

Distributed Control and Stochastic Analysis of Hybrid Systems
Supporting Safety Critical Real-Time Systems Design

WP2: Stochastic hybrid systems based modelling of accident risk

MODELLING HYBRID STATE MARKOV
PROCESSES THROUGH STOCHASTICALLY

AND DYNAMICALLY COLOURED PETRI NETS

Mariken Everdij1 and Henk Blom1

30th May 2005

Version: 0.6

Task number: 2.4

Deliverable number: D2.4

Contract: IST-2001-32460 of European Commission

1 National Aerospace Laboratory NLR, NL

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

May 30, 2005 IST–2001–32460(HYBRIDGE) Page i

DOCUMENT CONTROL SHEET

Title of document: Modelling Hybrid State Markov Processes through Stochastically and
Dynamically Coloured Petri Nets.

Authors of document: M.H.C. Everdij and H.A.P. Blom

Deliverable number: D2.4

Contract: IST-2001-32460 of European Commission

Project: Distributed Control and Stochastic Analysis of Hybrid Systems Supporting
Safety Critical Real-Time Systems Design (HYBRIDGE)

DOCUMENT CHANGE LOG

Version # Issue Date Sections affected Relevant information

0.1 16 April 2003 All Initial draft

0.2 26 June 2003 All Second draft

0.3 30 June 2003 Sections 1 and 7 Consolidated draft

0.4 1 July 2003 All Minor corrections

0.5 10 September 2004 All Review comments used

0.6 30 May 2005 All “SCPN” replaced by “SDCPN”

Version 1.0 Organisation Signature/Date

Authors M.H.C. Everdij NLR

 H.A.P. Blom NLR

Internal reviewers M.B. Klompstra NLR

 P. Lezaud CENA

 A. Van der Schaft TWEN

 S. Strubbe TWEN

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

Abstract

Piecewise Deterministic Markov Processes (PDPs) are known as the largest class of strong

Markov processes virtually describing all continuous-time processes not involving diffusions.

In general the state space of a PDP is of hybrid type, i.e. a Kronecker product of a discrete set

and a continuous-valued space. Since Stochastic Petri Nets have proven to be extremely useful

in developing continuous-time Markov Chain models for complex practical discrete-valued

processes, there is a clear need for a type of Petri Nets that can play a similar role for

developing PDP models for complex practical problems. To fulfil this need, the report defines

a Dynamically Coloured Petri Net (DCPN), and proves that there exist into-mappings between

PDPs and DCPNs. Subsequently, the DCPN definition is extended to Stochastically and

Dynamically Coloured Petri Net (SDCPN), and it is shown that there exist into-mappings

between Generalised Stochastic Hybrid Processes (GSHP’s) and SDCPNs.

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 2

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

Contents

1 Introduction 5

2 DCPN elements and execution 7

3 Piecewise Deterministic Markov Processes 10

4 Into-mappings between DCPN and PDP and between SDCPN and GSHP 13

5 Example DCPN and example PDP 14

5.1 DCPN construction and verification 14

5.2 Air traffic operations example 14

5.3 DCPN model for the air traffic operations example 15

5.4 PDP for the air traffic operations example 17

6 Extended power-hierarchy of dependability models 20

7 Conclusions 22

8 References 23

5 Figures

Appendices 25

A Formal definition of Dynamically Coloured Petri Nets 25

B Proof of Theorem 1 30

(1 Figure)

C Proof of Theorem 2 33

(3 Figures)

D Characterisation of Q in terms of DCPN elements 40

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 3

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

E Acronyms and Symbols 45

(48 pages in total)

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 4

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

1 Introduction

Malhotra and Trivedi (1994) and Muppala et al. (2000) developed a hierarchy of various

dependability models based on their modelling power. This is shown in Figure 1, in which the

well-known dependability models Reliability Block Diagrams and Fault Trees are at the basis

of the hierarchy. The aim of this report is to extend this power hierarchy such that it includes

Piecewise Deterministic Markov Processes (PDP) and Generalised Stochastic Hybrid

Processes (GSHP), and PDP and GSHP related Petri Nets (see Bujorianu et al. (2003)).

Reliability Block Diagram

(RBD)
Fault Tree (FT)

Reliability Graph

Fault Tree with Repeated Events

(FTRE)

Generalised Stochastic Petri Net

(GSPN)

Continuous Time Markov Chain

(CTMC)

Deterministic and Stochastic

Petri Net (DSPN)
Semi Markov Process

✲✛
�
�✒

❅
❅�

✻

❅
❅�

�
�✒

✲✛

✻ ✻

Fig. 1 Power hierarchy among various model types established by (Malhotra and Trivedi, 1994) and

(Muppala et al., 2000). An arrow from a model to another model indicates that the second model

has more modelling power than the first model.

Davis (1984, 1993) has introduced PDPs as the most general class of continuous-time strong

Markov processes which include both discrete and continuous processes, except diffusion. In

his 1984 paper, Davis shows that PDP have more modelling power than Semi Markov

Processes.

Petri Nets (see David and Alla (1994) for an overview) could provide an important modelling

formalism for PDP processes. A Petri Net is a bipartite graph of places (possible conditions or

discrete modes) and transitions (possible mode switches). Tokens, which reside in the places,

model which conditions or modes are current. Several hybrid state Petri Net extensions have

been developed in the past. Main classes are:

• Hybrid Petri Net (Le Bail et al., 1991). Some places have a continuous amount of tokens

that may be moved to other places by transitions.

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 5

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

• Fluid Stochastic Petri Net (FSPN) (Trivedi and Kulkarni, 1993). Some places have a

continuous amount of tokens, the flow rate of which is influenced by the discrete part.

The discrete part of the FSPN can be mapped to a continuous-time Markov chain.

• Extended Coloured Petri Net (ECPN) (Yang et al., 1995). The token colours are

real-valued vectors that may follow the solution path of a difference equation.

• High-Level Hybrid Petri Net (HLHPN) (Giua and Usai, 1996). Again, the token colours

are real-valued vectors that may follow the solution path of a difference equation, but in

addition, a token switch between discrete places may generate a jump in the value of the

real-valued vector.

• Differential Petri Nets (Demongodin and Koussoulas, 1998). Differential places have a

real-valued number of tokens and differential transitions fire with a certain speed that

may also be negative.

For none of the above hybrid state Petri Nets it is clear how they relate to PDP. In order to

characterise the exact relation to a PDP, a kind of hybrid state Petri Net is needed that makes

direct use of the specific PDP structure. The newly developed Dynamically Coloured Petri Net

(DCPN) presented in this paper does this. This makes that into-mappings between PDPs and

DCPNs exist. An issue that deserves special attention when relating PDPs to Petri Nets is that

for a PDP, at each moment in time, there is a unique realisation of the state, while a Petri Net

may make a sequence of jumps at a single moment in time. The into-mappings between PDPs

and DCPNs referred to in this paper take care of this issue.

The organisation of this paper is as follows. Section 2 defines Dynamically Coloured Petri

Nets. Section 3 explains PDPs. Section 4 shows that DCPN have the same modelling power as

PDP. Section 5 gives an example DCPN and an example PDP that model the same simplified

air traffic situation. Section 6 shows the extended power-hierarchy of dependability models.

Section 7 gives conclusions. The appendices give a formal definition of DCPN and give proofs

to theorems posed in the main document.

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 6

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

2 DCPN elements and execution

The elements of a Dynamically Coloured Petri Net (Everdij and Blom, 2000) are given by

DCPN = (P , T , A, N , S, C, I, V , G, D, F), where:

P is a set of places.

T is a set of transitions which consists of a set TG of guard transitions, a set TD of delay

transitions, and a set TI of immediate transitions.

A is a finite set of arcs, which consists of a set AO of ordinary arcs, a set AE of enabling

arcs, and a set AI of inhibitor arcs.

N is a node function which maps each arc to an ordered pair of one transition and one

place.

S is a set of colour types for the tokens occurring in the net (a colour is the value of an

object or process in Petri Net terminology).

C is a colour function which maps each place to a colour type in S.

I is an initial marking which defines the set of tokens initially present, i.e., it specifies in

which places they initially reside, and the colours they initially have.

V is a set of place specific colour functions which describe what happens to (i.e. defines

the rate of change of) the colour of a token while it resides in a specific place. It

determines a token colour differential equation, which is locally Lipschitz continuous.

G is a set of boolean-valued transition guards associating each transition in TG with a guard

function which is evaluated when the transition has a token in each of its input places.

The guard function must evaluate to True before the transition is allowed to fire (i.e.

remove and produce tokens). Its evaluation depends on the colours of the input tokens of

the transition.

D is a set of transition delays associating each transition in TD with a delay function which

is evaluated when the transition has a token in each of its input places. The delay

function determines for how long the transition must wait before it is allowed to fire (i.e.

remove and produce tokens). The firing rate depends on the colours of the input tokens

of the transition.

F is a set of (probabilistic) firing functions describing the quantity and colours of the

tokens produced by the transitions at their firing. Its evaluation depends on the colours

of the input tokens of the transition.

The set of places P , the set of transitions T , the set of arcs A and the node function N define a

Petri Net graph. Below, the graphical representation of the elements in P , T and A are given.

The node function N describes how these elements are connected.

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 7

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

Place: ✖✕
✗✔

Guard transition:

Delay transition:

Immediate transition:

Token: •

Ordinary arc: ✲

Enabling arc: ✉
Inhibitor arc: ❡

Fig. 2 DCPN graphical elements

Tokens, which reside in the places, and the associated colour values in a DCPN evolve through

time quite similar as in a Coloured Stochastic Petri Nets (e.g. Haas, 2002). The main additions

are that the colour of a token may evolve according to a differential equation that is governed

by the colour function of the specific place where the token resides, and that guard transitions

take the evolving colour values into account. More specifically, the DCPN execution rules are

described below:

Tokens can be removed from places by the transitions. A transition can only remove tokens if

two conditions are both satisfied.

• First condition: The transition has at least one token per ordinary arc and one token per

enabling arc in each of its input places and has no token in the input places to which it is

connected by an inhibitor arc. When this occurs, the colours of these input tokens, i.e.

one token per incoming ordinary arc and one token per incoming enabling arc, are

gathered in one big vector, named vector of input colours. The value of this vector may

evolve with time according to the corresponding token colour functions.

• Second condition: This differs per type of transition. For immediate transitions the

second condition is immediately satisfied when the first condition holds. For guard

transitions the second condition holds when the vector of input colours enters a

transition-specific boundary which is specified by G. For delay transitions, the second

condition holds when a particular transition-specific delay has passed, which may

depend on the vector of input colours and which is specified by D.

If the vector of input colours is not unique (for example, if one input place contains

several tokens per arc), all possible such vectors are evaluated in parallel and the

transition is enabled if one of these vectors satisfies the second condition.

When the first condition holds, the transition is said to be pre-enabled. When both conditions

hold, the transition is enabled. When a transition is enabled, it removes from its input places

the tokens that correspond with the vector of input colours that enabled the transition.

