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Abstract

We propose a model for General Stochastic Hybrid
Systems (GSHS) which is a common generalization of
Piecewise-Deterministic Markov Processes (PDMP),
introduced by Davis and stochastic hybrid systems
proposed by Hu, Lygeros and Sastry. We prove that
this is a ‘good model’, i.e. it is a strong Markov
process with the càdlàg property. Based on results
available for PDMP, we provide a formula for the
extended generator of the GSHS.

1 Introduction

One of the more general formal models for stochastic
hybrid systems (SHS) was proposed by Hu et. al.[7],
where the deterministic differential equations for the
continuous flow are replaced by their stochastic coun-
terparts, and the reset maps are generalized to (state-
dependent) distributions that define the probability
density of the state after a discrete transition. In this
model transitions are always triggered by determin-
istic conditions (guards) on the state.
A class of stochastic processes, called piecewise-

deterministic Markov processes (PDMP), introduced
by Davis in [6], has been proposed as a model for
studying stochastic hybrid systems in our paper [4].
We propose a new model for General Stochastic

Hybrid Systems (GSHS) which is a generalization
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both of PDMP and SHS. The class of GSHS allows:
1) Diffusion processes in the continuous evolution.
2) Spontaneous discrete transitions (according to a
transition rate).
3) Forced transitions (driven by a boundary hitting
time).
4) Probabilistic reset of the discrete and continuous
state as a result of discrete transitions.
The difference between GSHS and PDMP is that

for GSHS between two consecutive jumps the process
is a diffusion whilst for PDMP the inter-jumps mo-
tion is deterministic, according to a vector field.
GSHS are, in fact, a kind of extended SHS for which
the transitions between modes are triggered by some
stochastic event (boundary hitting time and transi-
tion rate).

2 Description

General Stochastic Hybrid Systems (GSHS) are a
class of non-linear stochastic continuous-time hybrid
dynamical systems. GSHS are characterized by a hy-
brid state defined by two components: the contin-
uous state and the discrete state. The continuous
state evolves according to a SDE whose vector field
and drift factor depend on the hybrid state, both con-
tinuous and discrete. Switching between two discrete
states is governed by a probability law or occurs when
the continuous state hits the boundary of its state
space. Whenever a switching occurs, the hybrid state
is reset instantly to a new state according to a prob-



ability law which depends itself on the past hybrid
state.

GSHS involve a hybrid state space, with both con-
tinuous and discrete states. The continuous and the
discrete parts of the state variable have their own
natural dynamics, but the main point is to capture
the interaction between them.

The time t is measured continuously. The state
of the system is represented by a continuous variable
x and a discrete variable i. The continuous variable
evolves in some “cells”Xi (open sets in the Euclidean
space) and the discrete variable belongs to a count-
able set Q. The intrinsic difference between the dis-
crete and continuous variables, consists of the way
that they evolve through time. The continuous state
is governed by an SDE that depends on the hybrid
state. The discrete dynamics produces transitions in
both (continuous and discrete) state variables x, i.
Transitions occur when the continuous state hits the
boundary of the state space (forced transitions) or
according with a probability law. Whenever a tran-
sition occurs the hybrid state is reset instantly to a
new value. The new value of the discrete state after
the transition is determined by the hybrid state be-
fore the transition. On the other hand, the new value
of the continuous state obeys a probability law which
depends on the last hybrid state. Thus, a sample tra-
jectory has the form (qt, xt, t ≥ 0), where (xt, t ≥ 0)
is piecewise continuous and qt ∈ Q is piecewise con-
stant. Let (0 ≤ T1 ≤ T2 ≤ ... ≤ Ti ≤ Ti+1 ≤ ...) be
the sequence of jump times at which the continuous
and the discrete part of the system interact. This
time sequence is generated when the state of the sys-
tem hits the boundary or according with a transition
rate.

