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Abstract

Piecewise Deterministic Markov Processes (PDPs) are known as the largest class of strong
Markov processes virtually describing all continuous-time processes not involving diffusions.
In general the state space of aPDP is of hybrid type, i.e. a Kronecker product of adiscrete set
and a continuous-valued space. Since Stochastic Petri Nets have proven to be extremely useful
in devel oping continuous-time Markov Chain models for complex practical discrete-valued
processes, there is a clear need for atype of Petri Netsthat can play asimilar role for
developing PDP models for complex practical problems. To fulfil this need, the report defines
aDynamically Coloured Petri Net (DCPN), and proves that there exist into-mappings between
PDPs and DCPNs. Subsequently, the DCPN definition is extended to Stochastically and
Dynamically Coloured Petri Net (SDCPN), and it is shown that there exist into-mappings
between Generalised Stochastic Hybrid Processes (GSHP's) and SDCPNSs.
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1 Introduction

Malhotraand Trivedi (1994) and Muppala et al. (2000) developed a hierarchy of various
dependability models based on their modelling power. Thisis shown in Figure 1, in which the
well-known dependability models Reliability Block Diagrams and Fault Trees are at the basis
of the hierarchy. The aim of thisreport is to extend this power hierarchy such that it includes
Piecewise Deterministic Markov Processes (PDP) and Generalised Stochastic Hybrid
Processes (GSHP), and PDP and GSHP related Petri Nets (see Bujorianu et al. (2003)).

Deterministic and Stochastic

Petri Net (DSPN) Semi Markov Process

Generalised Stochastic Petri Net Continuous Time Markov Chain
(GSPN) (CTMC)

N .

Fault Tree with Repeated Events
(FTRE)

Reliability Graph

ZRN

Reliability Block Diagram
(RBD)

Fault Tree (FT)

Fig. 1 Power hierarchy among various model types established by (Malhotra and Trivedi, 1994) and
(Muppala €t al., 2000). An arrow from a model to another model indicates that the second model

has more modelling power than the first model.

Davis (1984, 1993) hasintroduced PDPs as the most general class of continuous-time strong
Markov processes which include both discrete and continuous processes, except diffusion. In
his 1984 paper, Davis shows that PDP have more modelling power than Semi Markov
Processes.

Petri Nets (see David and Alla (1994) for an overview) could provide an important modelling
formalism for PDP processes. A Petri Net is a bipartite graph of places (possible conditions or
discrete modes) and transitions (possible mode switches). Tokens, which reside in the places,
model which conditions or modes are current. Several hybrid state Petri Net extensions have
been developed in the past. Main classes are:
e Hybrid Petri Net (Le Ball et al., 1991). Some places have a continuous amount of tokens
that may be moved to other places by transitions.
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e Fluid Stochastic Petri Net (FSPN) (Trivedi and Kulkarni, 1993). Some places have a
continuous amount of tokens, the flow rate of which isinfluenced by the discrete part.
The discrete part of the FSPN can be mapped to a continuous-time Markov chain.

e Extended Coloured Petri Net (ECPN) (Yang et al., 1995). The token colours are
real-valued vectors that may follow the solution path of a difference equation.

e High-Level Hybrid Petri Net (HLHPN) (Giuaand Usai, 1996). Again, the token colours
are real-valued vectors that may follow the solution path of a difference equation, but in
addition, atoken switch between discrete places may generate ajump in the value of the
real-valued vector.

o Differential Petri Nets (Demongodin and Koussoulas, 1998). Differential places have a
real-valued number of tokens and differential transitions fire with a certain speed that
may also be negative.

For none of the above hybrid state Petri Netsit is clear how they relate to PDP. In order to
characterise the exact relation to a PDP, akind of hybrid state Petri Net is needed that makes
direct use of the specific PDP structure. The newly developed Dynamically Coloured Petri Net
(DCPN) presented in this paper does this. This makes that into-mappings between PDPs and
DCPNs exist. Anissue that deserves specia attention when relating PDPs to Petri Nets is that
for aPDP, at each moment in time, there is aunique realisation of the state, while a Petri Net
may make a sequence of jumps at a single moment in time. The into-mappings between PDPs
and DCPNs referred to in this paper take care of thisissue.

The organisation of this paper is asfollows. Section 2 defines Dynamically Coloured Petri
Nets. Section 3 explains PDPs. Section 4 shows that DCPN have the same modelling power as
PDP. Section 5 gives an example DCPN and an example PDP that model the same simplified
air traffic situation. Section 6 shows the extended power-hierarchy of dependability models.
Section 7 gives conclusions. The appendices give aformal definition of DCPN and give proofs
to theorems posed in the main document.
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2 DCPN eements and execution

The elements of a Dynamically Coloured Petri Net (Everdij and Blom, 2000) are given by
DCPN=(P,7,A,N,S,C,Z,V, G, D, F), where:
P isaset of places.
7T isaset of transitions which consists of a set 7 of guard transitions, a set 7, of delay
transitions, and a set 7; of immediate transitions.
A isafinite set of arcs, which consists of aset Ay of ordinary arcs, aset Apg of enabling
arcs, and a set A; of inhibitor arcs.
N isanode function which maps each arc to an ordered pair of one transition and one
place.
S isaset of colour types for the tokens occurring in the net (a colour is the value of an
object or process in Petri Net terminology).

()

isacolour function which maps each place to acolour typein S.

7 isaninitial marking which defines the set of tokensinitially present, i.e., it specifiesin
which places they initially reside, and the colours they initialy have.

V isaset of place specific colour functions which describe what happensto (i.e. defines
the rate of change of) the colour of atoken while it residesin a specific place. It
determines a token colour differential equation, which islocally Lipschitz continuous.

G isaset of boolean-valued transition guards associating each transition in 7 with aguard
function which is evaluated when the transition has a token in each of itsinput places.
The guard function must evaluate to True before the transition is allowed to fire (i.e.
remove and produce tokens). Its evaluation depends on the colours of the input tokens of
the transition.

D isaset of transition delays associating each transition in 7, with adelay function which
is evaluated when the transition has a token in each of itsinput places. The delay
function determines for how long the transition must wait before it is allowed to fire (i.e.
remove and produce tokens). The firing rate depends on the colours of the input tokens
of the transition.

F isaset of (probabilistic) firing functions describing the quantity and colours of the

tokens produced by the transitions at their firing. 1ts evaluation depends on the colours

of the input tokens of the transition.

The set of places P, the set of transitions 7, the set of arcs .A and the node function A define a
Petri Net graph. Below, the graphical representation of the elementsin P, 7 and A are given.
The node function N describes how these elements are connected.
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Place: Q Token: ®

Guard transition: L1 Ordinary arc: —
Delay transition: [ Enabling arc: —e
Immediate transition: —_— Inhibitor arc: ——0

Fig. 2 DCPN graphical elements

Tokens, which reside in the places, and the associated colour valuesin a DCPN evolve through
time quite ssimilar asin a Coloured Stochastic Petri Nets (e.g. Haas, 2002). The main additions
are that the colour of atoken may evolve according to a differential equation that is governed
by the colour function of the specific place where the token resides, and that guard transitions
take the evolving colour values into account. More specifically, the DCPN execution rules are
described below:

Tokens can be removed from places by the transitions. A transition can only remove tokens if
two conditions are both satisfied.

e First condition: The transition has at least one token per ordinary arc and one token per

enabling arc in each of itsinput places and has no token in the input placesto whichiitis
connected by an inhibitor arc. When this occurs, the colours of these input tokens, i.e.
one token per incoming ordinary arc and one token per incoming enabling arc, are
gathered in one big vector, named vector of input colours. The value of this vector may
evolve with time according to the corresponding token colour functions.

e Second condition: This differs per type of transition. For immediate transitions the
second condition is immediately satisfied when the first condition holds. For guard

transitions the second condition holds when the vector of input colours enters a
transition-specific boundary which is specified by G. For delay transitions, the second
condition holds when a particular transition-specific delay has passed, which may
depend on the vector of input colours and which is specified by D.

