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Abstract 
 

  This is the second deliverable under work package WP6 of the HYBRIDGE project. 
  This report aims to summarize the work held so far under WP6 on decentralized 
conflict resolution. We use the navigation function methodology to solve the problem 
of decentralized motion planning of multiple agents in both cases where the agent 
dynamics are holonomic or nonholonomic. Simulation results in both cases indicate 
the effectiveness of the method. 
  In the last part of the report, a brief presentation of the current research efforts taking 
place in the Control Systems Lab of NTUA under WP6 is given.  These involve the 
extension of the underlying methodology to the case where the sensing capabilities of 
each agent are limited and where uncertainty has to be taken into account. 
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Chapter 1 
 
Introduction 
 
  This deliverable summarizes the work held so far on decentralized conflict 
resolution in NTUA under WP6. It presents the extension of navigation functions, 
which have been proven a very powerful tool for centralized navigation and collision 
avoidance, to decentralized navigation, for both the cases where the aircraft dynamics 
are considered holonomic or nonholonomic. The underlying work is held under the 
guidance of Task 6.2 of WP6. 
  The navigation functions approach is a method related to the artificial potential fields 
methodologies in robotics. These methods have been used extensively in the last two 
decades in robot path planning and cooperative control both for holonomic and 
nonholonomic dynamics. Nonholonomic constraints arise when the velocity 
constraints of a moving vehicle cannot be written as an algebraic constraint in the 
configuration space. When the constraints are explicitly integrable, then they can take 
the form of an algebraic constraint. Hence one can relate the words holonomic and 
nonholonomic to integrable and non-integrable respectively.   
  In Air Traffic Management, decentralized conflict detection and resolution involves 
reassignment of the control tasks from the central authority, i.e. the Air Traffic 
Controllers, to the agents, i.e. the cockpit. The level of decentralization depends on 
the knowledge an agent has on the other agents' actions and objectives. In this 
deliverable the decentralization factor lies in the fact that each agent/aircraft has 
knowledge only of its own desired destination, but not of the desired destinations of 
the others. Clearly, this is a suitable model for a futuristic distributed ATM system, 
where each aircraft will have knowledge of the actions and positions of the other 
aircraft at each time instant, but not of their destinations. 
  Chapters 2 and 3 present the decentralized navigation function methodology for the 
holonomic and nonholonomic case respectively. In the first case, we show that by 
appropriate selection of the controller parameters, the (asymptotic) stability of the 
whole scheme is guaranteed. This is also proved in the nonholonomic case, where we 
enhance the holonomic navigation functions of Chapter 2 with a dipolar structure, so 
that the nonholonomic constraints are dealt with. Simulation results in both cases 
indicate the effectiveness of the method. 
  The final chapter of this report summarizes current research issues within Task 6.2. 
In the prescribed methodology each agent has global knowledge of the positions of 
the others at each time instant. In practice however, the sensing capabilities of each 
aircraft are limited. Consequently, each aircraft cannot have knowledge of the 
positions and/or velocities of every aircraft in the workspace but only of the aircraft 
within its sensing zone at each time instant. We discuss in section 4.1 how such a 
situation can be modelled as a deterministic hybrid system and indicate ways to check 
the stability of the overall scheme. Finally, section 4.2 discusses possible extensions 
of the underlying method to the case where uncertainty in the plant’s and/or pilot’s 
behaviour is taken into account. 
 
 
 
 
 

 4



Chapter 2 
 

Decentralized Conflict Resolution for Multiple Holonomic Agents 
 
  In this chapter, we consider the decentralized conflict avoidance problem for the 
case when the dynamics of each aircraft are considered purely holonomic, i.e. the 
position of aircraft i is described by the following differential equation: , where 

 is the velocity of the aircraft. The problem that we treat can be stated as follows: 
“Derive a set of control laws (one for each agent) that drives a team of n aircraft from 
any initial configuration to a desired goal configuration avoiding at the same time 
collisions.” We make the following assumptions: 

iq u=� i

1]

iu

 
• Each aircraft has global knowledge of the position of the others at each time 

instant.   
• Each aircraft has knowledge only of its own desired destination but not of the 

others. 
• We consider spherical agents. 
• The agent’s motion is planar, i.e. we consider 2D movement. 
• The workspace is bounded and spherical.  

 
The second assumption makes the problem decentralized. Clearly, in the centralized 
case a central authority has knowledge of everyone’s goals and positions at each time 
instant and it coordinates the whole team so that the desired specifications (destination 
convergence and collision avoidance) are fulfilled. In the current situation no such 
authority exists and we have to deal with the limited sensing capabilities of each 
agent. 
  We approach the problem with the navigation function method, which has been used 
for the centralized case in [12]. The following discussion is based on [3]. The proofs 
of the aforementioned propositions and more details can be found in [4]. 
 