3 The Mathematical Model

3.1 State space

Let Q be a countable set of discrete states, and let
d : Q→ N and X : Q→ Rd(.) be two maps assigning
to each discrete state i ∈ Q an open subset Xi of

Rd(i). We call the set

X(Q,d,X ) =
i∈Q
{i} ×Xi

the hybrid state space of the GSHS and x = (i, xi) ∈
X(Q,d,X ) the hybrid state. The completion of the
hybrid state space will be

X = X ∪ ∂X

where
∂X =

i∈Q
{i} × ∂Xi,

It is clear that, for each i ∈ Q, the state space
Xi is a Borel space (homeomorphic to a Borel subset
of a complete separable metric space). It is possible
to define a metric ρ on X in such a way the restric-
tion of ρ to any component Xi is equivalent to the
usual Euclidean metric [6]. Then (X,B(X)) is a Borel
space. Moreover, X is a homeomorphic with a Borel
subset of a compact metric space (Lusin space) be-
cause it is a locally compact Hausdorff space with
countable base (see [6] and the references therein).

3.2 Construction

Assumption 1 Suppose that b : Q × X(·) → Rd(·),
σ : Q × X(·) → Rd(·)×m, m ∈ N, are bounded and
Lipschitz continuous in x.

This assumption ensures, for any i ∈ Q, the exis-
tence and uniqueness (Theorem 6.2.2. in [1]) of the
solution for the following stochastic differential equa-
tion (SDE)

dx(t) = b(i, x(t))dt+ σ(i, x(t))dWt, (1)

where (Wt, t ≥ 0) is the m-dimensional standard
Wiener process in a complete probability space.
In this way, when i runs in Q, the equation

(1) defines a family of diffusion processes Mi =
(Ωi,F i,F it , xit, θit, P i), i ∈ Q with the state spaces
Rd(i), i ∈ Q. For each i ∈ Q, the elements F i, F it ,
θit, P

i, P ixi have the usual meaning as in the Markov
process theory [3]:



The jump (switching) mechanism between the dif-
fusions is governed by two functions: the jump rate
λ and the transition measure R. The jump rate
λ : X → R+ is a measurable function and the transi-
tion measure R maps X into the set P(X) of proba-
bility measure on (X,B(X)).
One can consider the transition measure R : X ×

B(X)→ [0, 1] as a reset probability kernel such that:
(i) for all A ∈ B(X), R(·,A) is measurable; (ii) for all
x ∈ X the function R(x, ·) is a probability measure.
Assumption 2 (i) λ : X → R+ is a measurable
function such that t → λ(xit(ωi)) is integrable on
[0, ε(xi)), for some ε(xi) > 0, for each xi ∈ Xi and
each ωi starting at xi.
(ii) R(x, {x}) = 0 for x ∈ X.
Since X is a Borel space, then X is homeomor-

phic to a subset of the Hilbert cube, H1 (Urysohn’s
theorem, Prop. 7.2 [2]). Therefore, its space of prob-
abilities is homeomorphic to the space of probabilities
of the corresponding subset of H (Lemma 7.10 [2]).
There exists a measurable function : H×X → X
such that R(x,A) = p −1(A), A ∈ B(X), where p
is the probability measure on H associated to R(x, ·)
and −1(A) = {ω ∈ H| (ω, x) ∈ A}. The measur-
ability of such a function is guaranteed by the mea-
surability properties of the transition measure R.
We construct an GSHS as a Markov ‘sequence’ H

which admits (Mi) as subprocesses. The sample path
of the stochastic process (xt)t>0 with values in X,
starting from a fixed initial point x0 = (i0, x

i0
0 ) ∈ X

is defined in a similar manner as PDMP [6]. We
have to precise, from the beginning, that the above
recipe gives a sample path of GSHS starting with a
initial diffusion path whose starting point is x0. An
arbitrary point x0 does not define in a unique way a
diffusion path!

