form
theory with the dynamic programming. For example, we intend to combine the
results connected with the ‘jumping’ Dirichlet forms with the representations of
reachable sets for the diffusion paths by means of viscosity solutions for some
partial differential equations [23].

Acknowledgments. The author gratefully acknowledges the contribution of
John Lygeros to this work and the constructive observations of the anonymous
referees.

References

1. Albeverio, S., Ma, M.: A General Correspondence Between Dirichlet Forms and
Right Processes. Bull.Amer.Math.Soc. 26, No.2 (1992), 245-252, .

2. Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley -
Interscience, New York-London-Sydney (1974).

3. Bass, R.F.: Adding and Substracting Jumps from Markov Processes. Trans. of
Amer. Math. Soc. 255 (1979), 363-376.

4. Bensoussan, A., Menaldi, J. L.: Stochastic Hybrid Control. Journal of Mathemat-
ical Analysis and Applications 249 (2000), 261-288.
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