If the vector of input coloursis not unique (for example, if one input place contains
several tokens per arc), all possible such vectors are evaluated in parallel and the
transition is enabled if one of these vectors satisfies the second condition.

When the first condition holds, the transition is said to be pre-enabled. When both conditions
hold, the transition is enabled. When atransition is enabled, it removes from its input places
the tokens that correspond with the vector of input colours that enabled the transition.
However, the transition only removes tokens along the ordinary input arcs (one token per arc);
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tokens associated with enabling arcs are not removed and stay in their place. Subsequently, the
transition produces a token for some or all of its output places, specified by the firing function
F. The colour of a produced token (which must be of the correct type, indicated by what C
defines for the output place), and the place for which it is produced is also specified by the
firing function F. Asfor G, D, the evaluation of F may be dependent on vector of input
colours that enabled the transition.

In order to avoid ambiguity, for aDCPN the following priority rules apply when two or more
transitions are enabled simultaneously:

Ry Thefiring of an immediate transition has priority over the firing of aguard or adelay
transition.

R, If one transition becomes enabled by two or more digjoint sets of input tokens at exactly
the same time, then it will fire these sets of tokens independently, at the same time.

R, If one transition becomes enabled by two or more non-digjoint sets of input tokens at
exactly the same time, then the set that isfired is selected randomly.

R3 If two or more transitions become enabled at exactly the same moment by digoint sets of
input tokens, then they will fire at the same time.

R, If two or more transitions become enabled at exactly the same moment by non-digoint sets
of input tokens, then the transition that will fire is selected randomly, with the same
probability for each transition.

A DCPN as specified by the elements and the execution rules above determines the generation
of a stochastic process up to the moment in time that the number of transition firings reaches
infinity. This stochastic processis, at each time instant, composed of the ordered colours of all
tokens existing in the DCPN, organised in one column vector. The precise ordering of these
individual colours within the vector is described as part of the formal definition of DCPN in
Appendix A.

Note that three DCPN elements are associated with drawing samples from probability
distributions. These elements are the Delay function, the Guard function and the Firing
function. In practice, a sample from a general probability distribution is drawn by first drawing
asample from a uniform distribution on the unit interval and then by transforming this uniform
sample into a sample from the target distribution. Appendix A explains precisely how these
uniform random variables are used during DCPN execution.
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3 Piecewise Deter ministic M ar kov Processes

PDP brief explanation
A Piecewise Deterministic Markov Process {¢;}, with & = (0;, =), is defined as follows (see
Davis (1993)): For each ¢ in its countable domain K, let £, be an open subset® of R4,
where d isafunction that maps K into IV. For each 6 € K, consider the ordinary differential
equation &, = gy(;), where g, : IR*? — IR¥ isalocally Lipschitz continuous function.
Given aninitia value x € Ej, thisdifferential equation has a unique solution given by the flow
¢o,.- Thismeansthat if at sometime instant ~ the PDP state assumesvalue ¢, = (6., z,), then,
aslong as no jumps occur, the PDP state at ¢ > 7 isgivenby & = (6, z:) = (0r, ¢o, o, (t — T)).
At some moment in time, however, the PDP state value may jump. Such moment is generated
by either one of the following events, depending on which event occurs first:

1. A Poisson point process with jump rate A(6;, x;), t > T generates a point.

2. The piecewise continuous process x; is about to hit the boundary 0Fy_ of Fy_,t > 7.

At the moment when either of these events occurs, the PDP state makes a jump. The value of
the PDP state right after the jump is generated by using atransition measure (), which isthe
probability measure of the PDP state after the jump, given the value of the PDP state
immediately before the jump. After this, the PDP state ¢, evolvesin asimilar way from the
new value onwards.

PDP execution

The PDP process is generated through time as follows: Suppose at time 7y A 0 the PDP initial
stateis &y = (6o, o), then, if no jumps occur, the process state at ¢ > 7, is given by

& = (0, x¢) = (0o, o,z (t — T0)). The complementary distribution function for the time of
thefirst jump (i.e. the probability that the first jump occurs at least ¢ — 7, time units after 7y),
also named the survivor function of the first jump, is then given by:

t
GfO (t - To)é]-(t—T0<t*(907$0)) ’ eXp {_/ )\(907 ¢90,x0 (S - TO))dS} ) (1)

0

where I isan indicator function and ¢.(6,, x) denotes the time until the first boundary hit after
t = 7o, Whichisgiven by ¢, (6, z9) A inf{t — 79 > 0 | dgy .z (t — 70) € OFy, }. Thefirst factor
in (1) isexplained by the boundary hitting process: after the process state has hit the boundary,
whichiswhent — 7y = t.(6o, o), thisfirst factor ensures that the survivor function evaluates
to zero. The second factor in (1) comes from the Poisson process: this second factor ensures

INote that Davis writes Ey = Ej U 9, EJ, with EJ an open subset of R4?), and 9, E those points on the
boundary of Ej from which EJ can be reached (by the flow ¢), but which cannot be reached from the interior of
EY.
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that ajump is generated after an exponentially distributed time with arate A that is dependent
on the PDP state.

Thetime 7; until the first jump after 7, is generated by drawing asample from G, (-). In
practice, a sample from a general distribution is generated by first drawing a sample from a
uniform distribution on [0, 1], and then using a transformation (based on the inverse of this
general distribution). More formally (see Davis, 1993, Section 23), the Hilbert cube

Q =TI, Y;, with Y; acopy of Y = [0, 1], provides the canonical space for a countable
sequence of independent random variables Uy, Us, ..., each having uniform [0, 1] distribution,
defined by U;(w) = w; for elementsw = (wy,ws, ...) € Q2. Now, define

inf{t : G, (t — 70) < u}
+o0 if the above set is empty

wl (uv gO) = {

and define o (w) = 7 (w) = Y1 (Ur(w), &), then 7 isthe time until the first jump.

The value of the hybrid process state to which the jump is made is generated by using the
transition measure (), which is the probability measure of the hybrid state after the jump, given
the value of the hybrid state immediately before the jump. The Hilbert cube from above is
againused: Let ¢ : [0,1] x (FUTI™) — E,with E = Uy Ej, and I'* the reachable boundary of
E, be ameasurable function such that I{u : ¥»(u, &) € B} = Q(B, ) for B Borel measurable.
Then &, = ,(Uz(w), €) isasamplefrom Q(-, ).

With this, the algorithm to determine a sample path for the hybrid state process &;, ¢t > 0, from
theinitial state §, = (6, zo) on, isin two iterative steps, define 7y A 0 and let for & = 0,
& = (07, x5, ) betheinitia state, thenfor k = 1,2, .. .

Step 1. Draw a sample o4, from survivor function Ge,, | (), 1. 0k = Y1 (Uzp—1(w), &1 ,)-
Then the time 7, of the kth jumpis 7, = 7,_; + o}. The sample path up to the kth jump is
given by

&= (0., ¢97—k71,z7—k71(t — Th—1)), Th-1 <t <7 and 7, < oo.