Let ωi a trajectory which starts in (i, xi). Let
t∗(ωi) be the first hitting time of ∂Xi of the process
(xit). Let us define the function

F (t,ωi) = I(t<t∗(ωi)) exp(−
t

0

λ(i, xis(ωi)))ds. (2)

1H is the product of countable many copies of [0, 1].

This function will be the survivor function for the
stopping time Si associated to the diffusions (xit),
which will be employed in the construction of our
model. This means that the stopping time Si satisfies
the condition

P i[Si > t] = P i{ωi|F (t,ωi) ≥ e−cit}

where ci = sup
xi∈Xi

λ(xi). Obviously, the stopping time

Si is the minimum of two other stopping times:

1. first hitting time of boundary, i.e. t∗|Ωi ;

2. the stopping time Si3 with the survivor function
given by (2).

The first jump time of the process T1(ω) =
T1(ωi0) = S

i0(ωi0). The sample path xt(ω) up to the
first jump time is now defined as follows:

if T1(ω) =∞ : xt(ω) = (i0, x
i0
t (ωi0)), t ≥ 0

if T1(ω) <∞ : xt(ω) = (i0, x
i0
t (ωi0)), 0 ≤ t < T1(ω)

xT1(ω) = (ω, (i0, x
i0
T1
(ωi0))).

The process restarts from xT1(ω) = (i1, x
i1
1 ) accord-

ing to the same recipe, using now the process xi1t .
Thus if T1(ω) <∞ we define the next jump time

T2(ω) = T2(ωi0 ,ωi1) = T1(ωi0) + S
i1(ωi1)

The sample path xt(ω) between the two jump times
is now defined as follows:

if T2(ω) =∞ : xt(ω) = (i1, x
i1
t−T1(ω)), t ≥ T1(ω)

if T2(ω) <∞ : xt(ω) = (i1, x
i1
t (ω)), 0 ≤ T1(ω) ≤ t < T2(ω)

xT2(ω) = (ω, (i1, x
i1
T2
(ω))).

and so on.
Let T1 < T2 < ... < Tn < ... be the sequence of

stopping times obtained by the above method. Let
T∞ = lim

n→∞ Tn.

We denote

Nt(ω) = I(t≥Tk)

Assumption 3 For every starting point x ∈ X,
ENt <∞, for all t ∈ R+.

We suppose that the assumption 3 is in force.



3.3 Formal Definitions

We can introduce the following definition.

Definition 1 A General Stochastic Hy-
brid System (GSHS) is a collection H =
((Q, d,X ), b,σ, Init,λ, R) where
• Q is a countable set of discrete variables;

• d : Q→ N is a map giving the dimensions of the
continuous state spaces;

• X : Q → Rd(.) maps each q ∈ Q into an open
subset Xq of Rd(q);

• b : X(Q,d,X )→ Rd(.) is a vector field;

• σ : X(Q,d,X ) → Rd(·)×m is a X(·)-valued ma-
trix, m ∈ N;

• Init : B(X)→ [0, 1] is an initial probability mea-
sure on (X,B(S));

• λ : X(Q, d,X ) → R+ is a transition rate func-
tion;

• R : X × B(X)→ [0, 1] is a transition measure.

We can introduce the GSHS execution.

Definition 2 (GSHS Execution) A stochastic
process xt = (q(t), x(t)) is called a GSHS execu-
tion if there exists a sequence of stopping times
T0 = 0 ≤ T1 ≤ T2 ≤ . . . such that for each k ∈ N,
• x0 = (q0, x

q0
0 ) is a Q × X-valued random vari-

able extracted according to the probability mea-
sure Init;

• For t ∈ [Tk, Tk+1), qt = qTk is constant and x(t)
is a (continuous) solution of the SDE:

dx(t) = b(qTk , x(t))dt+ σ(qTk , x(t))dWt (3)

where Wt is a the m-dimensional standard
Wiener;

• Tk+1 = Tk + Sik where Sik is chosen according
with the survivor function (2).