2.1 Decentralized Navigation Functions 
 
  Navigation functions are real valued maps realized through cost functions, whose 
negated gradient field is attractive towards the goal configuration and repulsive wrt 
obstacles. It has been shown by Koditscheck and Rimon that “almost” global 
navigation is possible since a smooth vector field on any sphere world with a unique 
attractor, must have at least as many saddles as obstacles [9]. Our assumption about 
spherical agents does not constrain the generality of this work since it has been proven 
that navigation properties are invariant under diffeomorphisms. 
  We consider a team of n aircraft/agents operating in a spherical workspace . 
Each agent i occupies a disc of radius . Its center is denoted . The configuration 
space is spanned by . A navigation function is a map

2W R⊂
ir iq

1[ , , ]T
nq q q= … : [0,Fϕ → , 

where F is a compact connected analytic manifold with boundary, which (1) is 
analytic on F, (2) has only one minimum in the interior of F, (3) its Hessian  
at all critical points (zero gradient vector field) is full rank, and (4) is maximized on 
the boundary of F, i.e. 

2 2/ qϕ∂ ∂

lim ( ) 1
q F

qϕ
→∂

= . 
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  Property (3) of the above definition guarantees that the flow of the vector field is not 
“blocked” towards the desired destination by critical points not coinciding with it. 
Property (1) reflected Koditscheck and Rimon’s perspective that analytic expressions 
are “a preferable encoding of actuator commands to algorithms that include logical 
decisions”. They hint however, that merely  functions are needed.  2C
  We consider the following class of decentralized navigation 

functions:
1/

ˆ
k

i
i d i

i iG
γϕ σ σ ϕ

γ
⎛ ⎞

= = ⎜ +⎝ ⎠
D D ⎟ , where 1/ k

d xσ = ,
1

x
x

σ =
+

, and the cost 

function ˆ /i i Giϕ γ= , where  denotes the desirable set (desired destination), and 
, the set that aircraft i wants to avoid (collisions with other aircraft). A suitable 

choice is

1(0)iγ −

1(0)iG−

2kk
i di i diq qγ γ= = − , where diγ  is the squared metric of the current agent’s 

configuration  from its destination . Function  has as arguments the 
coordinates of all agents, i.e.

iq diq iG
( )i iG G q= , in order to express all possible collisions of 

agent i with the others. The proposed navigation function for agent i 

is  and the corresponding agent control law is1/( ) /( )k
i di di iqϕ γ γ= + kG

i

i
i iu K

q
ϕ∂

= −
∂
i . 

The following theorem will help us on deriving results for the function iϕ  by 
examining the simpler function ˆiϕ : 
 
Theorem 1 [4]: Let 1 2,I I ⊆ R  be intervals, 1ˆ : F Iϕ →  and 1: 2I Iσ →  be analytic. 
Define the composition 2: F Iϕ →   to be ˆϕ σ ϕ= D . If σ  is monotonically increasing 
on 1I , then the set of critical points of ϕ̂  and ϕ  coincide and the (Morse) index of 
each critical point is identical. 
 
  The first step is to prove the existence of an energy function that asymptotically 
stabilizes the system to . The obvious choice is to choose the sum of 

the separate decentralized navigation functions, i.e. to choose

1[ , , ]T
nq q q= …

1

n

i
i

ϕ ϕ
=

= ∑ . 

 
Proposition 1: The derivative of ϕ  assumes negative values up to a set of measure 
zero if the exponent k assumes values bigger than a finite lower bound. 
 
This set of measure zero corresponds to saddle points of the navigation functions. The 
third property of the definition indicates that the critical points of each navigation 
function are isolated and that the set of initial conditions that leads to saddle points is 
of measure zero. We use the result of theorem 1, to show that the critical points of the 
navigation functions are such saddle points, so that there is always a direction of 
movement decreasing its potential function inside the free space, i.e. inside the 
subspace of W which is free of collisions. Similar to the results in [12], we make use 
of the following propositions: 
  
Proposition 2: If the workspace is valid, the destination point  is a non–
degenerate local minimum of

diq

iϕ . 
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Proposition 3: If the workspace is valid, all critical points of iϕ  are in the interior of 
the free space. 
Proposition 4: For every ε>0, there exists a positive integer N(ε) such that if k>N(ε) 
then there are no critical points of ˆiϕ  in 1( )F ε , where 1( )F ε  denotes the set away 
from  collisions. 
Proposition 5: For any valid workspace, there exists an 0 0ε >  such that ˆiϕ  has no 
local minimum in 0 ( )F ε , as long as 0ε ε< , where 0 ( )F ε  denotes the set near 
collisions. 
 