However, the transition only removes tokens along the ordinary input arcs (one token per arc);

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 8

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

tokens associated with enabling arcs are not removed and stay in their place. Subsequently, the

transition produces a token for some or all of its output places, specified by the firing function

F . The colour of a produced token (which must be of the correct type, indicated by what C
defines for the output place), and the place for which it is produced is also specified by the

firing function F . As for G, D, the evaluation of F may be dependent on vector of input

colours that enabled the transition.

In order to avoid ambiguity, for a DCPN the following priority rules apply when two or more

transitions are enabled simultaneously:

R0 The firing of an immediate transition has priority over the firing of a guard or a delay

transition.

R1 If one transition becomes enabled by two or more disjoint sets of input tokens at exactly

the same time, then it will fire these sets of tokens independently, at the same time.

R2 If one transition becomes enabled by two or more non-disjoint sets of input tokens at

exactly the same time, then the set that is fired is selected randomly.

R3 If two or more transitions become enabled at exactly the same moment by disjoint sets of

input tokens, then they will fire at the same time.

R4 If two or more transitions become enabled at exactly the same moment by non-disjoint sets

of input tokens, then the transition that will fire is selected randomly, with the same

probability for each transition.

A DCPN as specified by the elements and the execution rules above determines the generation

of a stochastic process up to the moment in time that the number of transition firings reaches

infinity. This stochastic process is, at each time instant, composed of the ordered colours of all

tokens existing in the DCPN, organised in one column vector. The precise ordering of these

individual colours within the vector is described as part of the formal definition of DCPN in

Appendix A.

Note that three DCPN elements are associated with drawing samples from probability

distributions. These elements are the Delay function, the Guard function and the Firing

function. In practice, a sample from a general probability distribution is drawn by first drawing

a sample from a uniform distribution on the unit interval and then by transforming this uniform

sample into a sample from the target distribution. Appendix A explains precisely how these

uniform random variables are used during DCPN execution.

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 9

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

3 Piecewise Deterministic Markov Processes

PDP brief explanation

A Piecewise Deterministic Markov Process {ξt}, with ξt = (θt, xt), is defined as follows (see

Davis (1993)): For each θ in its countable domain K, let Eθ be an open subset1 of IRd(θ),

where d is a function that maps K into IN . For each θ ∈ K, consider the ordinary differential

equation ẋt = gθ(xt), where gθ : IRd(θ) → IRd(θ) is a locally Lipschitz continuous function.

Given an initial value x ∈ Eθ, this differential equation has a unique solution given by the flow

φθ,x. This means that if at some time instant τ the PDP state assumes value ξτ = (θτ , xτ), then,

as long as no jumps occur, the PDP state at t ≥ τ is given by ξt = (θt, xt) = (θτ , φθτ ,xτ (t− τ)).
At some moment in time, however, the PDP state value may jump. Such moment is generated

by either one of the following events, depending on which event occurs first:

1. A Poisson point process with jump rate λ(θt, xt), t > τ generates a point.

2. The piecewise continuous process xt is about to hit the boundary ∂Eθτ of Eθτ , t > τ .

At the moment when either of these events occurs, the PDP state makes a jump. The value of

the PDP state right after the jump is generated by using a transition measure Q, which is the

probability measure of the PDP state after the jump, given the value of the PDP state

immediately before the jump. After this, the PDP state ξt evolves in a similar way from the

new value onwards.

PDP execution

The PDP process is generated through time as follows: Suppose at time τ0 � 0 the PDP initial

state is ξ0 = (θ0, x0), then, if no jumps occur, the process state at t ≥ τ0 is given by

ξt = (θt, xt) = (θ0, φθ0,x0(t− τ0)). The complementary distribution function for the time of

the first jump (i.e. the probability that the first jump occurs at least t− τ0 time units after τ0),

also named the survivor function of the first jump, is then given by:

Gξ0(t− τ0)�I(t−τ0<t∗(θ0,x0)) · exp
{
−

∫ t

τ0
λ(θ0, φθ0,x0(s− τ0))ds

}
, (1)

where I is an indicator function and t∗(θ0, x0) denotes the time until the first boundary hit after

t = τ0, which is given by t∗(θ0, x0) � inf{t− τ0 > 0 | φθ0,x0(t− τ0) ∈ ∂Eθ0}. The first factor

in (1) is explained by the boundary hitting process: after the process state has hit the boundary,

which is when t− τ0 = t∗(θ0, x0), this first factor ensures that the survivor function evaluates

to zero. The second factor in (1) comes from the Poisson process: this second factor ensures

1Note that Davis writes Eθ = E0
θ ∪ ∂1E

0
θ , with E0

θ an open subset of IRd(θ), and ∂1E
0
θ those points on the

boundary of E0
θ from which E0

θ can be reached (by the flow φ), but which cannot be reached from the interior of

E0
θ .

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 10

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

that a jump is generated after an exponentially distributed time with a rate λ that is dependent

on the PDP state.

The time τ1 until the first jump after τ0 is generated by drawing a sample from Gξ0(·). In

practice, a sample from a general distribution is generated by first drawing a sample from a

uniform distribution on [0, 1], and then using a transformation (based on the inverse of this

general distribution). More formally (see Davis, 1993, Section 23), the Hilbert cube

Ω =
∏∞
i=1 Yi, with Yi a copy of Y = [0, 1], provides the canonical space for a countable

sequence of independent random variables U1, U2, ..., each having uniform [0, 1] distribution,

defined by Ui(ω) = ωi for elements ω = (ω1, ω2, . . .) ∈ Ω. Now, define

ψ1(u, ξ0) =

inf{t : Gξ0(t− τ0) ≤ u}
+∞ if the above set is empty

and define σ1(ω) = τ1(ω) = ψ1(U1(ω), ξ0), then τ1 is the time until the first jump.

The value of the hybrid process state to which the jump is made is generated by using the

transition measure Q, which is the probability measure of the hybrid state after the jump, given

the value of the hybrid state immediately before the jump. The Hilbert cube from above is

again used: Let ψ2 : [0, 1] × (E ∪ Γ∗) → E, with E = ∪θEθ and Γ∗ the reachable boundary of

E, be a measurable function such that l{u : ψ2(u, ξ) ∈ B} = Q(B, ξ) for B Borel measurable.

Then ξτ1 = ψ2(U2(ω), ξ) is a sample from Q(·, ξ).

With this, the algorithm to determine a sample path for the hybrid state process ξt, t ≥ 0, from

the initial state ξ0 = (θ0, x0) on, is in two iterative steps; define τ0 � 0 and let for k = 0,

ξτk
= (θτk

, xτk
) be the initial state, then for k = 1, 2, . . .:

Step 1: Draw a sample σk from survivor function Gξτk−1
(·), i.e. σk = ψ1(U2k−1(ω), ξτk−1

).

Then the time τk of the kth jump is τk = τk−1 + σk. The sample path up to the kth jump is

given by

ξt = (θτk−1
, φθτk−1

,xτk−1
(t− τk−1)), τk−1 ≤ t < τk and τk ≤ ∞.

Step 2: Draw a multi-dimensional sample ζk from transition measure Q(·; ξ′τk
), where ξ′τk

=

(θτk−1
, φθτk−1

,xτk−1
(τk − τk−1)), i.e. ζk = ψ2(U2k(ω), ξ′τk

). Then, if τk <∞, the process state at

the time τk of the kth jump is given by

ξτk
= ζk.

PDP conditions

Following Section 24.8 of Davis (1993), the PDP conditions are:

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 11

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

C1 gθ is a locally Lipschitz continuous function, which, for each initial state (θ, x),

determines a flow φθ,x(·). If t∞(θ, x) denotes the explosion time of the flow φθ,x(·), i.e.

|φθ,x(t)| → ∞ as t ↑ t∞(θ, x), then it is assumed that t∞(θ, x) = ∞ whenever

t∗(θ, x) = ∞. In other words, explosions are ruled out.

C2 With E = ∪θEθ, λ : E → IR+ is a measurable function such that for all ξ ∈ E, there is

ε(ξ) > 0 such that t→ λ(θ, φθ,x(t)) is integrable on [0, ε(ξ)[.

C3 With E as above and Γ∗ the reachable boundary of E, Q maps E ∪ Γ∗ into the set of

probability measures on (E, E), with E the Borel-measurable subsets of E, while for

each fixed A ∈ E , the map ξ → Q(A; ξ) is measurable and Q({ξ}; ξ) = 0.

C4 If Nt =
∑

k I(t≥τk), then it is assumed that for every starting point ξ and for all t ∈ IR+,

IENt <∞. This means, there will be a finite number of jumps in finite time.

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 12

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

4 Into-mappings between DCPN and PDP and between SDCPN and

GSHP

An important property of DCPN is that they have similar modelling power as Piecewise

Deterministic Markov processes (PDPs). This is made explicit by the two theorems below.

Theorem 1:

For any arbitrary Piecewise Deterministic Markov Process with a finite domain K there exists

P-almost surely a pathwise equivalent process generated by a Dynamically Coloured Petri Net

(P , T , A, N , S, C, I, V , G, D, F) satisfying R0 through R4.

Proof: See Appendix B.

Theorem 2:

For each stochastic process generated by a Dynamically Coloured Petri Net (P , T , A, N , S,

C, I, V , G, D, F) satisfying R0 through R4 there exists a unique probabilistically equivalent

Piecewise Deterministic Markov Process if the following conditions are satisfied:

D1 There are no explosions, i.e. the time at which a token colour equals +∞ or −∞
approaches infinity whenever the time until the first guard transition enabling moment

approaches infinity.

D2 After a transition firing (or after a sequence of firings that occur at the same time instant)

at least one place must contain a different number of tokens, or the colour of at least one

token must have jumped

D3 In a finite time interval, each transition is expected to fire a finite number of times.

D4 The initial marking is such, that no immediate transition is immediately enabled.

Proof: See Appendix C.

In Bujorianu et al. (2003) it has been shown how a PDP is extended to a Generalised

Stochastic Hybrid Process (GSHP) by allowing the inclusion of a Brownian motion term to the

ordinary differential equation that describes the evolution of the continuous process xt. In

Blom et al. (2003) it has been shown that for GSHP the ordinary Markov property and the

pathwise existence and uniqueness is well understood. In order to have a Petri Net counterpart

of GSHP we allow Brownian motion terms to the place specific colour functions V . To the

resulting PN we refer as a Stochastically and Dynamically Coloured Petri Net (SDCPN). The

implication is that the mappings between SDCPN and GSHP can be constructed in a similar

way as those between DCPN and PDP.

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 13

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

5 Example DCPN and example PDP

This section gives an example DCPN model and an example PDP model of the evolution of an

aircraft in one sector of airspace. However, first, we will explain how a DCPN that models a

complex operation is generally constructed in several iterations.

5.1 DCPN construction and verification

A DCPN modelling a particular operation can be constructed, for example, by first identifying

the discrete state space, represented by the places, the transitions and arcs, and next adding the

continuous-time-based elements one by one, similar as what one would expect when

modelling a PDP for such operation. However, in case of a very complex operation, with many

entities that interact such as occur in air traffic, it is generally more desirable and constructive

to do the DCPN modelling in several iterations, for example in a three-phased approach:

1. In the first phase, each operation entity or agent (for example, a pilot, a navigation

system, an aircraft) is modelled separately by one local DCPN. Each such entity model

is named a Local Petri Net (LPN).