• The probability distribution of x(Tk+1) is gov-
erned by the law R (qTk , x(T

−
k+1)), · .

4 Properties

Notations. Given a function f ∈ C1(Rn,R) and
a vector field b : Rn → Rn, we use Lbf to de-
note the Lie derivative of f along b, i.e. Lbf(x) =

n
i=1

∂f
∂xi
(x)fi(x). Given a function f ∈ C2(Rn,R),

we use Hf to denote the Hamiltonian operator ap-
plied to f, i.e. Hf(x) = (hij(x))i,j=1...n ∈ Rn×n,
where hij(x) =

∂2f
∂xi∂xj

(x). Given a matrix A =

(aij)i,j=1...n ∈ Rn×m, AT denotes the transpose ma-
trix of A and Tr(A) denotes its trace, i.e. Tr(A) =

n
i=1 aii.

4.1 Strong Markov Property

Proposition 3 Any General Stochastic Hybrid Sys-
tem H, under the standard assumptions of section 3,
is a Borel right process.

Proof. In order to prove that H is a right
Markov process, we want to apply the results, from
[8], concerning the “melange” operation of Markov
processes. We can suppose without loss of generality
that Ωi ∩ Ωj = ∅. Then, the renewal kernel Ψ, used
in Th.1, [8], can be defined as follows

Ψ : {
i∈Q
Ωi} × B(X)→ [0, 1]

such that
Ψ(ωi,A) = R(x

i
Si(ωi)

,A)

We need to check that: If 0 < t < Si(ωi) then
Ψ(θitωi, ·) = Ψ(ωi, ·), i.e. the ‘memoryless’ of the
stopping times (Si)

R(xiSi(θitωi)
, ·) = R(xiSi(ωi), ·).

In fact, we have to prove that, if 0 < t < t + s <
Si(ωi) then

Px
i

(Si > t + s|Si > t) = Pxit(Si > s) (4)

Using the survivor function defined by (2), the left
hand side of (4) becomes

P x
i

(Si > t+ s|Si > t) = F (t+ s, xi)

F (t, xi)
=



=
I{t+s<t∗(ωi)} exp(− t+s

0
λ(xiτ(ωi))dτ)

I{t<t∗(ωi)} exp(− t

0 λ(x
i
τ (ωi))dτ)

=

= I{t+s<t∗(ωi)} exp(−
t+s

t

λ(xiτ (ωi))dτ) =

= I{t+s<t∗(ωi)} exp(−
s

0

λ(xiτ+t(ωi))dτ) =

= I{t+s<t∗(ωi)} exp(−
s

0

λ(xiτ ◦ θit(ωi))dτ)

The right hand side of (4) is

Px
i
t(Si > s) = I{s<t∗(θitωi)} exp(−

s

0

λ(xiτ◦θit(ωi))dτ)

Since t∗(θitωi) = t∗(ωi)− t we get t + s < t∗(ωi) ⇔
s < t∗(θitωi) and (4) is proved.
Therefore, H is a Markov string obtained by mix-

ing some diffusion processes. Moreover, since the
state space is a Lusin space, H is a Borel right process
(i.e. a right Markov process whose semigroup maps
B(S)2 into itself).

4.2 Cadlag Property

Proposition 4 Any General Stochastic Hybrid Sys-
tem H, under the standard assumptions of section 3,
enjoys the càdlàg property, i.e.
for all ω ∈ Ω the trajectories t :→ xt(ω) are right
continuous on [0,∞) with left limits on (0,∞).

Proof. The result is a direct consequence of two
facts:

1. the sample paths of (xt) are obtained by concate-
nation of sample paths of component process;

2. the component processes are continuous (being
diffusions).