  Clearly, Proposition 2 guarantees that the desired destination is the only local 
minimum of iϕ  inside the free space of aircraft i, Propositions 3,4 clear the set away 
from collisions from critical points and Proposition 5 establishes that even when a 
critical point occurs near the collision set, it is never a local minimum so there is 
always a direction of movement decreasing the potential function inside the free 
space. This, along with the fact that the Hessian at all critical points is full rank, 
guarantees that the set of initial conditions that leads to saddle points is of measure 
zero. 
 
2.2 Construction of the G-function 
 
  Unlike the centralized case, in the proposed decentralized control law, each agent 
has a different  which represents its relations with all the other agents. To simplify 
notation we denote by q instead of  the current agent configuration, by  instead 
of  its goal configuration, by G instead of  its “G” function and by  the 
configurations of the other agents. Actually, each agent treats the remaining n-1 
agents as n-1 moving obstacles. We use this terminology in the following paragraphs. 
The mathematical tools of the following paragraphs are a simple extension of the 
notions introduced in [12] to the decentralized setup. 

iG

iq dq

diq iG jq

  A “Robot Proximity Function”, a measure of the distance between the agent and the 
j-th moving obstacle in the workspace, is defined by:

2 2( )j jq q r rβ = − − + j , where r 

is the radius of the agent and r  the radius of the j-th moving obstacle.  j

  We will use the term “relation” to describe the possible collision schemes that can 
be defined in a single agent – multiple moving obstacles scene. A binary relation is a 
relation between the agent and a single obstacle. We will call the number of binary 
relations in a relation, the “relation level”. With this terminology in hand, the relation 
of figure (1a) is a level-1 relation (one binary relation) and that of figure (1b) is a 
level-3 relation (three binary relations), where with R is denoted the agent though 

jO  
indicate the obstacles. 
 

R R
1O

4O
3O

2O

1O

2O

3O

4O

( )a ( )b

 
 
 
 
 
 
                                                              Fig.2.1 
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  A “Relation Proximity Function”(RPF) provides a measure of the distance between 
the agent and the obstacles involved in a relation. Each relation has its own RPF. An 
RPF assumes the value of zero whenever the agent – obstacles involved in the relation 
collide and increases wrt the distance of the related objects:

( )
( )

j

j l

R l m
m R

b β
∈

= ∑ , where 

the index j denotes the j-th relation of level–l. To simplify notation, the relation 
proximity function can be rewritten as:

l

i
j R

b jβ
∈

= ∑ , where lR  indicates level–l relations 

and the index i belongs to the set S of all possible relations wrt to the specific agent. 
Obviously, i indicates a relation of level–l.  
  A “Relation Verification Function” (RVF) is defined by: 

1/

( )
( ) ( ) ,  for 2

( ) ( )
j

j j
Cj j

R l
R l R l h

R l jR

b
g b l n

b B

λ
= + ≤ −

+
and ( ) ( )

jR l R lg b
j

=  for l=n-1 where λ, h 

are positive constants, n is the total number of agent – obstacles in the workspace, 
and:

( )

( ) ( ) ,  or C
j C C

j l j

l m l iR
m R m R

mB b b
∈ ∈

= ∏ � b= ∏  for simplicity where in the simplified 

equation, C
jR  indicates a complementary set of relations of level–l. Using the 

simplified notation introduced above, the relation verification function can be 

rewritten as: 1/( , ) i
i i i i h

i i

bg b b b
b b

λ
= +

+
�

� , for  and 2l n≤ − ( , )i i i ig b b b=� for l=n-1 where n 

is the total number of agents in the workspace, as defined previously. The basic 
property that we demand from RVF is that it assumes the value of zero if a relation 
holds, while no other relations of the same or other levels hold. In other words it 
should indicate which of all possible relations holds. In RVF’s definition we 
distinguish two situations (i.e. and l=n-1) since for l=n-1, only one relation is 
defined and so the set  is an empty set. Thus we can’t define . We 

could compute the following limits of RVF (using the simplified notation): when 
 and , obviously: . When: and , because of the power 

1/h on , it tends to zero faster than  does, and so we conclude that:

2l n≤ −

1( )C
j nR − 1( )C

j
nR

B −

0ib → 0ib ≠� 0ig → 0ib → 0ib →�

ib� ib ig λ→ . 

When: , independently of how  behaves:0ib ≠ ib� 0ig ≠ . These limits guarantee that 
RVF will behave in the way we want it to, as an indicator of a specific collision. We 

can now define: , where  is the number of levels and  the 

number of relations in level-l. The simplified equation indicates that G is practically 
the product of a certain number of . 