2. In the second phase, the interactions between these entities are modelled, connecting the

LPNs.

3. In the third phase, one verifies at local and global levels whether all elements of the

operation have been properly modelled. If there are elements or interactions missing, a

new iteration is started. In this phase, one also checks whether the conditions D1 – D4

under which a mapping to PDP is guaranteed have been fulfilled.

The advantage of such phased approach is that the LPNs can be verified separately by

respective experts, without them bothering about interactions in first instance. For example, an

LPN model for a navigation system can be verified by a navigational system expert; an LPN

model for a pilot can be verified by a human factors expert.

5.2 Air traffic operations example

This subsection presents a very simplified representation of the evolution of an aircraft in one

sector of airspace. The next subsection presents a DCPN model for this example.

Assume the deviation of this aircraft from its intended path depends on the operationality of

two of its aircraft systems: the engine system, and the navigation system. Each of these aircraft

systems can be in one of two modes: Working (functioning properly) or Not working

(operating in some failure mode). Both systems switch between their modes independently

and on exponentially distributed times, with rates δ3 (engine repaired), δ4 (engine fails), δ5

(navigation repaired) and δ6 (navigation fails), respectively. The operationality of these

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 14

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

systems has the following effect on the aircraft path: if both systems are Working, the rate of

change of the position and velocity of the aircraft is given by function V1 (i.e. if zt is a vector

containing this position and velocity then żt = V1(zt)). If either one, or both, of the systems is

Not working, the rate of change of the position and velocity of the aircraft is given by V2.

Initially, the aircraft has a particular position x0 and velocity v0, while both its systems are

Working. The evaluation of this process may be stopped when the aircraft position crosses the

boundary ∂G to a neighbouring airspace sector.

5.3 DCPN model for the air traffic operations example

This subsection gives a DCPN instantiation that models the air traffic operation of the previous

subsection. In order to illustrate the three-phased approach of Subsection 5.1, we first give the

Local Petri Net graphs that have been identified in the first phase of the modelling. The air

traffic entities identified are: Aircraft evolution, Navigation system, and Engine system. This

gives us three LPNs. The resulting graphs are given in the figure below.

✍✌
✎

P3

✍✌
✎

P4

✘✘✘
✘✿ �

✘✘✘✘✾
 ✍✌

✎
P5

✍✌
✎
P6

✘✘✘
✘✿ �

✘✘✘✘✾

✍✌
✎

✍✌
✎

✍✌
✎

✄
✄
✄✄✎
❈
❈
❈❈ ✄
✄
✄✄✗
❈
❈
❈❈❖

◗◗�
✑✑✸

P1

P2

P7

�

✚
✚
✚✚❃

Evolution Engine Navigation

T1 T2

T3

T4

T5

T6

T7

T8

Fig. 3 Local Petri Net graphs for the aircraft operations example. Place P1 models Evolution Nominal,

P2 models Evolution Non-nominal, P3 models Engine system Not working, P4 models Engine

system Working, P5 models Navigation system Not working, P6 models Navigation system

Working.

The interactions between the Engine and Navigation LPN and the Evolution LPN (i.e.

execution of the second phase of DCPN instantiation) are modelled by coupling the LPNs by

additional arcs (and, if necessary, additional places or transitions). Here, removal of a token

from one LPN by a transition of another LPN is prevented by using enabling arcs instead of

ordinary arcs for the interactions. The resulting graph is presented below. Notice that transition

T1 is replaced by two transitions T1a and T1b.

The graph above completely defines DCPN elements P , T , A and N , where TG = {T7, T8},

TD = {T3, T4, T5, T6} and TI = {T1a, T1b, T2}. The other DCPN elements are specified below.

S: One colour type is defined; S = {IR6}.

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 15

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

✖✕
✗✔

P1

✖✕
✗✔P2

�P3 �P4

�
P5

�
P6

✖✕
✗✔P7

T1a T1b

T2

T3

T4

T5

T6

T7

T8

✘✘✘
✘✿ �

✘✘✘✘✾

✘✘✘
✘✿ �

✘✘✘✘✾

❏
❏
❏
❏
❏❏

✡
✡
✡
✡
✡✡✣

✄
✄✎ ❄

✻

❍❍

##$

�

❅
❅❘

�
�✒

�� � �

Fig. 4 Local Petri Net graphs integrated into one graph.

C: C(P1) = C(P2) = C(P7) = IR6. The first three colour components model the

longitudinal, lateral and vertical position of the aircraft, the last three components model

the corresponding velocities. For places P3 through P6, no colour type needs to be

defined (one might define a dummy colour type for these places, but this is not pursued

further).

I: Place P1 initially has a token with colour z0 = (x0, v0)
′ ∈ IR6. Places P4 and P6 initially

each have a token with no colour (or a dummy colour).

V: The token colour functions for places P1, P2 and P7 are defined by VP1 = V1, VP2 = V2

and VP7 = 0. For places P3 – P6 the token colour function is not defined (one could

define a dummy function).

G: Transitions T7 and T8 have a guard that is defined by ∂GT7 = ∂GT8 = ∂G× IR3.

D: The jump rates for transitions T3, T4, T5 and T6 are δT3(·) = δ3, δT4(·) = δ4, δT5(·) = δ5

and δT6(·) = δ6, respectively.

F : Each transition has a unique output place, to which it fires a token with a colour (if

applicable) equal to the colour of the token removed, i.e. for all T , FT (1, ·; ·) = 1.

As an illustration of the third phase of the DCPN instantiation development process, we check

whether the conditions D1 – D4 have been fulfilled.

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 16

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

D1 (i.e. there are no explosions: the time at which a token colour equals +∞ or −∞
approaches infinity whenever the time until the first guard transition enabling moment

approaches infinity) is fulfilled: Since the aircraft will always leave the sector within

finite time, the first guard transition will always fire within a finite time.

D2 (i.e. after a transition firing or after a sequence of firings that occur at the same time

instant at least one place must contain a different number of tokens, or the colour of at

least one token must have jumped) is also fulfilled since after each transition firing,

tokens are consumed and produced for other places.

D3 (i.e. in a finite time interval, each transition is expected to fire a finite number of times) is

also fulfilled, since there are no loops connecting transitions directly back to themselves.

D4 (i.e. the initial marking is such, that no immediate transition is immediately enabled) is

also fulfilled. The set of immediate transitions is TI = {T1a, T1b, T2}. T1a is enabled by

tokens in places P1 and P3, T1b is enabled by tokens in places P1 and P5,T2 is enabled by

tokens in places P2, P4 and P6. Since initially, only places P1, P4 and P6 contain a token,

none of these immediate transitions is immediately enabled.

Note that for more complex DCPN, the checking of these conditions will occur in two phases:

first, the conditions are checked for each Local Petri Net separately; next, the interactions are

checked.

5.4 PDP for the air traffic operations example

This section presents a PDP that describes the same process as modelled by a DCPN in the

previous subsection, i.e. the path of an aircraft influenced by its engine and its navigation

system.

For this example, the PDP mode process {θt} has three components: θt = (θ1
t , θ2

t , θ3
t)’, where:

θ1
t is the Engine system mode, taking values in {Working, Not working}.

θ2
t is the Navigation system mode, taking values in {Working, Not working}.

θ3
t is the Aircraft mission mode, taking values in {Not completed, Completed}.

This yields that the set K has 23 = 8 elements m1, . . . ,m8 with:

m1=(Working,Working,Not completed)

m2=(Not working,Working,Not completed)

m3=(Not working,Not working,Not completed)

m4=(Working,Not working,Not completed)

m5=(Working,Working,Completed)

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 17

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

m6=(Not working,Working,Completed)

m7=(Not working,Not working,Completed)

m8=(Working,Not working,Completed).

The initial mode equals θ0 = m1. For θ ∈ {m1,m2,m3,m4}, ∂Eθ = ∂G× IR3, while for

θ ∈ {m5,m6,m7,m8}, Eθ equals IR6. The piecewise continuous process part {zt} has two

components: zt = (xt, vt)’, with xt the position and vt the velocity of the aircraft. The first

table below gives, for each θ ∈ K, the locally Lipschitz continuous function gθ(·) and the jump

rates λ of the Poisson point process. In the second table below, Q(ζ; ξ) = p denotes that if ξ is

the value of the PDP before the hybrid jump, then, with probability p, ζ is the value of the PDP

immediately after the jump.

Table I: Example PDP components gθ(·) and λ as a function of θ

θ gθ(·) λ

m1 V1(·) δ4 + δ6

m2 V2(·) δ3 + δ6

m3 V2(·) δ3 + δ5

m4 V2(·) δ4 + δ5

m5 0 δ4 + δ6

m6 0 δ3 + δ6

m7 0 δ3 + δ5

m8 0 δ4 + δ5

Table II: Example PDP component Q

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 18

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

For z /∈ ∂Em1 : Q(m2, z;m1, z) = δ4
δ4+δ6

, Q(m4, z;m1, z) = δ6
δ4+δ6

.

For z ∈ ∂Em1 : Q(m5, z;m1, z) = 1.

For z /∈ ∂Em2 : Q(m3, z;m2, z) = δ6
δ3+δ6

, Q(m1, z;m2, z) = δ3
δ3+δ6

.

For z ∈ ∂Em2 : Q(m6, z;m2, z) = 1.

For z /∈ ∂Em3 : Q(m4, z;m3, z) = δ3
δ3+δ5

, Q(m2, z;m3, z) = δ5
δ3+δ5

.

For z ∈ ∂Em3 : Q(m7, z;m3, z) = 1.

For z /∈ ∂Em4 : Q(m3, z;m4, z) = δ4
δ4+δ5

, Q(m1, z;m4, z) = δ5
δ4+δ5

.

For z ∈ ∂Em4 : Q(m8, z;m4, z) = 1.

For all z, Q(m6, z;m5, z) = δ4
δ4+δ6

, Q(m8, z;m5, z) = δ6
δ4+δ6

.

For all z, Q(m7, z;m6, z) = δ6
δ3+δ6

, Q(m5, z;m6, z) = δ3
δ3+δ6

.

For all z, Q(m8, z;m7, z) = δ3
δ3+δ5

, Q(m6, z;m7, z) = δ5
δ3+δ5

.

For all z, Q(m7, z;m8, z) = δ4
δ4+δ5

, Q(m5, z;m8, z) = δ5
δ4+δ5

.

Since the PDP is of purely mathematical nature, it is less simple to comprehend and verify by

non-mathematicians than the DCPN representing the same system in the previous subsection.

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 19

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

6 Extended power-hierarchy of dependability models

In order to allow drawing the extended power-hierarchy, it remains to be shown that DCPN

have more modelling power than the DSPN (Deterministic and Stochastic Petri Nets) at the top

of the Muppala et al. (2000) based power hierarchy of Figure 1.