Step 2: Draw amulti-dimensional sample ¢, from transition measure Q(-; €, ), where &), =

(Orers Por, ey (Th = Th1))s 1.8 G = Pa(Uai(w), &7, )- Then, if 7, < oo, the process state at
the time 7, of the kth jump is given by

57’1@ - <k
PDP conditions

Following Section 24.8 of Davis (1993), the PDP conditions are:

May 30, 2005 | ST-2001-32460 (HY BRIDGE) Page 11
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i

Cs

ge isalocaly Lipschitz continuous function, which, for each initia state (¢, z),
determines aflow ¢y, (-). If to (0, ) denotes the explosion time of the flow ¢y .(-), i.e.
|0o.(t)] — o0 ast T te(f, z), thenitisassumed that ¢, (¢, x) = co whenever

t.(6,x) = oo. In other words, explosions are ruled out.

With £ = UgFEy, A : E — IR" isameasurable function such that for all £ € E, thereis
€(§) > 0 suchthat t — A\(6, ¢y .(t)) isintegrable on [0, e(£)].

With F as above and ['* the reachable boundary of F, () maps E U I'* into the set of
probability measureson (£, £), with £ the Borel-measurable subsets of £, while for
eachfixed A € £,themap £ — Q(A; &) ismeasurableand Q({¢};€) = 0.

If N, = Y"1 L), thenit is assumed that for every starting point £ and for all ¢t € IR,
IEN; < co. Thismeans, there will be afinite number of jumpsin finite time.
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4 Into-mappings between DCPN and PDP and between SDCPN and
GSHP

An important property of DCPN isthat they have similar modelling power as Piecewise
Deterministic Markov processes (PDPs). Thisis made explicit by the two theorems below.

Theorem 1:

For any arbitrary Piecewise Deterministic Markov Process with afinite domain K there exists
P-almost surely a pathwise equivalent process generated by a Dynamically Coloured Petri Net
(P, T,A,N,S,C,Z,V,G, D, F) satisfying R, through R,.

Proof: See Appendix B.

Theorem 2

For each stochastic process generated by a Dynamically Coloured Petri Net (P, 7, A, N, S,
C,7,V,G, D, F) saisfying R, through R, there exists a unique probabilistically equivalent
Piecewise Deterministic Markov Process if the following conditions are satisfied:

D; Thereare no explosions, i.e. the time at which atoken colour equals +oo or —oo
approaches infinity whenever the time until the first guard transition enabling moment
approaches infinity.

D, After atransition firing (or after a sequence of firings that occur at the same time instant)
at least one place must contain a different number of tokens, or the colour of at least one
token must have jumped

D3 Inafinitetimeinterval, each transition is expected to fire a finite number of times.

D, Theinitia marking is such, that no immediate transition isimmediately enabled.

Proof: See Appendix C.

In Bujorianu et al. (2003) it has been shown how a PDP is extended to a Generalised
Stochastic Hybrid Process (GSHP) by allowing the inclusion of a Brownian motion term to the
ordinary differential equation that describes the evolution of the continuous process z;. In
Blom et al. (2003) it has been shown that for GSHP the ordinary Markov property and the
pathwise existence and uniqueness is well understood. In order to have a Petri Net counterpart
of GSHP we alow Brownian motion terms to the place specific colour functions V. To the
resulting PN we refer as a Stochastically and Dynamically Coloured Petri Net (SDCPN). The
implication is that the mappings between SDCPN and GSHP can be constructed in asimilar
way as those between DCPN and PDP.

May 30, 2005 |ST-2001-32460 (HY BRIDGE) Page 13
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5 Example DCPN and example PDP

This section gives an example DCPN model and an example PDP model of the evolution of an
aircraft in one sector of airspace. However, first, we will explain how a DCPN that models a
complex operation is generally constructed in severa iterations.

5.1 DCPN construction and verification

A DCPN modelling a particular operation can be constructed, for example, by first identifying
the discrete state space, represented by the places, the transitions and arcs, and next adding the
continuous-time-based elements one by one, similar as what one would expect when
modelling a PDP for such operation. However, in case of avery complex operation, with many
entities that interact such as occur in air traffic, it is generally more desirable and constructive
to do the DCPN modelling in severa iterations, for example in athree-phased approach:

1. Inthefirst phase, each operation entity or agent (for example, a pilot, a navigation
system, an aircraft) is modelled separately by one local DCPN. Each such entity model
isnamed aLocal Petri Net (LPN).

2. Inthe second phase, the interactions between these entities are modelled, connecting the
LPNs.

3. Inthethird phase, one verifies at local and global levels whether al elements of the
operation have been properly modelled. If there are el ements or interactions missing, a
new iteration is started. In this phase, one aso checks whether the conditions D, — D,
under which amapping to PDP is guaranteed have been fulfilled.

The advantage of such phased approach is that the LPNs can be verified separately by
respective experts, without them bothering about interactionsin first instance. For example, an
LPN model for anavigation system can be verified by anavigational system expert; an LPN
model for a pilot can be verified by a human factors expert.

5.2 Air traffic operations example
This subsection presents a very simplified representation of the evolution of an aircraft in one
sector of airspace. The next subsection presents a DCPN model for this example.

Assume the deviation of this aircraft from its intended path depends on the operationality of
two of itsaircraft systems: the engine system, and the navigation system. Each of these aircraft
systems can be in one of two modes. Working (functioning properly) or Not working
(operating in some failure mode). Both systems switch between their modes independently
and on exponentially distributed times, with rates d; (engine repaired), 6, (engine fails), 5
(navigation repaired) and d¢ (navigation fails), respectively. The operationality of these
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systems has the following effect on the aircraft path: if both systems are Working, the rate of
change of the position and velocity of the aircraft is given by function V; (i.e. if z, isavector
containing this position and velocity then z, = V,(z;)). If either one, or both, of the systemsis
Not working, the rate of change of the position and velocity of the aircraft is given by V.
Initially, the aircraft has a particular position x, and velocity v, while both its systems are
Working. The evaluation of this process may be stopped when the aircraft position crosses the
boundary 0G to a neighbouring airspace sector.

5.3 DCPN model for theair traffic operations example

This subsection gives a DCPN instantiation that models the air traffic operation of the previous
subsection. In order to illustrate the three-phased approach of Subsection 5.1, we first give the
Local Petri Net graphs that have been identified in the first phase of the modelling. The air
traffic entities identified are: Aircraft evolution, Navigation system, and Engine system. This
gives usthree LPNs. The resulting graphs are given in the figure below.

Evolution Engine Navigation

P ()

17

Fig. 3 Local Petri Net graphs for the aircraft operations example. Place P; models Evolution Nominal,

P, models Evolution Non-nominal, P; models Engine system Not working, P, models Engine
system Working, P5 models Navigation system Not working, Fs models Navigation system

Working.

The interactions between the Engine and Navigation LPN and the Evolution LPN (i.e.
execution of the second phase of DCPN instantiation) are modelled by coupling the LPNs by
additional arcs (and, if necessary, additional places or transitions). Here, removal of atoken
from one LPN by atransition of another LPN is prevented by using enabling arcs instead of
ordinary arcsfor the interactions. The resulting graph is presented below. Notice that transition
T, isreplaced by two transitions 77, and Ty,

The graph above completely defines DCPN elements P, 7, A and NV, where 7 = {T7, T},
Tp ={15,T4,T5,Ts} and T; = {T1,, Ths, T2 }. The other DCPN elements are specified below.
S: One colour type isdefined; S = {IR°}.
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Fig. 4 Local Petri Net graphs integrated into one graph.

C: C(P,) = C(P,) = C(P;) = IRS. Thefirst three colour components model the
longitudinal, lateral and vertical position of the aircraft, the last three components model
the corresponding velocities. For places P; through Ps, no colour type needs to be
defined (one might define adummy colour type for these places, but thisis not pursued
further).

Z: Place P initialy has atoken with colour zy = (g, vo) € IRS. Places P, and P initialy
each have atoken with no colour (or adummy colour).