,

1 1

( )
R lL

j

nn

R l
l j

G g
= =

= ∏∏ Ln ,R ln

'sig
  The definition of the G function in the multiple moving agents situation is slightly 
different than the one introduced by the authors in [9]. The collision scheme in that 
approach involved a single moving point agent in an environment with static 
obstacles. A collision with more than one obstacle was therefore impossible and the 
obstacle function was simply the product of the distances of the agent from each 
obstacle. In our case however, this is inappropriate, as can be seen in the following 
figure. The control law of agent A should distinguish when agent A is in conflict with 
B, C, or B and C simultaneously. Mathematically, the first two situations are level-1 
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relations and the third a level-2 relation with respect to A. Whenever the latter occurs, 
the RVF of the level-2 relation tends to zero while the RVF’s of the two separate 
level-1 relations (A,B and A,C) are nonzero. The key property of an RVF is that it 
tends to zero only when the corresponding relation holds. Hence it serves as an 
analytic switch that is activated (tends to zero) only when the relation it represents is 
realized. 
 

AA A

B
B

B

C C

I II II
C

I   
 

Fig.2.2 
I,II are level-1 relations with respect to A, while III is level-2. The RVF’s of the level-

1 relations are nonzero in situation III. 
 
2.3 Proof of Correctness 
 
   For a detailed proof of Propositions 1-5, the reader is referred to [4]. We first 
proceed with the proof of Proposition 1 and then move on with the proofs of 
Propositions 2-5, which are simple extensions of the proofs in [12]. For the latter we 
make use of the following geometry: let 0ε > . Define , ( ) { : 0 ( ) }

jj l R lB q gε ε≡ < < . We 
can then discriminate the following topologies: 
1. The destination point:  dq
2. The free space boundary:  1( ) (0)F q G−∂ =

3. The set near collisions:  
,

0 ,
1 1

( ) ( ) { }
R lL nn

j l d
l j

F Bε ε
= =

= −∪∪ q

4. The set away from collisions: 1 0( ) ({ } ( ))dF F q F Fε ε= − ∪ ∂ ∪  
Proposition 1 guarantees asymptotic stability to the destination point, while 2-5 
guarantee that there will always be a direction of decrease of the potential function 
inside the free space. 
 
2.4 The f-function 
 
  The prescribed method does not apply to the case when the initial conditions of some 
of the agents coincide with their desired destinations. This is because in these cases 
the numerator of iϕ  so the potential for an agent to move is negligible in a possible 
collision scheme. A way to overcome this is to add a function f so that the cost 
function iϕ  attains bigger positive values in proximity situations even when i has 
reached its destination. The navigation function in this case becomes 
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1/

( ( ))( )
(( ( )) )

di i
i k k

di i i

f Gq
f G G

γϕ
γ

+
=

+ +
 . A suitable function is 

3

0
1

( ) j
j

j

f G a a G
=

= + ∑  for 

 and  for G>X. This function is locally maximum at G=0 and 
locally maximum at G=X, where X,Y>0. The coefficients  are evaluated in order to 
fulfil these properties. This choice of f  has been proven to be very satisfying in 
simulation. The problem is that in this way the function 

0 G X≤ ≤ ( ) 0f G =

ia

iϕ  is no longer analytic so it 
does not fulfil the definition of navigation functions given by Koditscheck and 
Rimon. However, as we have discussed previously, the analyticity property can be 
replaced by mere second order differentiability. 
 
2.5 Simulation Results  
 
  To demonstrate the navigation properties of our decentralized approach, we present 
a simulation of four holonomic agents that have to navigate from an initial to a final 
configuration, avoiding collision with each other and satisfying velocity bounds. The 
chosen configurations constitute non-trivial setups since the straight-line paths 
connecting initial and final positions of each agent are obstructed by other agents.  
  In the first simulation (Simulation A) we use navigation functions without the 
function f in the nominator. In the second (Simulation B) we use the function f  in the 
nominator. 
 
Initial Conditions: q1 = [.1732, -.1] T, q2 = [-.1732, -.1]T ,q3 = [0, .2]T ,q4 = [0, 0]T. 
Goal Conditions: qd1 = [-.1732, .1] T, qd2 = [.1732, .1]T ,qd3 = [0, -.2]T ,qd4 = [0, 0]T. 
  
  The fulfillment of the collision avoidance as well as of the destination convergence 
properties is obvious in the following five figures. Notice that in Simulation A, since  
the green agent’s initial condition coincides with its desired destination, it does not 
participate in the navigation process. Hence there is no cooperation between the green 
agent and the remaining team. This is overcome in Simulation B which successfully 
forces the green agent to participate in the navigation process. 