The existence of an arrow from DSPN to DCPN can be shown as follows: GSPN (Generalised

Stochastic Petri Nets) are generalisations of Stochastic Petri Nets allowing transitions to have

either zero firing times (immediate transitions) or exponentially distributed firing times (timed

transitions). Immediate transitions which can be simultaneously enabled must have

probabilities assigned. For timed transitions, the decision as to which transition fires next is

decided by race; the transition with the minimal delay prior to firing will fire next. Firing of

immediate transitions has priority over firing of timed transitions. Other extensions include

inhibitor arcs.

A DSPN is a GSPN in which the firing delays of timed transitions may be either constant or

exponential. Through the equivalence of GSPN and CTMC (Continuous Time Markov Chain)

it can be easily shown that any GSPN can be written as a DCPN: Such DCPN will have

constant exponential delay rates and constant colours. The extension to DSPN can also be

covered by a DCPN: For each DSPN transition with a constant firing time, create a DCPN

transition with a guard function that evaluates to True when the input token colour equals the

DSPN transition’s constant firing time plus the colour of the input token at the time the

transition is pre-enabled. This input token colour has a token colour function equal to +1, and

an initial colour equal to zero.

Together with the findings of Section 4 we get the power hierarchy of Figure 5.

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 20

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

Reliability Block Diagram

(RBD)
Fault Tree (FT)

Reliability Graph

Fault Tree with Repeated Events

(FTRE)

Generalised Stochastic Petri Net

(GSPN)

Continuous Time Markov Chain

(CTMC)

Deterministic and Stochastic

Petri Net (DSPN)
Semi Markov Process

Dynamically Coloured Petri Net

(DCPN)

Piecewise Deterministic Markov

Process (PDP)

Stochastically and Dynamically

Coloured Petri Net (SDCPN)

Generalised Stochastic Hybrid

Process (GSHP)

✲✛[M]
�
�✒[M]

❅
❅� [M]

✻[M]

❅
❅� [M]

�
�✒[M]

✲✛[M]

✻[M] ✻[M]

✻§6 ✻[D]

✲✛§4

✻§4 ✻[B]

✲✛§4

Fig. 5 Power hierarchy among various model types. An arrow from a model to another model indicates

that the second model has more modelling power than the first model. Arrows labelled by [M]

have been explained by (Malhotra and Trivedi, 1994) and (Muppala et al., 2000). The arrow

from DSPN to DCPN is established in this Section (and is labelled by §6). The arrow labelled by

[D] is established by Davis (1984). The arrow from PDP to GSHP, labelled by [B], was shown in

Bujorianu et al. (2003). The arrows between DCPN and PDP and between SDCPN and GSHP

(labelled by §4) are established in Section 4.

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 21

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

7 Conclusions

This paper extended the power hierarchy of dependability models developed by Malhotra and

Trivedi (1994) and Muppala et al. (2000) to include Piecewise Deterministic Markov

Processes (PDP), Generalised Stochastic Hybrid Processes (GSHP), Dynamically Coloured

Petri Nets (DCPN) and Stochastically and Dynamically Coloured Petri Net (SDCPN). The

report explained the existence of into-mappings between PDP and DCPN and between GSHP

and SDCPN, yielding that they have similar modelling power, and has shown that DCPN have

more modelling power than Deterministic and Stochastic Petri Nets (DSPN).

PDPs are known as the largest class of continuous-time Markov processes not involving

diffusions. Dynamically Coloured Petri Nets are defined to make ample use of these PDP

properties and have shown to be very useful in developing PDP models for complex practical

problems. This usefulness has been explicitly used for accident risk assessment modelling

application to Air Traffic Management (e.g. Blom et al., 2001).

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 22

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

8 References

Bujorianu, M.L., Lygeros, J., Glover, W., Pola, G. (2003). A stochastic hybrid system

modelling framework, Hybridge report D1.2, 29th May 2003, Univ. of Cambridge and

Univ. of L’Aquila.

Blom, H.A.P., Bakker, G.J., Blanker, P.J.G., Daams, J., Everdij, M.H.C., Klompstra, M.B.

(2001). Accident risk assessment for advanced ATM, In: Air Transportation Systems

Engineering, AIAA, Eds. G.L. Donohue, A.G. Zellweger, AIAA, pp. 463-480.

Blom, H.A.P., Bakker, G.J., Everdij, M.H.C, Park, M.N.J. van der (2003). Stochastic Analysis

background of accident risk assessment for Air Traffic Mangement, Hybridge report

D2.2, 31th March 2003, NLR.

Champagnat, R., Esteban, P., Pingard, H., Valette, R. (1998), Modeling and simulation of a

hybrid system through PR/TR PN-DAE model, Proc. of the 3rd Int. Conf. on

Automation of Mixed Processes, Reims, France, March 1998, pp. 131-137.

Cassandras, C.G., Lafortune, S. (1999), Introduction to Discrete Event Systems. Kluwer

Academic Publishers.

David, R., Alla, H. (1994). Petri Nets for the modeling of dynamic systems — A survey,

Automatica, Vol. 30, No. 2, pp. 175-202.

Davis, M.H.A. (1984). Piecewise Deterministic Markov Processes: a general class of

non-diffusion stochastic models, Journal Royal Statistical Soc. (B), Vol. 46, pp.

353-388.

Davis, M.H.A. (1993). Markov models and optimization, Chapman & Hall.

Demongodin, I., Koussoulas, N.T. (1998). Differential Petri Nets: Representing continuous

systems in a discrete-event world, IEEE Transactions on Automatic Control, Vol. 43,

No. 4.

Everdij, M.H.C., Blom, H.A.P., Klompstra, M.B. (1997). Dynamically Coloured Petri Nets for

Air Traffic Management safety purposes, Proc. 8th IFAC Symposium on Transportation

Systems, Chania, Greece, pp. 184-189.

Everdij, M.H.C., Blom, H.A.P. (2000). Piecewise Deterministic Markov Processes represented

by Dynamically Coloured Petri Nets, submitted to Stochastics, 2000, published in

February 2005.

Everdij, M.H.C., Blom, H.A.P. (2003). Petri-Nets and Hybrid-State Markov Processes in a

Power-Hierarchy of Dependability Models, Proc. IFAC Conference on Analysis and

Design of Hybrid Systems, Saint-Malo, Brittany, France, 16-18 June 2003, pp. 355-360.

Giua, A., Usai, E. (1996). High-level Hybrid Petri Nets: a definition, Proc. 35th Conference

on Decision and Control, Kobe, Japan, pp. 148-150.

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 23

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

Haas, P.J. (2002). Stochastic Petri Nets, Modelling, Stability, Simulation, Springer-Verlag,

New York.

Jensen, K. (1992). Coloured Petri Nets: Basic concepts, analysis methods and practical use,

Volume 1, Springer-Verlag.

Le Bail, J., Alla, H., David, R. (1991). Hybrid Petri Nets, European Control Conference,

Grenoble, France, pp. 1472-1477.

Malhotra, M., Trivedi, K.S. (1994). Power-hierarchy of dependability-model types, IEEE

Transactions on Reliability, Vol. R-43, No. 3, pp. 493-502.

Muppala, J.K., Fricks, R.M., Trivedi, K.S. (2000). Techniques for system dependability

evaluation, In: Computational probability, W. Grasman (ed.), pp 445-480, Kluwer

Academix Publishers, The Netherlands.

Trivedi, K.S., Kulkarni, V.G. (1993). FSPNs: Fluid Stochastic Petri Nets, Lecture notes in

Computer Science, Vol. 691, M. Ajmone Marsan (ed.) Proc. 14th Int. Conference on

Applications and theory of Petri Nets, pp. 24-31, Springer Verlag, Heidelberg.

Yang, Y.Y., Linkens, D.A., Banks, S.P. (1995). Modelling of hybrid systems based on

Extended Coloured Petri Nets, Hybrid Systems II, P. Antsaklis et al. (eds.), pp. 509-528,

Springer.

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 24

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

Appendices

A Formal definition of Dynamically Coloured Petri Nets

This appendix presents a formal definition of Dynamically Coloured Petri Net. As much as

possible, the notation introduced by Jensen (1992) for Coloured Petri Net is used.

Definition:

A Dynamically Coloured Petri Net (DCPN) is an 11-tuple DCPN = (P , T , A, N , S, C, V , G,

D, F , I), together with some rules. Below, first the structure of the components in the tuple is

given, next the DCPN evolution through time is explained, finally, the DCPN generated

process is outlined.

DCPN elements:

1. P is a finite set of places.

2. T is a finite set of transitions, such that T ∩ P = ∅. The set T consists of 1) a set TG of

guard transitions, 2) a set TD of delay transitions and 3) a set TI of immediate

transitions, with T = TG ∪ TD ∪ TI , and TG ∩ TD = TD ∩ TI = TI ∩ TG = ∅.

3. A is a finite set of arcs such that A ∩ P = A ∩ T = ∅. The set A consists of 1) a set AO

of ordinary arcs, 2) a set AE of enabling arcs and 3) a set AI of inhibitor arcs, with

A = AO ∪ AE ∪ AI , and AO ∩ AE = AE ∩ AI = AI ∩ AO = ∅.

4. N : A → P × T ∪ T × P is a node function which maps each arc A in A to a pair of

ordered nodes N (A). The place of N (A) is denoted by P (A), the transition of N (A) is

denoted by T (A), such that for all A ∈ AE ∪ AI : N (A) = (P (A), T (A)) and for all

A ∈ AO: either N (A) = (P (A), T (A)) or N (A) = (T (A), P (A)). Further notation:

• A(T) = {A ∈ A | T (A) = T} denotes the set of arcs connected to transition T ,

with A(T) = Ain(T) ∪ Aout(T), where

• Ain(T) = {A ∈ A(T) | N (A) = (P (A), T)} is the set of input arcs of T and

• Aout(T) = {A ∈ A(T) | N (A) = (T, P (A))} is the set of output arcs of T .

Moreover,

• Ain,O(T) = Ain(T) ∩ AO is the set of ordinary input arcs of T ,

• Ain,OE(T) = Ain(T) ∩ {AE ∪ AO} is the set of input arcs of T that are either

ordinary or enabling, and

• P (A(T)) is the set of places connected to T by the set of arcs A(T).

Finally, {Ai ∈ AI | ∃A ∈ A, A = Ai : N (A) = N (Ai)} = ∅, i.e., if an inhibitor arc

points from a place P to a transition T , there is no other arc from P to T .

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 25

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

5. S is a finite set of colour types. Each colour type is to be written in the form IRn, with n

a natural number.

6. C : P → S is a colour function which maps each place P ∈ P to a specific colour type

in S.

7. I : P → C(P)ms is an initialisation function, where C(P)ms for P ∈ P denotes the set

of all multisets over C(P). It defines the initial marking of the net, i.e., for each place it

specifies the number of tokens (possibly zero) initially in it, together with the colours

they have, and their ordering per place.

8. V is set of a token colour functions. For each place P ∈ P it contains a locally Lipschitz

continuous function VP : C(P) → C(P).

9. G is a set of transition guards. For each T ∈ TG, it contains a transition guard GT :

C(P (Ain,OE(T))) → {True, False}. GT (ct) evaluates to True when ct enters ∂GT for the

first time, where GT is an open subset in C(P (Ain,OE(T))).