V: The token colour functions for places P, P, and P; aredefined by Vp, = Vi, Vp, = Vs
and Vp. = 0. For places P; — Py the token colour function is not defined (one could
define a dummy function).

G: Transitions Ty and T have aguard that is defined by 0Gr, = 0Gr, = 0G x IR3.

D: The jump rates for transitions T, Ty, Ts and Ts are d1, () = 93, o1,(+) = d4, 073 (+) = 05
and o7, (-) = dg, respectively.

JF: Each transition has a unique output place, to which it fires atoken with a colour (if
applicable) equal to the colour of the token removed, i.e. for al 7', Fr(1,+;-) = 1.

Asan illustration of the third phase of the DCPN instantiation devel opment process, we check
whether the conditions D; — D, have been fulfilled.
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D; (i.e. there are no explosions: the time at which atoken colour equals +oo or —oo
approaches infinity whenever the time until the first guard transition enabling moment
approachesinfinity) isfulfilled: Since the aircraft will always leave the sector within
finite time, the first guard transition will always fire within afinite time.

D, (i.e. after atrangition firing or after a sequence of firings that occur at the same time
instant at least one place must contain a different number of tokens, or the colour of at
least one token must have jJumped) is also fulfilled since after each transition firing,
tokens are consumed and produced for other places.

Ds (i.e. inafinitetimeinterval, each transition is expected to fire a finite number of times) is
also fulfilled, since there are no loops connecting transitions directly back to themselves.

D, (i.e. theinitial marking is such, that no immediate transition isimmediately enabled) is
aso fulfilled. The set of immediate transitionsis 7; = {7114, T1p, T2} T1. 1S enabled by
tokensin places P, and Ps, T, is enabled by tokensin places P, and Ps,T5 is enabled by
tokensin places P,, P, and P;. Sinceinitially, only places P;, P, and P contain atoken,
none of these immediate transitions isimmediately enabled.

Note that for more complex DCPN, the checking of these conditions will occur in two phases:
first, the conditions are checked for each Local Petri Net separately; next, the interactions are
checked.

5.4 PDP for theair traffic operations example

This section presents a PDP that describes the same process as modelled by a DCPN in the
previous subsection, i.e. the path of an aircraft influenced by its engine and its navigation
system.

For this example, the PDP mode process {6;} has three components. 6; = (6}, 62, 63)’, where:

6} isthe Engine system mode, taking valuesin {Working, Not working}.
6? isthe Navigation system mode, taking valuesin {Wobrking, Not working}.
63 isthe Aircraft mission mode, taking valuesin {Not completed, Completed}.

Thisyields that the set K has 23 = 8 elementsm, . . ., mg with:

my=(Working,Working,Not completed)
mo=(Not working,Working,Not compl eted)
ms=(Not working,Not working,Not completed)
my=(Working,Not working,Not compl eted)
ms=(Working,Working,Compl eted)
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meg=(Not working,Wor king,Compl eted)
m7=(Not working,Not working,Compl eted)
mg=(Working,Not wor king,Completed).

Task 2.4/ Deliverable D2.4

Theinitial mode equals 6y = my. For 6 € {my, ma, m3, my}, 0Ey = OG x IR*, while for
6 € {ms, mg, m7,ms}, Ey equals IRS. The piecewise continuous process part {z;} hastwo
components: z; = (x4, v)’, with z, the position and v, the velocity of the aircraft. The first

table below gives, for each § € K, thelocally Lipschitz continuous function gy(-) and the jump

rates A of the Poisson point process. In the second table below, Q((; &) = p denotesthat if £ is
the value of the PDP before the hybrid jump, then, with probability p, ¢ isthe value of the PDP

immediately after the jJump.

Table I: Example PDP components gy (-) and A as a function of 0

0 go(-) A
my Vi() 4+ 9
me Va(:) 83+ dg
mg  Vao() 03+ 05
my  Vo(1) 04+ 05
ms 0 04 + g
me 0 03 + d¢
my 0 03 + 05
ms 0 04 + 05

Table |1: Example PDP component ()
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. 5 5
For z ¢ OE,,: Q(ma, zimu, 2) = 5245, Q(ma, zma, 2) = 5205
For z € OF,,,: Q(ms,z;mq, 2) = 1.
. 5 5
For z ¢ OF,,,: Q(ms, z;ms, z) = St Q(my, z;me, 2) = St
For z € OF,,,: Q(mg, z;me, z) =1
For z ¢ OF,,,: Q(my, z;mg, z) = S Q(mse, z;ms, z) = 6364?65
For z € OF,,,: Q(m7,z;mg, z) = 1.
For z ¢ OF,,,: Q(ms,z;my, z) = 54‘3;*6 ,Q(my, z;my, 2) = 64(if65
For z € OF,,,: Q(ms, z;my, z) = 1.
5 5
For all z, Q(mg, z;ms, 2) = m Q(ms, z;ms, 2) = 525
. 5
For all z, Q(mz, z;me, 2) = 53+66 Q(ms, z;mg, 2) = 755
. _ 3
Foral z, Q(ms, z;mz, 2) = §3+5 , Q(mg, z;mp, 2) = S5
Foral z, Q(mz, z;msg, 2) = 54+55 Q(ms, z;mg, z) = 54(22555

Task 2.4/ Deliverable D2.4

Since the PDP is of purely mathematical nature, it isless simple to comprehend and verify by
non-mathematicians than the DCPN representing the same system in the previous subsection.
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6 Extended power-hierarchy of dependability models

In order to allow drawing the extended power-hierarchy, it remains to be shown that DCPN
have more modelling power than the DSPN (Deterministic and Stochastic Petri Nets) at the top
of the Muppala et al. (2000) based power hierarchy of Figure 1.

The existence of an arrow from DSPN to DCPN can be shown as follows: GSPN (Generalised
Stochastic Petri Nets) are generalisations of Stochastic Petri Nets allowing transitions to have
either zero firing times (immediate transitions) or exponentially distributed firing times (timed
transitions). Immediate transitions which can be simultaneously enabled must have
probabilities assigned. For timed transitions, the decision as to which transition fires next is
decided by race; the transition with the minimal delay prior to firing will fire next. Firing of
immediate transitions has priority over firing of timed transitions. Other extensions include
inhibitor arcs.

A DSPN isa GSPN in which the firing delays of timed transitions may be either constant or
exponential. Through the equivalence of GSPN and CTMC (Continuous Time Markov Chain)
it can be easily shown that any GSPN can be written as a DCPN: Such DCPN will have
constant exponential delay rates and constant colours. The extension to DSPN can also be
covered by a DCPN: For each DSPN transition with a constant firing time, create a DCPN
transition with a guard function that evaluates to True when the input token colour equals the
DSPN transition’s constant firing time plus the colour of the input token at the time the
transition is pre-enabled. Thisinput token colour has a token colour function equal to +1, and
aninitial colour equal to zero.

Together with the findings of Section 4 we get the power hierarchy of Figure 5.
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Fig. 5 Power hierarchy among various model types. An arrow from a model to another model indicates

that the second model has more modelling power than the first model. Arrows labelled by [M]

have been explained by (Malhotra and Trivedi, 1994) and (Muppala €t al., 2000). The arrow

from DSPN to DCPN is established in this Section (and is labelled by §6). The arrow labelled by

[D] is established by Davis (1984). The arrow from PDP to GSHP, labelled by [B], was shown in

Bujorianu et al. (2003). The arrows between DCPN and PDP and between SDCPN and GSHP

(labelled by §4) are established in Section 4.
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7 Conclusions

This paper extended the power hierarchy of dependability models developed by Malhotra and
Trivedi (1994) and Muppala et al. (2000) to include Piecewise Deterministic Markov
Processes (PDP), Generalised Stochastic Hybrid Processes (GSHP), Dynamically Coloured
Petri Nets (DCPN) and Stochastically and Dynamically Coloured Petri Net (SDCPN). The
report explained the existence of into-mappings between PDP and DCPN and between GSHP
and SDCPN, yielding that they have similar modelling power, and has shown that DCPN have
more modelling power than Deterministic and Stochastic Petri Nets (DSPN).