 
Simulation A (navigation function:   

1/( ) /( )k k
i di di iq Gϕ γ γ= + ) 
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Simulation B (navigation function:  

1/

( ( ))( )
(( ( )) )

di i
i k k

di i i

f Gq
f G G

γϕ
γ

+
=

+ + ) 
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Chapter 3  
 
Decentralized Conflict Resolution for Multiple non-Holonomic 
Agents 
 
  In this chapter, we discuss the problem of decentralized collision avoidance for 
multiple agents but in this case, the system dynamics are non-holonomic, i.e. the 
position of aircraft i is described by the following differential equations: 

cos , sin ,i i i i i i ix u y u iθ θ θ ω= = �� � = , where  is the translational velocity of the aircraft, 
and 

iu

iω  its angular velocity. The problem that we treat can be stated as follows: “Given 
a team of n nonholonomic aircraft derive a control law that steers every system from 
any feasible initial configuration to its goal configuration avoiding at the same time 
collisions.” We make the following assumptions: 
 

• Each aircraft has global knowledge of the position and velocity of the others at 
each time instant.   

• Each agent has no information about other agents’ targets. 
• Around the target of each agent i there is a region called agent's i safe region. 
• Agent's i safe region is only accessible by agent i, while regarded as an 

obstacle by other agents. 
• The minimum distance between any two safe regions of any two agents is 

greater than the diameter of the largest agent. 
 
The following discussion is based on [11].  
 
3.1 Decentralized Nonholonomic Navigation Functions 
 
  In this section, we show how the decentralized holonomic navigation functions of 
the previous section can be extended in order to provide trajectories suitable for the 
nonholonomic case. This is accomplished by a enhancing a dipolar structure [20] to 
the navigation functions. Dipolar potential fields have been proven a very effective 
tool for stabilization [19] as well as for centralized coordination of multiple 
nonholonomic agents [13]. The key advantage of this class of potential fields is that 
they drive the controlled agent to its destination with the desired orientation. The 
following discussion, which is based on [11], provides the extension of [3] to the case 
of multiple nonholonomic agents. 
  We consider a team of n aircraft/agents operating in a spherical workspace . 
Each agent i occupies a disc of radius . Its center is denoted . The position vector 
of the agents is represented by . The orientation vector of the agents is 
represented by 

2W R⊂
ir iq

1[ , , ]T
nq q q= …

1[ , , ]T
nθ θ θ= … , where iθ  denotes the orientation of each agent. Let 

2 ( ,iW R ]π π⊆ × −  represent each agent’s workspace. The configuration of each agent 
is represented by [ ]T

i i i ip q θ= ∈W  and its target by [ ]T
di di di ip q Wθ= ∈ . 

  To be able to produce a dipolar potential field, iϕ  of the previous section must be 

modified as follows: 
( )1/

i

di
i kk

di nh iH G

γϕ
γ

=
+ ⋅

, where has the form of a pseudo-
inhH
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obstacle. A possible selection of would be 
inhH

inh nh nhH
i

ε η= + , with 
2( )

inh i di diq q nη = − ⋅ , where . Subscript d denotes 

destination. Moreover 

[cos( )sin( )]T
di di din θ θ=

2
di i diq qγ = − , i.e. the angle is not incorporated in the distance 

to the destination metric. Figure shows a 2D dipolar navigation function. 

 
Fig. 3.1 2D dipolar navigation function 

 
As is shown in [13], the proposed modifications of the potential function do not affect 
its navigation properties, as long as the workspace is bounded and ( )nh kε ε> . 
 
3.2 Nonholonomic Control 
 
  Thus far we have established that the dipolar function iϕ  has navigation properties. 
We consider convergence of the multi-agent system as a two-stage process: In the 
first stage agents converge to a ball of radius ε  called safe region, containing the 
desired destination of each agent. Each agent can get in its own safe region but not in 
others. The safe region of one agent is regarded as an obstacle from the other agents. 
Once an agent gets in its own safe region, it remains in the set and asymptotically 
converges to the origin. 
  Before defining the control we need some preliminary definitions:  

  We define by 
2

2
2 ( , ) ( , )i

i i i i
i

q t q t
q

ϕ ϕ∂
= ∇

∂
 the Hessian of iϕ . Let min max,λ λ  be the 

minimum and maximum eigenvalues of the Hessian and 
min max

ˆ ˆ,λ λυ υ  the unit 
eigenvectors corresponding to the minimum and maximum eigenvalues of the 
Hessian. Since navigation functions are Morse functions [9], their Hessian at critical 
points is never degenerate, i.e. their eigenvalues have always nonzero values. 
  As discussed before, iϕ  is a dipolar navigation function. The flows of the dipolar 
navigation field provide feasible directions for nonholonomic navigation. What we 
need now is to extract this information from the dipolar function. To this extend we 
define the ``nonholonomic angle'':  
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( )min min