Here, if P (Ain,OE(T)) contains more than one place, e.g.,

P (Ain,OE(T)) = {Pi, . . . , Pj}, then C(P (Ain,OE(T))) is defined by C(Pi)× · · ·×C(Pj).

10. D is a set of transition delays. For each T ∈ TD, it contains a transition delay DT :

C(P (Ain,OE(T))) → IR+
0 , which, if evaluated from stopping time τ on, follows

DT (ct) = inf{t | e−
∫ t

τ
δT (cs)ds ≤ u}, where δT : C(P (Ain,OE(T))) → IR+

0 is integrable

and u is a random number drawn from U [0, 1] at τ .

11. F is a set of firing measures. For each T ∈ T it specifies a probability measure FT

which maps C(P (Ain,OE(T))) into the set of probability measures on

{0, 1}|Aout(T)| × C(P (Aout(T))).

DCPN execution:

The execution of a DCPN provides a series of increasing stopping times, τ0 < τi < τi+1, with

for t ∈ (τi, τi+1) a fixed number of tokens per place and per token a colour which is the

solution of an ordinary differential equation. This number of tokens and the colours of these

tokens are generated as follows:

Each token residing in place P has a colour of type C(P). If a token in place P has colour c at

time τ , and if it remains in that place up to time t > τ , then the colour ct at time t equals the

unique solution of the differential equation ċt = VP (ct) with initial condition cτ = c.

A transition T is pre-enabled if it has at least one token per incoming ordinary and enabling arc

in each of its input places and has no token in places to which it is connected by an inhibitor

arc; denote τ pre1 = inf{t | T is pre-enabled at time t}. Consider one token per ordinary and

enabling arc in the input places of T and write ct ∈ C(P (Ain,OE(T))), t ≥ τ1, as the column

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 26

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

vector containing the colours of these tokens; ct may change through time according to its

corresponding token colour functions. If this vector is not unique (for example, one input place

contains several tokens per arc), all possible such vectors are executed in parallel.

A transition T is enabled if it is pre-enabled and a second condition holds true. For T ∈ TI , the

second condition automatically holds true. For T ∈ TG, the second condition holds true when

GT (ct) = True. For T ∈ TI , the second condition holds true DT (ct) units after τ pre1 . Guard or

delay evaluation of a transition T stops when T is not pre-enabled anymore, and is restarted

when it is.

For the evaluation of GT (ct) and DT (ct), use is made of a Hilbert cube Ω =
∏∞
i=1 Yi, with Yi a

copy of Y = [0, 1], which provides the canonical space for a countable sequence of

independent random variables U1, U2, ..., each having a uniform [0, 1] distribution, defined by

Ui(ω) = ωi for elements ω = (ω1, ω2, . . .) ∈ Ω. This Hilbert cube is used as follows: Suppose

T is a transition that is pre-enabled at time τ and has vector of input colours ct at time t ≥ τ ,

with cτ = c.

• If T is a delay transition then consider the survivor function

HDT
c (t− τ) � exp

{
− ∫ t

τ δT (cs)ds
}

and define the function ψT1 (u, c) by

ψT1 (u, c) �

inf{t : HDT
c (t− τ) ≤ u}

+∞ if the above set is empty

then transition T is enabled at time ψT1 (U1(ω), c).

• If T is a guard transition then consider the survivor function HGT
c (t− τ) � I(t−τ<t∗(c)),

where I is an indicator function and t∗(c) denotes the time until the first boundary hit

after t = τ , which is given by t∗(c) � inf{t− τ > 0|ct ∈ ∂GT}. Next, define the

function ψT1 (u, c) by

ψT1 (u, c) �

inf{t : HGT
c (t− τ) ≤ u}

+∞ if the above set is empty

then transition T is enabled at time ψT1 (U1(ω), c).

In case of ambiguities, the following rules apply:

R0 The firing of an immediate transition has priority over the firing of a guard or a delay

transition.

R1 If one transition becomes enabled by two or more disjoint sets of input tokens at exactly

the same time, then it will fire these sets of tokens independently, at the same time.

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 27

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

R2 If one transition becomes enabled by two or more non-disjoint sets of input tokens at

exactly the same time, then the set that is fired is selected randomly.

R3 If two or more transitions become enabled at exactly the same time by disjoint sets of

input tokens, then they will fire at the same time.

R4 If two or more transitions become enabled at exactly the same time by non-disjoint sets

of input tokens, then the transition that will fire is selected randomly.

Here, two sets of input tokens are disjoint if they have no tokens in common that are reserved

by ordinary arcs, i.e., they may have tokens in common that are reserved by enabling arcs.

If T is enabled, suppose this occurs at time τ1, it removes one token per arc in Ain,O(T) from

each of its input places. At this time τ1, T produces zero or one token along each output arc: If

cτ1 is the vector of colours of tokens that enabled T and (f, aτ1) is a sample from FT (·; cτ1),
then vector f specifies along which of the output arcs of T a token is produced (f holds a one

at the corresponding vector components and a zero at the arcs along which no token is

produced) and aτ1 specifies the colours of the produced tokens. The colours of the new tokens

have sample paths that start at time τ1.

For drawing the sample from FT (·; cτ1), use is again made of the Hilbert cube Ω: Let

ψT2 : [0, 1] × C(P (Ain,OE(T))) → {0, 1}|Aout(T)| × C(P (Aout(T))) be a measurable function

such that l{u : ψT2 (u, c) ∈ B} = FT (B, c) for B in the Borel set of

{0, 1}|Aout(T)| × C(P (Aout(T))). Then a sample from FT (·; cτ1) is given by ψT2 (U2(ω), cτ1), if

cτ1 is the vector of input colours that enabled T .

In order to keep track of the identity of individual tokens, the tokens in a place are ordered

according to the time at which they entered the place, or, if several tokens are produced for one

place at the same time, according to the order within the set of arcs A = {A1, . . . , A|A|} along

which these tokens were produced (the firing function produces zero or one token along each

output arc).

DCPN stochastic process:

The DCPN generates a stochastic process which is uniquely defined as follows: The process

state at time t is defined by the numbers of tokens in each place, and the colours of these

tokens. Provided there is a unique ordering of DCPN places, and a unique ordering of tokens

within a place, this characterisation is unique, except at time instants when one or more

transitions fire. To make this characterisation of DCPN process state unique, it is defined as

follows:

• At times t when no transition fires, the number of tokens in each place is uniquely

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 28

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

characterised by the vector (v1,t, . . . , v|P|,t) of length |P|, where vi,t denotes the number

of tokens in place Pi at time t and {1, . . . , |P|} refers to a unique ordering of places

adopted for DCPN. At time instants when one or more transitions fire, uniqueness of

(v1,t, . . . , v|P|,t) is assured as follows: Suppose that τ is such time instant at which one

transition or a sequence of transitions fires. Next, assume without loss of generality, that

this sequence of transitions is {T1, T2, . . . , Tm} and that time is running again after Tm

(note that T1 must be a guard or a delay transition, and T2 through Tm must be

immediate transitions). Then the number of tokens in each place at time t is defined as

that vector (v1,t, . . . , v|P|,t) that occurs after Tm has fired. This construction also ensures

that the process (v1,t, . . . , v|P|,t) has limits from the left and is continuous from the right,

i.e., it satisfies the càdlàg property.

• If (v1,t, . . . , v|P|,t) is the distribution of the tokens among the places of the DCPN at time

t, which is uniquely defined above, then the associated colours of these tokens are

uniquely gathered in a vector as follows: This vector first contains all colours of tokens

in place P1, next all colours of tokens in place P2, etc, until place P|P|, where

{1, . . . , |P|} refers to a unique ordering of places adopted for DCPN. Within a place the

colours of the tokens are ordered according to the unique ordering of tokens within their

place defined for DCPN (see under DCPN execution above). Since (v1,t, . . . , v|P|,t)

satisfies the càdlàg property, the corresponding vector of token colours does too. An

additional case occurs, however, when (v1,t, . . . , v|P|,t) jumps to the same value again, so

that only the process associated with the vector of token colours makes a jump at time τ .

In that case, let the process associated with the vector of token colours be defined

according to the timing construction as described for (v1,t, . . . , v|P|,t) above (i.e. at time

τ , the process associated with the vector of token colours is defined as that vector of

token colours that occurs after the last transition has fired in the sequence of transitions

that fire at time τ).

With this, the DCPN definition is complete.

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 29

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

B Proof of Theorem 1

This appendix shows that for an arbitrary Piecewise Deterministic Markov Process there exists

a Dynamically Coloured Petri Net, the execution of which generates a stochastic process

indistinguishable from the PDP, by providing an appropriate into-mapping from PDP into the

set of DCPNs. Notice that we do not claim the into-mapping to be unique; there may be other

DCPN instantiations describing the same PDP.

Consider an arbitrary PDP {xt, θt} described by the PDP elements {K, d(θ), x0, θ0, ∂Eθ, gθ,

λ, Q}.

First, the DCPN elements {P , T , A, N , S, C, I, V , G, D, F} and the rules R0 – R4 are

characterised in terms of the PDP elements {K, d(θ), x0, θ0, ∂Eθ, gθ, λ, Q} as follows:

P = {Pθ; θ ∈ K}.

T = TG ∪ TD ∪ TI , with TI = ∅, TG = {T G
θ ; θ ∈ K}, TD = {T D

θ ; θ ∈ K}.

A = AO ∪ AE ∪ AI , with |AI | = 0, |AE| = 0, and |AO| = 2|K| + 2|K|2.

N : The node function maps each arc in A = AO to a pair of nodes. These connected pairs of

nodes are: {(Pθ, TG
θ); θ ∈ K} ∪ {(Pθ, TD

θ); θ ∈ K}∪
{(TG

θ , Pϑ); θ, ϑ ∈ K} ∪ (TD
θ , Pϑ); θ, ϑ ∈ K}.

S = {IRd(θ); θ ∈ K}.

C: For all θ ∈ K, C(Pθ) = IRd(θ).

I: Place Pθ0 contains one token with colour x0. All other places initially contain zero tokens.

V: For all θ ∈ K, VPθ
(·) = gθ(·).

G: For all θ ∈ K, ∂GTG
θ

= ∂Eθ.

D: For all θ ∈ K, δTD
θ

(·) = λ(θ, ·).
F: If x denotes the colour of the token removed from place Pθ, (θ ∈ K), at the transition

firing, then for all ϑ′ ∈ K, x′ ∈ Eϑ′ : FTG
θ

(e′, x′;x) = Q(ϑ′, x′; θ, x), where e′ is the

vector of length |K| containing a one at the component corresponding with arc (TG
θ , Pϑ′)

and zeros elsewhere. For all θ ∈ K, FTD
θ

= FTG
θ

.

R0 – R4: Since there are no immediate transitions in the constructed DCPN instantiation, rule

R0 holds true. Since there is only one token in the constructed DCPN instantiation, R1 –

R3 also hold true. Rule R4 is in effect when for particular θ, transitions TG
θ and TD

θ

become enabled at exactly the same time. Since λ is integrable, the probability that this

occurs is zero, yielding that R4 holds with probability one. However, if this event should

occur, then due to the fact that the firing measures for the guard transition and the delay

transition are equal, rule R4 holds true.