PDPs are known as the largest class of continuous-time Markov processes not involving
diffusions. Dynamically Coloured Petri Nets are defined to make ample use of these PDP
properties and have shown to be very useful in developing PDP models for complex practical
problems. This usefulness has been explicitly used for accident risk assessment modelling
application to Air Traffic Management (e.g. Blom et al., 2001).
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Appendices

A Formal definition of Dynamically Coloured Petri Nets

This appendix presents aformal definition of Dynamically Coloured Petri Net. As much as
possible, the notation introduced by Jensen (1992) for Coloured Petri Net is used.

Definition:

A Dynamically Coloured Petri Net (DCPN) isan 11-tuple DCPN= (P, 7, A, N, S,C, V, G,
D, F,I), together with some rules. Below, first the structure of the componentsin the tupleis
given, next the DCPN evolution through time is explained, finally, the DCPN generated
processis outlined.

DCPN elements:

1. Pisafinite set of places.

2. T isafinite set of transitions, such that 7 NP = (). The set 7 consists of 1) a set 7 of
guard transitions, 2) aset 7, of delay transitions and 3) a set 7; of immediate
transitions, with7 = 7o UTp U T, and 7o NTp = Tp NT; = T N T = 0.

3. Aisafiniteset of arcssuchthat ANP = AN7 = (). Theset A consistsof 1) aset Ap
of ordinary arcs, 2) aset Az of enabling arcs and 3) aset .A; of inhibitor arcs, with
A=AoUAgUA,and Ao NAg =ApNAr = AN Ao =0.

4. N : A— P x T UT x P isanode function which maps each arc A in A to apair of
ordered nodes A/ (A). The place of N'(A) isdenoted by P(A), thetransition of N'(A) is
denoted by T'(A), such that forall A € Ap U A;: N(A) = (P(A), T(A)) and for all
A€ Ap: either N(A) = (P(A),T(A)) or N(A) = (T(A), P(A)). Further notation:

o A(T)={A e A|T(A) =T} denotesthe set of arcs connected to transition 7',
with A(T) = A (T) U Apue(T'), where
o A, (T)={A € A(T) | N(A) = (P(A),T)} isthe set of input arcs of 7" and
o Apu(T)={A € A(T) | N(A) = (T,P(A))} isthe set of output arcsof 7.
Moreover,
o A, o(T)=A;(T)N Ap isthe set of ordinary input arcs of 7,
o Aior(T)=A,(T)N{AgUAp} isthe set of input arcs of 1" that are either
ordinary or enabling, and
e P(A(T)) isthe set of places connected to 7" by the set of arcs A(T)).
Finaly, {A; € A; |3A € A A # A, : N(A) = N(A)} = 0,i.e,if aninhibitor arc
points from a place P to atransition 7', there is no other arc from P to T
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5. Sisafinite set of colour types. Each colour typeisto be written in the form IR™, with n
anatural number.

6. C : P — S isacolour function which maps each place P € P to a specific colour type
inS.

7. Z:P — C(P)ns isaninitialisation function, where C(P),,,s for P € P denotes the set
of all multisets over C(P). It definestheinitial marking of the net, i.e., for each placeit
specifies the number of tokens (possibly zero) initially in it, together with the colours
they have, and their ordering per place.

8. V isset of atoken colour functions. For each place P € P it contains alocally Lipschitz
continuous function Vp : C(P) — C(P).

9. Gisaset of transition guards. For each T' € 7, it contains a transition guard G :
C(P(Aim.or(T))) — {True, Fase}. Gr(c:) evaluates to True when ¢; enters 9Gr for the
first time, where G is an open subset in C(P (A, 0r(T))).

Here, if P(A;,0r(T")) contains more than one place, e.g.,
P(Ajmor(T))=A{P, ..., P;j},thenC(P(Ainor(T))) isdefined by C(P;) x - - - x C(F;).
10. D isaset of transition delays. For each T € 7p, it contains atransition delay D7 :
C(P(Ainor(T))) — IR, which, if evaluated from stopping time 7 on, follows
Dr(e,) = inf{t | e~ 257 < 4} where dp : C(P(Amon(T))) — R isintegrable
and v isarandom number drawn from U[0, 1] at 7.
11. Fisaset of firing measures. For each T" € 7T it specifies a probability measure Fr
which maps C(P(Ain.or(T))) into the set of probability measures on
{0, 1}l 5 C(P(Apun(T))).

DCPN execution:

The execution of aDCPN provides a series of increasing stopping times, 7o < 7; < 7,41, With
fort € (1, ;41) afixed number of tokens per place and per token a colour which isthe
solution of an ordinary differential equation. This number of tokens and the colours of these
tokens are generated as follows:

Each token residing in place P has a colour of type C(P). If atokenin place P has colour ¢ at
time 7, and if it remains in that place up totime¢ > 7, then the colour ¢, at time ¢ equalsthe
unique solution of the differential equation ¢; = Vp(c;) withinitial condition ¢, = c.

A transition 7" is pre-enabled if it has at least one token per incoming ordinary and enabling arc
in each of itsinput places and has no token in places to which it is connected by an inhibitor
pre

arc; denote 71" = inf{t | T"is pre-enabled at time ¢}. Consider one token per ordinary and
enabling arc in theinput places of 7" and write ¢; € C(P(Ain.0r(T))), t > 1, asthe column
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vector containing the colours of these tokens; ¢; may change through time according to its
corresponding token colour functions. If this vector is not unique (for example, one input place
contains several tokens per arc), all possible such vectors are executed in parallel.

A transition T" is enabled if it is pre-enabled and a second condition holds true. For T' € 7;, the
second condition automatically holds true. For T' € 7, the second condition holds true when
Gr(c;) = True. For T' € 77, the second condition holds true Dr(c¢;) units after 77", Guard or
delay evaluation of atransition I" stops when 7" is not pre-enabled anymore, and is restarted

whenitis.

For the evaluation of Gr(¢;) and Dr(c;), useis made of aHilbert cube 2 = 12, V;, withY; a
copy of Y = [0, 1], which provides the canonical space for a countable sequence of
independent random variables Uy, Uy, ..., each having auniform [0, 1] distribution, defined by
Ui(w) = w; for elementsw = (wy, ws, .. .) € €. ThisHilbert cube is used as follows. Suppose
T isatrangition that is pre-enabled at time 7 and has vector of input colours¢; at timet > r,
withe, = c.

e If T"isadelay transition then consider the survivor function

HPr(t —7) A exp {— It 5T(cs)ds} and define the function 7 (u, c) by

Ui (u,0) &

inf{t : HP7(t — 7) < u}
+oo if the above set is empty

then transition 7" is enabled at time ¢ (Uy (w), ¢).

e If T isaguard transition then consider the survivor function H97 (t — 7) A Iy—r<i.())»
where I isan indicator function and ¢, (c) denotes the time until the first boundary hit
after t = 7, whichisgiven by ¢, (c) A inf{t — 7 > 0|c; € 0G7}. Next, define the
function /7 (u, ) by

Vi (u,0) &

inf{t : HI7(t — 1) < u}
+o0 if the above set is empty

then transition 7' is enabled at time ¢ (Uy (w), ¢).