1

1

arg i ,

arg ( i ,
i

i i
i i

i inh
x y

i i

s s
x y

d s Pλ λ

ϕ ϕ

θ

υ υ

⎧ ⎛ ⎞∂ ∂ P⋅ + ⋅ ¬⎪ ⎜ ⎟⎪ ∂ ∂= ⎝ ⎠⎨
⎪ ⋅ +⎪⎩

, 

 
where condition  is used to identify sets of points that contain measure zero sets 
whose positive limit sets are saddle points:  

1P

 

min1 min max ˆ( 0) ( 0) ( i
iP λ 1)λ λ υ ϕ= < ∧ > ∧ ⋅ ∇ < ε  

 
where 

( )
[ ]

[ ]
min

1 { : }
min ( ) , sgn(( ) )

sgn( ), cos( ) sin( )

cos( ) sin( )

i i di

i

i
i i i diC q q q

Ti
i i di di di

T
i i i

C s q q

d

ε

λ

diε ϕ η

υ ϕ η θ θ

η θ θ

= − =
< ∇ = −

= ⋅ ∇ =

=

⋅

 

Before proceeding we need the following: 
 
Lemma 1: If  

min
ˆ 0i

iλυ ϕ⋅ ∇ = then  consists of the measure zero set of initial 
conditions that lead to saddle points. 

1P

 
For a proof of this lemma as well as of the following proposition the reader is referred 
to [11]. 
  In view of Lemma 1, 1ε  can be chosen to be arbitrarily small so the sets defined by 

 eventually consist of thin sets containing sets of initial conditions that lead to 
saddle points.  

1P

  The following provides a suitable nonholonomic controller for the first stage: 
 
Proposition 1: The system under the control law 
 

2

3
2

/
sgn( ) tanh(| | )

/
( ) tanh(| | )

2( )

i i

i

i i i i

i

ii i
i i i u z i i ii

i i

nh ii
i i nh nh i i nh i

nh i

t
u K K c

t
u K c

t θ

ϕ
ϕ η ϕ η

ϕ η

θ ϕ
ω θ θ θ θ θ

θ θ

⎛ ⎞∂ ∂
⎜ ⎟= − ∇ ⋅ ⋅ + ∇ ⋅
⎜ ⎟∇ ⋅⎝ ⎠

⎛ ⎞∂ ∂ ∂
= + ⋅ ∇ + − ⋅ + −⎜ ⎟⎜ ⎟∂ −⎝ ⎠

 

 
converges to the set { : ,   ( , ]}, {1,..., },i i i di iB p q q i nε δ θ π π= − ≤ − ∈ − ∈  almost 

everywhere in . Here iW
2 2

i

i
z i i diqK qϕ= ∇ + − ,

i iuK K, θ  are positive constants and 

0 δ ε< < . The parameter  must be chosen such that ic 2

2

1
ic ε

ε
+

>  where 

( ) 233 2 2
2 1 12 4 2ε π ε ε π

−

= + . 
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For the second stage each agent is isolated from the rest of the system. The dipolar 

navigation function for this case becomes 
( )

,
int 1/

, int

i

i

i i i

d
kk

d nhH
θ

θ

γ
ϕ

γ β
=

+ ⋅
, where 

22
inti i diq qβ ε= − − , and 2 2

, (
id i di diq qθγ = − + − )θ θ . Similarly to [13] define 

( )int
int

i

i i i i

i
i inh i u z

i

K K Kθ i i

ϕ
θ θ ϕ

θ
∂

η∆ = ⋅ ⋅ − − ⋅ ⋅ ∇ ⋅
∂

 

and 

arg ii i

i

int int
inh i i

i i

s s
x y

ϕ ϕ
θ

∂ ∂⎛ ⎞
= ⋅ + ⋅⎜ ⎟∂ ∂⎝ ⎠

⋅  

 
Then for each aircraft in isolation we have the following: 
 
Proposition 2: Subsystem i under the control law 
 

( )
( )

int

int

sgn

, 0

, 0

i i i

i i

i

i

i
i u z

i inh i i

i i
i

u K K

K

K

θ

θ

iϕ η

ω θ θ

ϕ
ω

θ

= − ⋅ ⋅ ∇ ⋅

= ⋅ − ∆ ≤

∂
= − ⋅ ∆ >

∂

 

 
converges globally asymptotically to dip . 
 