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 30

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

This shows that for any PDP we are able to construct a DCPN instantiation. Next, we have to

show that the DCPN execution delivers the ‘same’ cadlag stochastic process as the PDP

process.

In the DCPN instantiation constructed only one token resides. The possible places for this

token are {Pϑ;ϑ ∈ K}. Figure 6 shows the situation at some time τk−1, when the PDP is given

by (θτk−1
, xτk−1

). The token resides in place Pϑi
, which models that θτk−1

= ϑi. This token has

colour xτk−1
. The colour of the token up to and at the time of the next jump is determined in

two steps: ...

✍✌
✎
Pϑi

✟✟✟✟✟✙

❍❍❍❍❍❥

TG
ϑi

TD
ϑi

✍✌
✎

...

Pϑ1 . . . ✍✌
✎

...

Pϑi−1 ✍✌
✎

...

Pϑi+1. . . ✍✌
✎

...

Pϑ|K|

✘✘✿

✁
✁
✁
✁
✁
✁☛

❇
❇
❇
❇
❇
❇,

❅
❅
❅
❅
❅
❅❅❘

❍❍❍❍❍❍❍❍❍❍❍❍❥

✟✟✟✟✟✟✟✟✟✟✟✟✙

�
�
�
�
�
��✠

✂
✂
✂
✂
✂
✂✌

❆
❆
❆
❆
❆
❆

Fig. 6 Part of a Dynamically Coloured Petri Net representing a Piecewise Deterministic Markov

Process.

Step 1: While the token is residing in place Pϑi
, its colour xt changes according to the flow

φϑi,xτk−1
, i.e., xt = φϑi,xτk−1

(t− τk−1). Transitions TG
ϑi

and TD
ϑi

are both pre-enabled and

compete for this token which resides in their common input place Pϑi
. Transition TG

ϑi

models the boundary hitting generating a mode switch, while transition TD
ϑi

models the

Poisson process generating a mode switch. The transition that is enabled first, determines

the kind of switch occurring. The time at which this happens is denoted by τk.

Step 2: Next, with one of the transitions enabled, its firing measure is evaluated. This firing

measure is such, that if a sample ζk from transition measure

Q(·;ϑi, φϑi,xτk−1
(τk − τk−1)), would appear to be ζk = (ϑj, x), then the enabled

transition would produce one token with colour xτk
= x for place Pϑj

. The other places

get no token.

After this, the process starts again in the same way from the new state on.

Pathwise equivalence of PDP and DCPN processes

With this construction, the PDP and DCPN processes generate the same sequence of stopping

times. For pathwise equivalence from stopping time to stopping time both processes need to

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 31

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

use the same countable sequence of independent random variables U1, U2, ..., each having

uniform [0, 1] distribution, defined by Ui(ω) = ωi for elements ω = (ω1, ω2, . . .) of the Hilbert

cube Ω =
∏∞
i=1 Yi, with Yi a copy of Y = [0, 1], to generate all random variables in both the

PDP process and the DCPN process. This can be easily accomplished by drawing samples for

the PDP and the associated DCPN at the same times and for the equivalent purposes, i.e.

• The first sample in each cycle is drawn to generate a stopping time associated with the

Poisson point process generating a point, which is equivalent to the time the Delay

function enables a transition;

• The second sample in each cycle is drawn to generate the value of the hybrid state after

the jump, which is equivalent to the place of the token after the transition firing, and its

colour.

Remark

The DCPN instantiation defined above has many places, and only one token. An interesting

problem would be to find another into-mapping, in which the DCPN instantiation has fewer

places and more tokens. Addressing this problem falls outside the scope of this paper.

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 32

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

C Proof of Theorem 2

Under some conditions, for each Dynamically Coloured Petri Net there exists a

probabilistically equivalent Piecewise Deterministic Markov Process. In this appendix this is

shown by providing an into-mapping from DCPN into the set of PDPs. Subsequently it is

shown that this mapping is unique.

For an arbitrary DCPN that satisfies conditions D1 – D4, we first construct a PDP that is

probabilistically equivalent to the DCPN process. As a preparatory step, the given DCPN is

enlarged as follows: for each guard transition and each place from which that guard transition

may be enabled, copy the corresponding places and transitions, including guard and firing

functions, and revise the firing functions of the input transitions to these places, such that the

new firings ensure that the corresponding guards may be reached from one side only. This step

is illustrated with an example:

T1
✲

✚✙
✛✘

P1
✲T2

becomes T ′
1

✚✙
✛✘
P1a

✲T2a

✚✙
✛✘
P1b

✲T2b

✚
✚
✚
✚✚❃

◗
◗
◗
◗◗�

Fig. 7 Example transformation to model DCPN enlargement

In the picture on the left above, transition T1 (which may be of any type) may fire tokens to

place P1, while transition T2 is a guard transition that uses these tokens as input. In this

example, assume that C(P1) = IR and that ∂GT2 = 3. This means, transition T2 is enabled if

the colour of the token in place P1 reaches value 3. This value may be reached from above or

from below, depending on whether the initial colour of the token in P1 is larger or smaller than

3, respectively.

In the picture on the right, place P1 and transition T2 have been copied. Transitions T2a and T2b

get the same guard as T2, but transition T ′
1 gets a new firing function with respect to T1: it is

similar to the one of T1, but it delivers a token to place P1a if the colour of this new token is

smaller than 3, and it delivers a token to place P1b if its colour is larger than 3. This way, the

guard of transition T2a is always reached from below, i.e., its input colours are smaller than 3.

The guard of transition T2b is always reached from above, i.e., its input colours are larger than

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 33

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

3.

Let this enlarged DCPN be described by the tuple (P , T , A, N , S, C, I, V , G, D, F) and

satisfy the rules R0 – R4, and assume that the conditions D1 – D4 are satisfied. In order to

represent this DCPN by a PDP, all PDP elements K, θt, xt, d(θ), ξ0, gθ, ∂Eθ, λ, Q and the PDP

conditions C1 − C4 are characterised in terms of this DCPN:

K: The domain K for the mode process {θt} can be found from the reachability graph (RG)

of the DCPN graph. The nodes in the RG are vectors V = (v1, . . . , v|P|), where vi equals

the number of tokens in place Pi, i = 1, . . . , |P|, where these places are uniquely

ordered. The RG is constructed from DCPN components P , T , A, N and I. The first

node V0 is found from I, which provides the numbers of tokens initially in each of the

places1. From then on, the RG is constructed as follows: If it is possible to move in one

jump from token distribution V0 to, say, either one of distributions V 1, . . . , V k unequal

to V0, then arrows are drawn from V0 to (new) nodes V 1, . . . , V k. Each of V 1, . . . , V k is

treated in the same way. Each arrow is labelled by the (set of) transition(s) fired at the

jump. If a node V j can be directly reached from V i by different (sets of) transitions

firing, then multiple arrows are drawn from V i to V j , each labelled by another (set) of

transition(s). Multiple arrows are also drawn if V j can be directly reached from V i by

firing of one transition, but by different sets of tokens, for example in case this transition

has multiple input tokens per incoming arc in its input places. In this case, the multiple

arrows each get this transition as label.

The nodes in the resulting reachability graph, exclusive the nodes from which an

immediate transition is effective, form the discrete domain K of the PDP. To emphasise

them in the RG picture, these nodes are given in italics. Since the number of places in

the DCPN is finite and the number of tokens per place and the number of nodes in the

RG are countable, K is a countable set, which satisfies the PDP conditions.

As an example, consider the following DCPN graph, which initially has two tokens in place P1

and one in P4, such that V0 = (2, 0, 0, 1, 0). This vector forms the first node of the reachability

graph.

1Notice that K has to be constructed for all I by following the proposed procedure such that is applies for each

possible instantiation of the initial token distribution.

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 34

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

✖✕
✗✔

✖✕
✗✔

✖✕
✗✔

T1 T2

T5
T6

T3

T4

T8

T7

✖✕
✗✔

✖✕
✗✔

✁
✁
✁
✁
✁☛
❆
❆
❆
❆❆

✻

✻

✏✏
✏✏✶

✡
✡
✡✣

❙
❙❙5

##
##✐

❏
❏
❏
�

✟✟✟✟✙
✡
✡✡✢

✟✟
✟✟✯❍❍❍❍❍❥

✑
✑
✑
✑✑✰❍

❍❍
❍

❞

P1

P2

P3

P4 P5

Fig. 8 Example DCPN graph to explain reachability graph

Both T1 and T3 are pre-enabled. They both have two tokens per incoming arc in their input place,

hence for both transitions, two vectors of input colours are evaluated in parallel. If T1 becomes

enabled for one of these input tokens, it removes the corresponding token from P1 and produces

a token for P2 (we assume that all firing measures are such, that each transition will fire a token

when enabled, i.e., FT (0, ·; ·) = 0), so the new token distribution is (1, 1, 0, 1, 0). Therefore, in

the reachability graph two arcs labelled by T1 are drawn from (2, 0, 0, 1, 0) to the new node

(1, 1, 0, 1, 0); this duplication of arcs characterises that T1 has evaluated two vectors of input

tokens in parallel. It may also happen that from (2, 0, 0, 1, 0), the guard transition T1 is enabled

by its two input tokens at exactly the same time. Due to Rule R1 it then fires these two tokens at

exactly the same time, resulting in node (0, 2, 0, 1, 0). Therefore, an additional arc labelled

T1 + T1 is drawn from (2, 0, 0, 1, 0) to (0, 2, 0, 1, 0). If, from (2, 0, 0, 1, 0), transition T3 fires

before T1 does, the token distribution becomes (1, 0, 1, 1, 0). Subsequently, the immediate

transition T7 is enabled; its firing leads to (1, 0, 1, 0, 1). Since (1, 0, 1, 1, 0) enables an immediate

transition it is drawn in italics and is excluded from K. Unlike the case for T1, there is no arc

drawn from (2, 0, 0, 1, 0) labelled by T3 + T3, since T3 is a delay transition, hence the probability

that it is enabled by both its input tokens at the same time is zero.

The resulting reachability graph for this example is given in Figure 9. So, for this example,

K = {(2, 0, 0, 1, 0), (1, 1, 0, 1, 0), (1, 0, 1, 0, 1), (0, 2, 0, 1, 0), (0, 1, 1, 0, 1), (0, 0, 2, 0, 1)}.