In case of ambiguities, the following rules apply:
Ry Thefiring of an immediate transition has priority over the firing of aguard or adelay
transition.
Ry If one transition becomes enabled by two or more digjoint sets of input tokens at exactly
the same time, then it will fire these sets of tokens independently, at the same time.
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Rs If onetransition becomes enabled by two or more non-digoint sets of input tokens at
exactly the same time, then the set that isfired is selected randomly.

R3 If two or more transitions become enabled at exactly the same time by digjoint sets of
input tokens, then they will fire at the same time.

R, If two or more transitions become enabled at exactly the same time by non-digjoint sets
of input tokens, then the transition that will fire is selected randomly.

Here, two sets of input tokens are digoint if they have no tokens in common that are reserved
by ordinary arcs, i.e., they may have tokens in common that are reserved by enabling arcs.

If 7" is enabled, suppose this occurs at time 74, it removes one token per arcin A;, o(T") from
each of itsinput places. At thistime 7, T produces zero or one token along each output arc: If
¢, isthe vector of colours of tokens that enabled 7" and (f, a., ) isasample from Fr(-; ¢, ),
then vector f specifies along which of the output arcs of 7" atoken is produced (f holds aone
at the corresponding vector components and a zero at the arcs aong which no token is
produced) and a., specifiesthe colours of the produced tokens. The colours of the new tokens
have sample paths that start at time 7.

For drawing the sample from Fr(+; ¢, ), use is again made of the Hilbert cube 2: Let

YT 10,1) x C(P(Ain.or(T))) — {0, 1}Aex@l x C(P(A,,(T))) be ameasurable function
such that [{u : ¢ (u,c) € B} = Fr(B,c) for B inthe Borel set of

{0, 1} Aot x C(P(Auu(T))). Then asample from Fr(+; ¢, ) isgiven by 91 (Us(w), c., ), if
¢, Isthe vector of input colours that enabled 7'.

In order to keep track of the identity of individual tokens, the tokens in a place are ordered
according to the time at which they entered the place, or, if severa tokens are produced for one
place at the same time, according to the order within the set of arcs A = {A,, ..., A4} dong
which these tokens were produced (the firing function produces zero or one token along each
output arc).

DCPN stochastic process.
The DCPN generates a stochastic process which is uniquely defined as follows. The process
state at time ¢ is defined by the numbers of tokens in each place, and the colours of these
tokens. Provided there is a unique ordering of DCPN places, and a unique ordering of tokens
within a place, this characterisation is unigue, except at time instants when one or more
transitions fire. To make this characterisation of DCPN process state unigue, it is defined as
follows:

e At timest when no transition fires, the number of tokens in each place is uniquely
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characterised by the vector (vyy, ..., vp|,) Of length |P|, where v; , denotes the number
of tokensin place P; at timet and {1, ..., |P|} refersto aunique ordering of places
adopted for DCPN. At time instants when one or more transitions fire, uniqueness of
(V1,4 - -, vp),) IS assured as follows: Suppose that 7 is such time instant at which one
transition or a sequence of transitions fires. Next, assume without loss of generality, that
this sequence of transitionsis {73, 75, . .., T, } and that time is running again after 7,
(note that 77 must be a guard or adelay transition, and 75 through 7;,, must be

immediate transitions). Then the number of tokens in each place at time ¢ is defined as
that vector (v 4, ..., vpp|) that occurs after 7T, hasfired. This construction also ensures
that the process (vyg, . . ., vip|,) haslimits from the left and is continuous from the right,
i.e., it satisfies the cadlag property.

o If (viy,...,vp),) isthedistribution of the tokens among the places of the DCPN at time
t, which is uniquely defined above, then the associated colours of these tokens are
uniquely gathered in avector as follows: This vector first contains al colours of tokens
in place P, next all colours of tokensin place P, etc, until place Pp|, where
{1,...,|P|} refersto aunique ordering of places adopted for DCPN. Within a place the
colours of the tokens are ordered according to the unique ordering of tokens within their
place defined for DCPN (see under DCPN execution above). Since (vig, ..., vip|,¢)
satisfies the cadlag property, the corresponding vector of token colours doestoo. An
additional case occurs, however, when (v, . .., vjp|) jumps to the same value again, so
that only the process associated with the vector of token colours makes ajump at time 7.
In that case, |et the process associated with the vector of token colours be defined
according to the timing construction as described for (v, . .., vp|.) aove (i.e. at time
7, the process associated with the vector of token coloursis defined as that vector of
token colours that occurs after the last transition has fired in the sequence of transitions
that fire at time 7).

With this, the DCPN definition is complete.
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B Proof of Theorem 1

This appendix shows that for an arbitrary Piecewise Deterministic Markov Process there exists
aDynamically Coloured Petri Net, the execution of which generates a stochastic process
indistinguishable from the PDP, by providing an appropriate into-mapping from PDP into the
set of DCPNs. Notice that we do not claim the into-mapping to be unique; there may be other
DCPN instantiations describing the same PDP.

Consider an arbitrary PDP {z,, 8, } described by the PDP elements {K, d(0), x¢, 8y, OEs, gs,
A QF.

First, the DCPN elements{P, 7, A, N, S,C,Z,V, G, D, F} and therules Ry — R, are

characterised in terms of the PDP elements {K, d(6), o, 0o, OEy, g9, A, Q} asfollows:

P ={Py;0 € K}.

T =TgUTpUT,withT; = 0,75 = {I7;0 € K}, Tp = {T,°;0 € K}.

A = Ao UAg U A, with |Af| =0, |Ag| =0, and | Ap| = 2|K]| + 2|K 2.

N The node function maps each arcin A = A, to apair of nodes. These connected pairs of
nodesare: { (P, T¢);0 € Ky U {(Py, TP);0 € K}u
(T, Py);0,9 € KYU (TP, Py); 0,9 € K}.

= {RY9;0 € K}.

Foral € K,C(P)) = RV,

Place P, contains one token with colour z,. All other placesinitially contain zero tokens.

Foral 6 € K, Vp,(-) = go(-).

Forall 0 € K, 0Grc = OEy.

Foral § € K, d;0() = A(6, ).

If = denotes the colour of the token removed from place £, (6 € K), at the transition
firing, thenfor al v € K, 2’ € Ey: fTec(e’,x';x) = Q¥ 2';0,z), where ¢’ isthe
vector of length |K| containing a one at the component corresponding with arc (T, Py)
and zeros elsewhere. For all 0 € K, Frp = Fro.

Ry — R,: Sincethere are no immediate transitions in the constructed DCPN instantiation, rule

MYOe X RSO

Ry holds true. Since thereis only one token in the constructed DCPN instantiation, R; —
R3 also hold true. Rule R, isin effect when for particular ¢, transitions 7 and 7,7
become enabled at exactly the same time. Since ) isintegrable, the probability that this
occursis zero, yielding that R, holds with probability one. However, if this event should
occur, then due to the fact that the firing measures for the guard transition and the delay
transition are equal, rule R, holdstrue.
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This shows that for any PDP we are able to construct a DCPN instantiation. Next, we have to
show that the DCPN execution delivers the ‘same’ cadlag stochastic process as the PDP
process.

In the DCPN instantiation constructed only one token resides. The possible places for this
token are { Py; ¥ € K}. Figure 6 shows the situation at some time 7;,_;, when the PDP is given
= 9J,;. Thistoken has
colour =, _,. The colour of the token up to and at the time of the next jump is determined in

by (6,,_,, 2., _,). Thetoken residesin place Py,, which models that 6

Tk—1

two steps:

Fig. 6 Part of a Dynamically Coloured Petri Net representing a Piecewise Deterministic Markov

Process.