The following lemma states that once an agent has entered its safe region, it will never 
leave: 
 
Lemma 2: For the subsystem i under the control law of Proposition 2, the set 

{ }int : , (
i i i di iB p q q , ]ε θ π π= − ≤ ∈ −  is positive invariant. 

 
 
 
3.3 Simulation results  
 
  To demonstrate the navigation properties of our decentralized approach, we present 
three simulations of four nonholonomic agents that have to navigate from an initial to 
a final configuration, avoiding collisions. The chosen configurations constitute non-
trivial setups since the straight-line paths connecting initial and final positions of each 
agent are obstructed by other agents. The following sequence of figures verifies the 
collision avoidance and global convergence properties of our algorithm. In each figure 
the circles denote the targets of each agent while the ring around each target 
represents the corresponding transition guard where the transition from the first to the 
second stage takes place. 
 

Simulation A 
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Initial Conditions  
[ ] [ ] [ ]

[ ]
1 2 3

4

.3 .3 0 (red), 0 .3 / 2 (blue), .3 .3 (pink), 

.3 .3 (green)

T T

T

p p p

p

π π

π

= − − = − = −

=

T

 

Goal 
Conditions:

[ ] [ ] [ ] [ ]1 2 3 40 0 0 , 0 .3 0 , .3 0 0 , .3 0 0T T T T
d d d dp p p p= = = − =  

 

 
 

Simulation B 
 

Initial Conditions  
[ ] [ ] [ ] [ ]1 2 3 40 .5 / 2 , 0 .5 / 2 , .5 0 0 , .5 0T T Tp p p p Tπ π π= − = − − = − =  

Goal 
Conditions:

[ ] [ ] [ ] [ ]1 2 3 40 .3 , 0 .25 / 4 , .3 0 0 , .25 0T T T
d d d dp p p p Tπ π π= − = − = =  

 

 17



 
 

Simulation C 
 

Initial Conditions  
[ ] [ ] [ ] [ ]1 2 3 44 .3 0 , .25 .3 , 0 .4 0 , .3 0 0T T Tp p p pπ= − − = − = = − T  

Goal 
Conditions:

[ ] [ ] [ ] [ ]1 2 3 4.4 .2 0 , .1 .3 , .1 .4 / 3 , .3 0 0T T T
d d d dp p p pπ π= = − = − − = T  
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Chapter 4  
 
Discussion and Current Research Issues 
 
4.1 Discussion on Previous Results 
   
  In previous chapters we discussed methodologies developed in the first 18 months of 
WP6 in the Control Systems Lab of NTUA. We show how the powerful navigation 
functions tool established by Koditscheck and Rimon in [9], has successfully been 
extended to navigation and collision avoidance of multiple agents, in the centralized 
[12], [13] as well as in the decentralized case [3], [11]. We have enhanced the 
navigation functions of the holonomic case with a dipolar structure, so that the 
nonholonomic dynamics are taken care of. The analytic expression of the controller in 
all cases provides for fast feedback in real time. Simulation results have proven the 
power and effectiveness of our method. 
  Nevertheless, there are still some remaining issues that should be taken into account 
when aiming to apply the navigation function method in real world situations: 
 

• In practice, the sensing capabilities of each aircraft are limited. Consequently, 
each aircraft cannot have knowledge of the positions and/or velocities of 
every aircraft in the workspace but only of the aircraft within its sensing zone 
at each time instant. A preliminary definition of the sensing zone of an 
aircraft could be a circle of constant radius around its centre of mass, in the 
vein of [1],[8]. 

• Although the motion of a robot can be adequately modelled in a deterministic 
vein, this is not the case for air traffic management systems. Sources of 
uncertainty arise either from the pilot’s behaviour and/or the lack of exact 
knowledge of the neighbouring aircraft’s motion in the decentralized case 
([7],[16]). It is therefore necessary to add stochastic components to the 
existing model. 

• Velocity bounds have so far only been treated in [3]. We have imposed a 
hybrid structure on the dynamics of each agent so that its velocity satisfies a 
pre-specified upper bound. The method can easily be extended to the 
nonholonomic case. However, it is currently under investigation how this 
method can be applied in order to include lower bounds in the velocities of 
the moving agents. 

 
  The following subsections provide highlights of current research under WP6 in order 
to solve these problems. The third issue, namely the handling of velocity bounds is 
left for a future deliverable.   
 