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 35

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

(2,0,0,1,0)

(1,1,0,1,0)

(2,0,0,0,1)

(1,0,1,1,0) (1,0,1,0,1)

(0,2,0,1,0) (0,1,1,1,0) (0,1,1,0,1) (0,0,2,0,1)

(1,1,0,0,1)

T2T1
T1 T3 T3

T8

T6

T1
T2T2

T6

T6

T8 T5

T7

T3
T1+T6

T8 T5

T4

T6

T1

T2
T3

T4

T4

T4

T7

T5

T5

T1+T1

(0,0,2,1,0)

T6+T6

T7

(0,2,0,0,1)

Fig. 9 Example reachability graph

d(θ): The colour of a token in a place P is an element of C(P) = IRn(P), therefore

d(θ) =
∑|P|

i=1 θi × n(Pi), with θ = (θ1, . . . , θ|P|) ∈ K, with {1, . . . , |P|} referring to the

unique ordering of places adopted for the DCPN.

gθ: For x = Col{x1, . . . , x|P|}, with xi ∈ IRθi×n(Pi), and with {1, . . . , |P} referring to the

unique ordering of places adopted for the DCPN, gθ is defined by

gθ(x) = Col{g1
θ(x

1), . . . , g
|P|
θ (x|P|)}, where for xi = Col{xi1, . . . , xiθi}, with

xij ∈ IRn(Pi) for all j ∈ {1, . . . , θi}: giθ(x
i) = Col{VPi

(xi1), . . . ,VPi
(xiθi)}. Here,

j ∈ {1, . . . , θi} refers to the unique ordering of tokens within their place defined for

DCPN (see Appendix A). Since, for all Pi, VPi
is locally Lipschitz continuous, gθ is also

locally Lipschitz continuous.

∂Eθ: The boundary ∂Eθ of subset Eθ is determined from the transition guards corresponding

with the set of transitions in TG that, under token distribution θ, are pre-enabled (this set

is uniquely determined). Without loss of generality, suppose this set of transitions is

T1, . . . , Tm. Suppose {P i1, . . . , P iri} are the input places of Ti that are connected to Ti

by means of ordinary or enabling arcs. Define di =
∑ri

j=1 n(P ij), then

∂Eθ = ∂G′
T1

∪ . . . ∪ ∂G′
Tm

, where G′
Ti

= [GTi
× IRd(θ)−di] ∈ IRd(θ). Here [·] denotes a

special ordering of all vector elements: Vector elements corresponding with tokens in

place Pa are ordered before vector elements corresponding with tokens in place Pb if

b > a, according to the unique ordering of places adopted for the DCPN; vector

elements corresponding with tokens within one place are ordered according to the

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 36

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

unique ordering of tokens within their place defined for DCPN (see Appendix A).

λ: The jump rate λ(θ, ·) is determined from the transition delays corresponding with the set of

transitions in TD that, under token distribution θ, are pre-enabled (this set is uniquely

determined). Without loss of generality, suppose this set of transitions is T1, . . . , Tm.

Then λ(θ, ·) =
∑m

i=1 δTi
(·). This equality is due to the fact that the combined arrival

process of individual Poisson processes is again Poisson, with an arrival rate equal to the

sum of all individual arrival rates. Since δT is integrable for all T ∈ TD, λ is also

integrable.

Q: For each θ ∈ K, x ∈ Eθ, θ′ ∈ K and x′ ∈ Eθ′ , Q(θ′, x′; θ, x) is characterised by the

reachability graph, the sets D, G and F and the rules R0 −R4. The reachability graph is

used to determine which transitions are pre-enabled in token distribution θ; the sets D
and G and the rules R0 −R4 are used to determine which pre-enabled transitions will

actually fire from state (θ, x); and finally, set F is used to determine the probability of

(θ′, x′) being the state after the jump, given state (θ, x) before the jump and the set of

transitions that will fire in the jump. Because of its complexity, this characterisation is

given in Appendix D, but an outline is given next:

Main challenge in the characterisation of Q is the following: In some situations one does

not know for certain which transitions will fire in a jump, even if one knows the state

(θ, x) before the jump and knows that a jump will occur from (θ, x) to (θ′, x′). Hence, in

these situations it is not known with certainty which firing functions one should combine

in order to construct Q(θ′, x′; θ, x) from DCPN elements. However, one does know the

following:

• Given θ, one knows which transitions are pre-enabled; this can be read off the

reachability graph (i.e. gather the labels of all arrows leaving node θ).

• Given that θ ∈ K, no immediate transitions are enabled in θ.

• The probability that a guard transition and a delay transition are enabled at exactly

the same time is zero.

• The probability that two delay transitions are enabled at exactly the same time is

zero.

• There is a possibility that two or more guard transitions are enabled at exactly the

same time. It may even occur (due to rule R1) that one single guard transition fires

twice at the same time.

Hence, the steps to be followed to construct Q(θ′, x′; θ, x), for any (θ′, x′, θ, x) are:

1. Determine (using the reachability graph) which transitions are pre-enabled in θ.

2. Consider the guard transitions in this set of pre-enabled transitions and determine

which of these are enabled. For a transition T , this is done by considering its vector

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 37

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

of input colours (which is part of x) and checking whether this vector has entered

the boundary ∂GT . If the set of enabled guard transitions is not empty, then use

rules R1 −R4 to find out which of these transitions will actually fire with which

probability.

If this set of enabled guard transitions is empty, then one pre-enabled delay

transition must be enabled. Use D to determine for each pre-enabled delay

transition the probability with which it will actually fire.

3. Determine which transition firings can actually lead to discrete process state θ′ in

one jump. This set can be found by identifying in the reachability graph all arrows

directly from node θ to θ′ and all directed paths from node θ to θ′ that pass only

nodes that enable immediate transitions (i.e. that pass only nodes in italics).

4. Finally, Q(θ′, x′; θ, x) is constructed from the firing functions, by conditioning on

these arrows and paths from θ to θ′.

ξ0 = (θ0, x0): This can be constructed from I, the DCPN initial marking, which provides the

places the tokens are initially in and the colours these tokens have. Hence,

θ0 = (v1,0, . . . , v|P|,0), where vi,0 denotes the initial number of tokens in place Pi, with

the places ordered according to the unique ordering adopted for DCPN, and x0 ∈ IRd(θ0)

is a vector containing the colours of these tokens. Within a place the colours of the

tokens are ordered according to the specification in I. With this, and due to condition

D4 (which prevents different token distributions to be applicable at the initial time), the

constructed ξ0 is uniquely defined.

C1: This condition (no explosions) follows from assumption D1.

C2: This condition (λ is integrable) follows from the fact that δT is integrable for all T ∈ TD.

C3: This condition (Q measurable and Q({ξ}; ξ) = 0) follows from the assumption that F is

continuous and from assumption D2.

C4: This condition (IENt <∞) follows from assumption D3.

This shows that for any DCPN satisfying conditions D1 – D4, we are able to construct unique

PDP elements, and thus a unique PDP.

Finally, we show that the PDP process {θt, xt} is probabilistically equivalent to the process

generated by the DCPN:

With the mapping from DCPN elements into PDP elements, it is easily shown that the PDP

process {θt, xt} is probabilistically equivalent to the process generated by the DCPN

characterised in Appendix A: at each time t the process {θt} is probabilistically equivalent to

the process (v1,t, . . . , v|P|,t) and the process {xt} is probabilistically equivalent to the process

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 38

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

associated with the vector of token colours. This is shown by observing that the initial PDP

state (θ0, x0) is probabilistically equivalent to the initial DCPN state through the mapping

constructed above. Moreover, also by the unique mapping of DCPN elements into PDP

elements, at each time instant after the initial time, the PDP state is probabilistically equivalent

to the DCPN state: At times t when no jump occurs, the PDP process evolves according to gθ

and the DCPN process evolves according to V . Through the mapping between gθ and V
developed above, these evolutions provide probabilistically equivalent processes. At times

when a jump occurs, the PDP process makes a jump generated by Q, while the DCPN process

makes a jump generated by F . Through the mapping between Q and F developed above, these

jumps provide probabilistically equivalent processes.

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 39

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

D Characterisation of Q in terms of DCPN elements

In this appendix, Q is characterised in terms of DCPN, as part of the characterisation in

Appendix C of PDP in terms of DCPN.

For each θ ∈ K, x ∈ Eθ, θ′ ∈ K and A ⊂ Eθ′ , the value of Q(θ′, A; θ, x) is a measure for the

probability that if a jump occurs, and if the value of the PDP just prior to the jump is (θ, x),

then the value of the PDP just after the jump is in (θ′, A). Measure Q(θ′, A; θ, x) is

characterised in terms of the DCPN by the reachability graph (RG) (see Appendix C),

elements D, G and Rules R0 −R4 and the set F , as below. This is done in four steps:

1. Determine which transitions are pre-enabled in (θ, x).

2. Determine for each pre-enabled transition the probability with which it is enabled in

(θ, x).

3. Determine for each pre-enabled transition whether its firing can possibly lead to discrete

state θ′.

4. Use the results of the previous two steps and the set of firing functions to characterise Q.

Step 1: Determine which transitions are pre-enabled in (θ, x).

Consider all arrows in the RG leaving node θ. These arrows are labelled by names of

transitions which are pre-enabled in θ, for example T1 (if T1 is pre-enabled in θ), T1 + T2 (if T1

and T2 are both pre-enabled and there is a non-zero probability that they fire at exactly the

same time), etc. Therefore the arrows leaving θ may be characterised by these labels. Denote

the multi-set of arrows, characterised by these labels, by Bθ. This set is a multi-set since there

may exist several arrows with the same label (e.g. if one transition is pre-enabled by different

sets of input tokens). We use notation B ∈ Bθ for an element B of Bθ (e.g. B = T1 represents

an arrow with T1 as label), and notation T ∈ B for a transition T in label B (e.g. as in

B = T + T1).

Step 2: Determine for each pre-enabled transition the probability with which it is

enabled in (θ, x).

Given that a jump occurs in (θ, x), the set of transitions that will actually fire in (θ, x) is not

empty, and is given by one of the labels in Bθ. In the following, we determine, for all B ∈ Bθ,

the probability pB(θ, x) that all transitions in label B will fire.

• Denote the vector of input colours of transition T in a particular label by cxT . For a

transition in a label this vector is unique since we consider transitions with multiple

vectors of input colours separately in the multi-set Bθ.

• Consider the multi-set BG
θ = {B ∈ Bθ|∀T ∈ B : T ∈ TG and cxT ∈ ∂GT}.

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 40

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

• If BG
θ = ∅ then this set contains all transitions that are enabled in (θ, x). Rules R1 −R4

are used (R0 is not applicable) to determine for each B ∈ BG
θ the probability with which

the transitions in label B will actually fire:

– Rules R1 and R3 are used as follows: if B is such that there exists B′ ∈ BG
θ such

that the transitions in B form a real subset of the set of transitions in B′, then

pB(θ, x) = 0. The set of thus eliminated labels B is denoted by BR1,3

θ .

– Rules R2 and R4 are used as follows: If the multi-set BG
θ − BR1,3

θ contains m

elements, then each of these labels gets a probability pB(θ, x) = 1/m.

• If BG
θ = ∅ then only Delay transitions can be enabled in (θ, x). Consider the multi-set

BD
θ = {B ∈ Bθ|∀T ∈ B : T ∈ TD}. Each B ∈ BD

θ consists of one delay transition, with

pB(θ, x) =
δB(cxB)∑

T∈BD
θ

δT (cxT)
.

Step 3: Determine for each pre-enabled transition whether its firing can possibly lead to

discrete state θ′.