Step 1: Whilethetokenisresiding in place Py, , its colour x; changes according to the flow
Piry 1.8, ¥ = ¢, ar, (t — mx—1). Transitions ng and Téz? are both pre-enabled and
compete for this token which resides in their common input place P,. Transition 7
models the boundary hitting generating a mode switch, while transition 7.; models the
Poisson process generating amode switch. Thetransition that is enabled first, determines
the kind of switch occurring. The time at which this happensis denoted by 7.

Step 2: Next, with one of the transitions enabled, its firing measure is evaluated. Thisfiring
measure is such, that if a sample (. from transition measure
Qv b9, s, (Tx — Tk—1)), would appear to be (;, = (v, =), then the enabled
transition would produce one token with colour z,, = z for place Py,. The other places
get no token.

After this, the process starts again in the same way from the new state on.

Pathwise equivalence of PDP and DCPN processes
With this construction, the PDP and DCPN processes generate the same sequence of stopping
times. For pathwise equivalence from stopping time to stopping time both processes need to
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use the same countabl e sequence of independent random variables Uy, Us, ..., each having
uniform [0, 1] distribution, defined by U;(w) = w; for elementsw = (wy, ws, . . .) of the Hilbert
cube 2 = [I2, Y;, with Y; acopy of Y = [0, 1], to generate all random variablesin both the
PDP process and the DCPN process. This can be easily accomplished by drawing samples for
the PDP and the associated DCPN at the same times and for the equivalent purposes, i.e.

e Thefirst samplein each cycleis drawn to generate a stopping time associated with the
Poisson point process generating a point, which is equivalent to the time the Delay
function enables atransition;

e The second samplein each cycleis drawn to generate the value of the hybrid state after
the jump, which is equivalent to the place of the token after the transition firing, and its
colour.

Remark

The DCPN instantiation defined above has many places, and only one token. An interesting
problem would be to find another into-mapping, in which the DCPN instantiation has fewer
places and more tokens. Addressing this problem falls outside the scope of this paper.
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C Proof of Theorem 2

Under some conditions, for each Dynamically Coloured Petri Net there exists a
probabilistically equivalent Piecewise Deterministic Markov Process. In this appendix thisis
shown by providing an into-mapping from DCPN into the set of PDPs. Subsequently it is
shown that this mapping is unique.

For an arbitrary DCPN that satisfies conditions D; — D, we first construct a PDP that is
probabilistically equivalent to the DCPN process. As a preparatory step, the given DCPN is
enlarged as follows: for each guard transition and each place from which that guard transition
may be enabled, copy the corresponding places and transitions, including guard and firing
functions, and revise the firing functions of the input transitions to these places, such that the
new firings ensure that the corresponding guards may be reached from one side only. This step

isillustrated with an example:
®

T A@ J@ becomes T!

Fig. 7 Example transformation to model DCPN enlargement

In the picture on the |eft above, transition 7; (which may be of any type) may fire tokens to
place P, while transition 75 is aguard transition that uses these tokens asinput. In this
example, assumethat C(P;) = IR and that G, = 3. This means, transition 75 is enabled if
the colour of the token in place P, reaches value 3. This value may be reached from above or
from below, depending on whether theinitial colour of the tokenin P, islarger or smaller than
3, respectively.

In the picture on theright, place P, and transition 75 have been copied. Transitions 75, and 75,
get the same guard as 15, but transition 77 gets a new firing function with respect to 77: it is
similar to the one of 77, but it delivers atoken to place Py, if the colour of this new token is
smaller than 3, and it delivers atoken to place Py, if its colour islarger than 3. Thisway, the
guard of transition T, is always reached from below, i.e., itsinput colours are smaller than 3.
The guard of transition Ty, is always reached from above, i.e., itsinput colours are larger than
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Let thisenlarged DCPN be described by thetuple (P, 7, A, N, S,C,Z,V, G, D, F) and
satisfy the rules Ry — R4, and assume that the conditions D, — D, are satisfied. In order to
represent this DCPN by aPDP, all PDP elements K, 6,, ;, d(0), &, g9, OFy, A, Q) and the PDP
conditions C; — C, are characterised in terms of this DCPN:

K: Thedomain K for the mode process {6, } can be found from the reachability graph (RG)
of the DCPN graph. The nodesin the RG arevectors V' = (v1, ..., vp|), Where v; equals
the number of tokensin place P, i = 1, ..., |P|, where these places are uniquely
ordered. The RG is constructed from DCPN components P, 7, A, N and Z. Thefirst
node V} is found from Z, which provides the numbers of tokens initially in each of the
placest. From then on, the RG is constructed as follows: If it is possible to movein one
jump from token distribution 1, to, say, either one of distributions V!, ..., V¥ unequal
to Vy, then arrows are drawn from V; to (new) nodes V!, ..., V¥, Eachof V!,... , V¥is
treated in the same way. Each arrow is labelled by the (set of) transition(s) fired at the
jump. If anode V7 can be directly reached from V¢ by different (sets of) transitions
firing, then multiple arrows are drawn from V' to 1/, each labelled by another (set) of
transition(s). Multiple arrows are also drawn if V7 can be directly reached from V# by
firing of one transition, but by different sets of tokens, for example in case this transition
has multiple input tokens per incoming arc in itsinput places. In this case, the multiple
arrows each get thistransition as label.

The nodes in the resulting reachability graph, exclusive the nodes from which an
immediate transition is effective, form the discrete domain K of the PDP. To emphasise
them in the RG picture, these nodes are given in italics. Since the number of placesin
the DCPN isfinite and the number of tokens per place and the number of nodesin the
RG are countable, K is a countable set, which satisfies the PDP conditions.

As an example, consider the following DCPN graph, which initially has two tokensin place P,
and onein Py, suchthat V5 = (2,0,0, 1,0). This vector forms the first node of the reachability

graph.

INotice that K hasto be constructed for all Z by following the proposed procedure such that is applies for each
possible instantiation of the initial token distribution.
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Fig. 8 Example DCPN graph to explain reachability graph

Both 77 and T3 are pre-enabled. They both have two tokens per incoming arc in their input place,
hence for both transitions, two vectors of input colours are evaluated in parallel. If T; becomes
enabled for one of these input tokens, it removes the corresponding token from P; and produces
atoken for P, (we assume that al firing measures are such, that each transition will fire atoken
when enabled, i.e., (0, -; -) = 0), so the new token distributionis (1, 1,0, 1,0). Therefore, in
the reachability graph two arcs labelled by 77 are drawn from (2,0, 0, 1, 0) to the new node
(1,1,0,1,0); thisduplication of arcs characterises that 77 has evaluated two vectors of input
tokensin parallel. It may also happen that from (2,0, 0, 1, 0), the guard transition 77 is enabled
by its two input tokens at exactly the same time. Due to Rule R; it then fires these two tokens at
exactly the same time, resulting in node (0, 2,0, 1,0). Therefore, an additional arc labelled

Ty + T3 isdrawn from (2,0, 0, 1,0) to (0, 2,0, 1,0). If, from (2,0,0, 1,0), transition 75 fires
before 77 does, the token distribution becomes (1,0, 1, 1, 0). Subsequently, the immediate
transition 77 is enabled; itsfiring leadsto (1,0, 1,0, 1). Since (1,0, 1, 1,0) enables an immediate
transition it isdrawn initalics and is excluded from K. Unlike the case for T}, thereisno arc
drawn from (2,0, 0, 1,0) labelled by 75 + T3, since T3 isa delay transition, hence the probability
that it is enabled by both its input tokens at the same timeis zero.