4.2 Handling of Limited Sensing Capabilities 
 
  In practice, the sensing capabilities of each aircraft are limited within the area of its 
sensing zone. This, at a first approach, can be defined as a circle of constant radius 
around its centre of mass. In this case the control law of each agent depends on the 
state of the set of agents within its sensing zone at each time instant. It is obvious that 
the control scheme in this case incorporates both continuous (e.g. the aircraft’s 
motion) and discrete (e.g. the entry/leave of an aircraft in another’s sensing zone) 
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dynamics. The overall scheme can be modelled as a deterministic hybrid system. The 
following figure, taken from [1], represents the hybrid structure in a three aircraft 
encounter.  denotes the information pattern (i.e. which aircraft are within the 
sensing zone of i at each time instant) of  i at each different mode of operation 

iS

iI . The 
guards  represent transitions between different modes of operation, i.e. j 
enters/leaves the protected zone of i.  

ijC

1
2
3

{1}
{2,3}2 {2,3}

S
S
S

I
⎧ =⎪
⎨ =
⎪ =⎩

1
2
3

{1}
{2}1 {3}

S
S
S

I
⎧ =⎪
⎨ =
⎪ =⎩

1
2
3

{1,3}
{2,3}5 {1,2,3}

S
S
S

I
⎧ =⎪
⎨ =
⎪ =⎩
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S
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I
⎧ =⎪
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Fig. 4.1 Hybrid Automaton Model of the Decentralized ATM Process 

 
  In [1], the authors treat the problem using optimal control tools. Since in our case we 
are interested in closed-loop solutions, it is crucial to verify the stability of the overall 
hybrid system. There are two ways to treat such a problem: (i) use existing results on 
stability of switched/non-smooth systems [2], [17] to prove the convergence of our 
algorithm or (ii) treat the problem in a graph-theoretic perspective. The latter has 
already been used in [18] to prove the stability of flocking motion of multiple agents 
with limited sensing capabilities. We aim to extend this approach to the case of 
decentralized collision avoidance. 
 
   
4.3 Dealing with Uncertainty 
 
  Uncertainty is an inevitable issue in air traffic systems. Several results computing 
the Probability of Conflict between two aircraft have appeared in literature in the past 
decade [10],[15]. A review of these methods has been presented in the first 
deliverable under WP6 [6, Chapter 3]. While most work on probabilistic models for 
CDR focuses on the estimation of prediction errors on the aircraft trajectory, very few 
of these provide specific routing instructions to the aircraft involved in the encounter.  
Work under HYBRIDGE WP5 provides centralized algorithms for stochastic conflict 
resolution. Decentralized algorithms for stochastic CDR have been presented in [7], 
[16]. 
  It is our goal to treat the problem in a closed-loop fashion. The whole ATM process 
can now be modelled as a stochastic hybrid system. Each aircraft can only have 
knowledge of an estimate of the current positions of the other aircraft within its 
sensing zone. Whenever the sensing zone of aircraft i is empty the dynamics of the 
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aircraft are purely deterministic, namely a navigation function driving i towards its 
destination. Whenever an aircraft enters the protected zone of aircraft i, the control 
law is switched in order to meet both specifications: destination convergence(DC) and 
collision avoidance(CA). Hence the switching control strategy is given by:  
 

,  if ( ) 0
,  if ( ) 0i

DC N i
q

DC CA N i
=⎧

= ⎨ ∧ ≠⎩
�  

where  the configuration of i  and  the number of aircraft in the protected zone 
of i. In this equation DC denotes the control imposed on i in order to meet the 
destination convergence goal whereas 

iq ( )N i

DC CA∧  denotes the control imposed on i in 
order to meet the destination convergence and collision avoidance goals 
simultaneously whenever there are intruding aircraft in i's sensing zone. 
  Each agent treats the movement of the other agents as a stochastic differential 
equation. For example let the dynamics of aircraft i be given by  
and the dynamics of an intruding aircraft j be given by the stochastic differential 
equation , where 

( ) ( ( ))i idq t b q t dt=

( ) ( ( )) ( ( )) ( )j j jdq t b q t dt G q t dB t= + ( ) ( ) ( )
T

i jq t q t q t⎡ ⎤= ⎣ ⎦ . Then the 
relative position of aircraft i with respect to j is given by    
 

( ) ( ( ( ) ( ( ))) ( ( )) ( )ij i j jdq t b q t b q t dt G q t dB t= − −  
 
A possible interpretation of the two performance objectives DC and CA could then 
have the form:   
 

{ }
{ }

:  design ( ) so that sup ( ) 0, 0

:   design ( ) so that inf ,  suff. small

i i di
t o

i ijt o

DC b q P q q N

CA b q P q d M M

ε ε ε
≥

≥

− > ≤ > ∀ >

≤ ≤
 

 
where  the desired destination of i and d the separation minimum between two 
aircraft.  

diq

  It is obvious that such a system has a stochastic hybrid structure. Theorems for 
checking the (asymptotic) stability in probability of such a scheme are discussed in 
[4]. 
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