In the RG, consider nodes θ and θ′ and delete all other nodes that are elements of K, including

the arrows attached to them. Also, delete all nodes and arrows that are not part of a directed

path from θ to θ′. The residue is named RGθθ′ . Then, if θ and θ′ are not connected in RGθθ′ by

at least one path, a jump from (θ, x) to a state in (θ′, A) is not possible.

Step 4: Use the results of the previous two steps and the set of firing functions to

characterise Q.

From the previous step we have

• Q(θ′, A; θ, x) = 0 if θ and θ′ are not connected in RGθθ′ by at least one path.

If θ and θ′ are connected then in RGθθ′ one or more paths from θ to θ′ can be identified. Each

such path may consist of only one arrow, or of sequences of directed arrows that pass nodes

that enable immediate transitions. All arrows are labelled by names of transitions, therefore the

paths between θ and θ′ may be characterised by the labels on these arrows, i.e. by the

transitions that consecutively fire in the jump from θ to θ′. Denote the multi-set of paths,

characterised by these labels, by Lθθ′ . Examples of elements of Lθθ′ are T1 (if T1 is

pre-enabled in θ and its firing leads to θ′), T1 + T2 (if there is a non-zero probability that T1

and T2 will fire at exactly the same time, and their combined firing leads to θ′), T4 ◦ T3 (if T3 is

pre-enabled in θ, its firing leads to the immediate transition T4 being enabled, and the firing of

T4 leads to θ′), etc.

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 41

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

Next, we factorise Q by conditioning on the path L ∈ Lθθ′ along which the jump is made.

Under the condition that a jump occurs:

Q(θ′, A; θ, x) =
∑

L∈Lθθ′
pθ′,x′|θ,x,L(θ′, A | θ, x, L) × pL|θ,x(L | θ, x),

where pθ′,x′|θ,x,L(θ′, A | θ, x, L) denotes the conditional probability that the DCPN state

immediately after the jump is in (θ′, A), given that the DCPN state just prior to the jump

equals (θ, x), given that the set of transitions L fires to establish the jump. Moreover,

pL|θ,x(L | θ, x) denotes the conditional probability that the set of transitions L fires, given that

the DCPN state immediately prior to the jump equals (θ, x).

In the remainder of this appendix, first pL|θ,x(L | θ, x) is characterised for each L ∈ Lθθ′ . Next,

pθ′,x′|θ,x,L(θ′, A | θ, x, L) is characterised for each L ∈ Lθθ′ .

Characterisation of pL|θ,x(L | θ, x) for each L ∈ Lθθ′

First, assume that Lθθ′ does not contain immediate transitions. This yields: each L ∈ Lθθ′

either contains one or more guard transitions, or one delay transition (other combinations occur

with zero probability). In particular, Lθθ′ is a subset of Bθ defined earlier. Then pL|θ,x(L | θ, x)

is determined by pL|θ,x(L | θ, x) =
pL(θ, x)∑

B∈Lθθ′ pB(θ, x)
, with pB(θ, x) defined earlier.

Next, consider the situations where RGθθ′ may also contain nodes that enable immediate

transitions. If L is of the form L = Tj ◦ Tk, with Tj an immediate transition, then

pL|θ,x(L | θ, x) = pTk|θ,x(Tk | θ, x), with the right-hand-side constructed as above for the case

without immediate transitions. The same value pTk|θ,x(Tk | θ, x) follows for cases like

L = Tm ◦ Tj ◦ Tk, with Tj and Tm immediate transitions. However, if the firing of Tk enables

more than one immediate transition, then the value of pTk|θ,x(Tk | θ, x) is equally divided

among the corresponding paths. This means, for example, that if there are L1 = Tj ◦ Tk and

L2 = Tm ◦ Tk then pL1|θ,x(L1 | θ, x) = pL2|θ,x(L2 | θ, x) =
1

2
pTk|θ,x(Tk | θ, x).

With this, pL|θ,x(L | θ, x) is uniquely characterised.

Characterisation of pθ′,x′|θ,x,L(θ′, A | θ, x, L) for each L ∈ Lθθ′

For probability pθ′,x′|θ,x,L(θ′, A | θ, x, L), first notice that both (θ, x) and (θ′, x′) represent

states of the complete DCPN, while the firing of L changes the DCPN only locally. This yields

that in general, several tokens stay where they are when the DCPN jumps from θ to θ′ while

the set L of transitions fires.

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 42

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

• pθ′,x′|θ,x,L(θ′, A | θ, x, L) = 0 if for all x′ ∈ A, the components of x and x′ that

correspond with tokens not moving to another place when transitions L fire, are unequal.

In all other cases:

• Assume L consists of one transition T that, given θ and x, is enabled and will fire.

Define again cxT as the vector containing the colours of the input tokens of T ; cxT may not

be unique. For each cxT that can be identified, a sample from FT (·, ·; cxT) provides a

vector e′ that holds a one for each output arc along which a token is produced and a zero

for each output arc along which no token is produced, and it provides a vector c′

containing the colours of the tokens produced. These elements together define the size of

the jump of the DCPN state. This gives:

pθ′,x′|θ,x,L(θ′, A | θ, x, L) =
∑
cxT

∫
(e′,c′)

FT (e′, c′; cxT) × I(θ′,A;e′,c′,cxT),

where I(θ′,A;e′,c′,cxT) is the indicator function for the event that if tokens corresponding

with cxT are removed by T and tokens corresponding with (e′, c′) are produced, then the

resulting DCPN state is in (θ′, A).

• If L consists of several transitions T1, . . . , Tm that, given θ and x, will all fire at the same

time, then the firing measure FT in the equation above is replaced by a product of firing

measures for transitions T1, . . . , Tm:

pθ′,x′|θ,x,L(θ′, A | θ, x, L) =
∑

cxT1
,...,cxTk

∫
(e′1,c

′
1),...,(e′

k
,c′

k
)

FT1(e
′
1, c

′
1; c

x
T1

) × . . .×

×FTk
(e′k, c

′
k; c

x
Tk

) × I(θ′,A;e′1,c
′
1,c

x
T1
,...,e′

k
,c′

k
,cxTk

),

where I(θ′,A;e′1,c
′
1,c

x
T1
,...,e′

k
,c′

k
,cxTk

) denotes indicator function for the event that the combined

removal of cxT1
through cxTk

by transitions T1 through Tk, respectively, and the combined

production of (e′1, c
′
1) through (e′k, c

′
k) by transitions T1 through Tk, respectively, leads to

a DCPN state in (θ′, A).

• If L is of the form L = Tj ◦ Tk, with Tj an immediate transition, then the result is:

pθ′,x′|θ,x,L(θ′, A | θ, x, L) =
∑
cxTk

∫
(e′j ,c

′
j ,cj ,e

′
k
,c′

k
)

FTj
(e′j, c

′
j; cj) ×FTk

(e′k, c
′
k; c

x
Tk

)×

×I(θ′,A;e′j ,c
′
j ,e

′
k
,c′

k
,cxT),

where I(θ′,A;e′j ,c
′
j ,e

′
k
,c′

k
,cxT) denotes indicator function for the event that the removal of cxTk

and the production of (e′k, c
′
k) by transition Tk leads to Tj having a vector of colours of

input tokens cj and the subsequent removal of cj and the production of (e′j, c
′
j) by

transition Tj leads to a DCPN state in (θ′, A).

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 43

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

• In cases like L = Tm ◦ Tj ◦ Tk, with Tj and Tm immediate transitions, the firing

functions of this sequence of transitions are multiplied in a similar way as above.

With this, probability measure Q of the constructed PDP is uniquely characterised in terms of

DCPN elements.

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 44

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

E Acronyms and Symbols

Acronyms used

CTMC Continuous Time Markov Chain

DCPN Dynamically Coloured Petri Net

DSPN Deterministic and Stochastic Petri Net

ECPN Extended Coloured Petri Net

FSPN Fluid Stochastic Petri Net

FT Fault Tree

FTRE Fault Tree with Replaced Events

GSHP Generalised Stochastic Hybrid Process

GSPN Generalised Stochastic Petri Net

HLHPN High-Level Hybrid Petri Net

PDP Piecewise Deterministic Markov Process

PN Petri Net

RBD Reliability Block Diagram

RG Reachability Graph

RRG Reduced Reachability Graph

SDCPN Stochastically and Dynamically Coloured Petri Net

Symbols used

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 45

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

∪θ : Unity

∩θ : Intersection

| · | : Number of elements in a set

IRn : n-dimensional real numbers

IN : Natural numbers

∂E : Boundary of open subset E

R0 – R4 : Rules

D1 – D3 : Conditions

t : Time

τ , τk : Stopping times

∆ : Time

t∗(θ, x) : Time until first boundary hit

t∞(θ, x) : Explosion time of flow φθ,x(·)
σk, ζk : Samples from probability distributions

Nt : Number of jumps until time t

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 46

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

xt : Continuous state

θt : Discrete state

ξt : Hybrid state

Eθ : Open subset of IRd(θ)

E : Disjoint unity of all subsets Eθ

E : Borel-measurable subsets of E

Γ∗ : Reachable boundary of E

K : Countable domain for process {θt}
d(·) : Function that maps K into IN

gθ(·) : Lipschitz continuous function

φθ,x0 : Flow

λ(θt, xt) : Rate of Poisson point process

Gξ(·) : Survivor function

IA : Indicator function

Q(·; ξ) : Transition measure

P : Set of places

P(A) : The place that is connected to arc A

T : Set of transitions

TG : Set of guard transitions

TD : Set of delay transitions

TI : Set of immediate transitions

T (A) : The transition that is connected to arc A

A : Set of arcs

AO : Set of ordinary arcs

AE : Set of enabling arcs

AI : Set of inhibitor arcs

A(T) : Set of arcs connected to transition T

Ain(T) : Set of input arcs of transition T

Ain,O(T) : Set of ordinary input arcs of transition T

Ain,OE(T) : Set of input arcs of transition T that are either ordinary or enabling

Aout(T) : Set of output arcs of transition T

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 47

HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

N : Node function

S : Set of colour types

C : Colour function

I : Initial marking

V : Set of token colour functions

VP : Token colour function for place P

G : Set of transition guards

GT : Transition guard for transition T

D : Set of transition delays

DT : Transition delay for transition T

F : Set of firing measures

FT : Firing measure for transition T

P , Pi : Place

P (A(T)) : Set of places connected to T by the set of arcs A(T)

T , Ti : Transition

TG
i : Guard transition

TD
i : Delay transition

A, Ai : Arc

C(P)ms : Set of all multisets over C(P)

c, ct : Colour of token or vector of colours

δT : Rate of transition delay

zt : Vector containing position and velocity of aircraft

vt : Velocity of aircraft

u : Random number

pB|C : Conditional probability density function

α& : Auxiliary variable

f : Vector of zeros and ones

ϑi, mi : Element of K

vi,t, vi : Number of tokens in place Pi

V , V i : Nodes of reachability graph

xi,j,t : Colour of jth token in place Pi at time t

L : Set of paths characterised by labels

L : Set of transitions, element of L

May 30, 2005 IST-2001-32460 (HYBRIDGE) Page 48