4.3 The Process Generator

We denote by Bb(X) the set of all bounded measur-
able functions f : X → R. This is a Banach space

2here B(S) is understood as the set of all real Borel functions
defined on S.

under the norm

nfn = sup
x∈X

|f(x)|

Let (Pt) be the semigroup of the whole Markov
process (xt),

Ptf(x) = Exf(xt) = Ex{f(xt)|t < ζ}
where g is bounded B-measurable function and ζ is
the lifetime when the process retires to ∆, i.e.

ζ := inf{t|xt = ∆}.
Associated with the semigroup (Pt) is its strong gen-
erator which, loosely speaking, is the derivative of Pt
at t = 0. Let D(L) ⊂ Bb(X) be the set of functions
f for which the following limit exists

lim
t)0

1

t
(Ptf − f) (5)

and denote this limit Lf. The limit refers to conver-
gence in the norm n·n, i.e. for f ∈ D(L) we have

lim
t)0

||1
t
(Ptf − f)−Lf|| = 0.

Specifying the domain D(L) is an essential part of
specifying the operator L.
Let B0 be the subset of Bb(X) consisting of those

functions f for which lim
t)0

||Ptf − f || = 0. The semi-
group is said to be strongly continuous on B0. B0 is
a closed linear subspace of Bb(X).
Proposition 5 (martingale property) [6] For

f ∈ D(L) we define the real-valued process (Cft )t≥0
by

Cft = f(xt)− f(x0)−
t

0

Lf(xs)ds. (6)

Then for any x ∈ X, the process (Cft )t≥0 is a mar-
tingale on (Ω,F ,Ft, Px).
There may be other functions f , not in D(L), for
which something akin to (6) is still true. In this
way we get the notion of extended generator of the
process.



Let D(L) denote the set of measurable functions
f : X → R with the following property: there exists
a measurable function h : X → R such that the func-
tion t→ h(xt) is integrable Px − a.s. for each x ∈ X
and the process

Cft = f(xt)− f(x0)−
t

0

h(xs)ds

is a local martingale. Then we write h = Lf and call
(L,D(L)) the extended generator of the process (xt).
Following [6], for A ∈ B(X) define processes p, p∗

and p as follows:

p(t, A) =
∞

k=1

I(t≥Tk)I(xTk∈A);

p∗(t) =
∞

k=1

I(t≥Tk)I(x
T
−
k
∈∂X)

;

p(t, A) =
t

0
R(xs, A)λ(xs)ds+

t

0
R(A,xs−)dp∗(s)

=
Tk≤t

R(xTk−, A).

Note that p, p∗ are counting processes, p∗(t) count-
ing the number of jumps from the boundary of the
process (xt). p(t, A) is the compensator of p(t,A)
(see [6] for more explanations). The process q(t, A) =
p(t,A)− p(t, A) is a local martingale.
Theorem 6 Let H be an GSHM as in definition 1.
Then the domain D(L) of the extended generator L of
H, as a Markov process, consists of those measurable
functions f on X∪∂X satisfying:

1. f : X → R, B−measurable; t →
f(xit(ωi)) should have second order derivatives
on [0, Si(ωi)), for all ωi ∈ Ωi;

2. Boundary condition

f(x) =
X
f(y)R(x, dy)), x ∈ ∂X;

3. Bf ∈ Lloc1 (p), where
Bf(x, s,ω) := f(x)− f(xs−(ω));

For f ∈ D(L), Lf is given by

Lf (x) = Lcontf(x) + λ(x)
X

(f(y)− f(x))R(x, dy)

where: Lcont f(x) = Lbf(x)+ 1
2Tr(σ(x)σ(x)

THf (x)).

A detailed proof of this theorem can be found in [5].

5 Conclusions

In this paper we propose a very general model for
stochastic hybrid systems. The model answers im-
portant practical challenges and thus needs to be ex-
plored. The contributions of this paper are twofold:
•to define the model;
•to prove correctness of this model (existence of the

solution process which is a “Borel right process”).
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