The resulting reachability graph for this exampleis given in Figure 9. So, for this example,

K = {(2,0,0,1,0),(1,1,0,1,0),(1,0,1,0,1),(0,2,0,1,0),(0,1,1,0,1),(0,0,2,0,1)}.
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(2,0,0,1,0)

—— 1\

T1

(1,1,0,1,0)

T8 (2,0,0,0,1)

T1+T1

(0,2,0,1,0)

Fig. 9 Example reachability graph

d(6): The colour of atokenin aplace P isan element of C(P) = IR™"), therefore
d(0) = 7L 0, x n(P), witho = (6, . . ., 0ip) € K, with {1,...,|P|} referring to the
unique ordering of places adopted for the DCPN.

ge: Forz = Col{z!,... 2P}, with 2* € RO andwith {1,...,|P} referring to the
unique ordering of places adopted for the DCPN, gy is defined by
go(z) = Col{gs(z'),... ,g(‘,m(x“)‘)}, wherefor 2 = Col{z", ..., "%}, with
79 € PP foral j € {1,...,6:}: gi(z') = Col{Vp, (z™),..., Vp (2%)}. Here,
j€{1,...,0;} refersto the unique ordering of tokens within their place defined for

DCPN (see Appendix A). Since, for al P, Vp, islocally Lipschitz continuous, gy is also

locally Lipschitz continuous.

0Fy: Theboundary 0F, of subset Fy is determined from the transition guards corresponding
with the set of transitionsin 7 that, under token distribution 6, are pre-enabled (this set

isuniquely determined). Without loss of generality, suppose this set of transitionsis
Ty,...,T,,. Suppose { P!, ... P"i} aretheinput places of T; that are connected to T
by means of ordinary or enabling arcs. Define d; = >, n(P*), then
OEy = 0G, U...U0G,, ,where G}, =[Gy, x R'~%] ¢ [R%®). Here[] denotesa
special ordering of all vector elements: Vector elements corresponding with tokensin
place P, are ordered before vector elements corresponding with tokensin place P, if
b > a, according to the unique ordering of places adopted for the DCPN; vector
elements corresponding with tokens within one place are ordered according to the
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unique ordering of tokens within their place defined for DCPN (see Appendix A).

A: Thejumprate A(6, -) is determined from the transition delays corresponding with the set of
transitionsin 7, that, under token distribution ¢, are pre-enabled (this set is uniquely
determined). Without loss of generality, suppose this set of transitionsis Ty, ..., T,,.
Then A(6,-) = >, 6r.(+). Thisequality is due to the fact that the combined arrival
process of individual Poisson processesis again Poisson, with an arrival rate equal to the
sum of al individual arrival rates. Since o isintegrablefor al 7' € 7p, A isaso
integrable.

Q: Foreachfd e K,z € Fy, 0 ¢ Kandz' € Eyp, Q(0,2; 60, x) ischaracterised by the
reachability graph, the sets D, G and F and therules Ry — R4. Thereachability graphis
used to determine which transitions are pre-enabled in token distribution ¢; the sets D
and G and therules Ry — R, are used to determine which pre-enabled transitions will
actually fire from state (0, x); and finally, set F is used to determine the probability of
(0', ") being the state after the jJump, given state (0, =) before the jump and the set of
transitions that will fire in the jJump. Because of its complexity, this characterisation is
givenin Appendix D, but an outline is given next:

Main challenge in the characterisation of ) isthe following: In some situations one does
not know for certain which transitions will fire in ajump, even if one knows the state
(0, z) before the jump and knows that ajump will occur from (6, z) to (¢', 2’). Hence, in
these situationsiit is not known with certainty which firing functions one should combine
in order to construct Q(¢', z’; 0, =) from DCPN elements. However, one does know the
following:
e Given ¢, one knows which transitions are pre-enabled; this can be read off the
reachability graph (i.e. gather the labels of all arrows leaving node 6).
e Giventhat § € K, noimmediate transitions are enabled in 6.
e The probability that a guard transition and a delay transition are enabled at exactly
the sametimeis zero.
e The probability that two delay transitions are enabled at exactly the sametimeis
zero.
e Thereisapossibility that two or more guard transitions are enabled at exactly the
sametime. It may even occur (dueto rule R;) that one single guard transition fires
twice at the same time.

Hence, the steps to be followed to construct Q (¢, 2’; 6, x), for any (¢, 2/, 0, x) are:
1. Determine (using the reachability graph) which transitions are pre-enabled in 6.

2. Consider the guard transitions in this set of pre-enabled transitions and determine
which of these are enabled. For atransition 7', thisis done by considering its vector

May 30, 2005 |ST-2001-32460 (HY BRIDGE) Page 37



HYBRIDGE EU IST Programme Task 2.4/ Deliverable D2.4

of input colours (which is part of =) and checking whether this vector has entered
the boundary 0G. If the set of enabled guard transitions is not empty, then use
rules R; — R, to find out which of these transitions will actualy fire with which
probability.

If this set of enabled guard transitions is empty, then one pre-enabled delay
transition must be enabled. Use D to determine for each pre-enabled delay
transition the probability with which it will actually fire.

3. Determine which transition firings can actually lead to discrete process state 6’ in
one jump. This set can be found by identifying in the reachability graph all arrows
directly from node 6 to ¢’ and all directed paths from node ¢ to ¢’ that pass only
nodes that enable immediate transitions (i.e. that pass only nodesin italics).

4. Finaly, Q(¢',2'; 0, z) is constructed from the firing functions, by conditioning on
these arrows and paths from 6 to ¢'.

& = (6o, xo): Thiscan be constructed from Z, the DCPN initial marking, which provides the
places the tokens are initially in and the colours these tokens have. Hence,
0o = (v1,0,---,vp|0), Wherev; o denotes the initial number of tokensin place P;, with
the places ordered according to the unique ordering adopted for DCPN, and z, € IR%4%)
isavector containing the colours of these tokens. Within a place the colours of the
tokens are ordered according to the specification in Z. With this, and due to condition
D, (which prevents different token distributions to be applicable at the initial time), the
constructed &, is uniquely defined.

C4: Thiscondition (no explosions) follows from assumption D; .

Cy: Thiscondition () isintegrable) follows from the fact that 61 isintegrable for all 7" € 7p,.

C3: Thiscondition (QQ measurable and Q({¢}; &) = 0) follows from the assumption that F is
continuous and from assumption D-.

Cy: Thiscondition (IE N, < oo) follows from assumption Ds.

This shows that for any DCPN satisfying conditions D; — D,, we are able to construct unique
PDP elements, and thus a unique PDP.

Finally, we show that the PDP process {6,, x;} is probabilistically equivalent to the process
generated by the DCPN:

With the mapping from DCPN elements into PDP elements, it is easily shown that the PDP
process {0;, z;} is probabilistically equivalent to the process generated by the DCPN
characterised in Appendix A: at each time ¢ the process {6, } is probabilistically equivalent to
the process (vy 4, . . ., vyp)+) and the process {x, } is probabilistically equivalent to the process
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associated with the vector of token colours. Thisis shown by observing that the initial PDP
state (0, ) is probabilistically equivalent to the initial DCPN state through the mapping
constructed above. Moreover, aso by the unique mapping of DCPN elementsinto PDP
elements, at each time instant after the initial time, the PDP state is probabilistically equivalent
to the DCPN state: At timest when no jump occurs, the PDP process evolves according to gy
and the DCPN process evolves according to V. Through the mapping between g, and V
developed above, these evolutions provide probabilistically equivalent processes. At times
when ajump occurs, the PDP process makes a jump generated by ), while the DCPN process
makes ajump generated by F. Through the mapping between  and F developed above, these
jumps provide probabilistically equivalent processes.
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D Characterisation of () in terms of DCPN elements

In this appendix, @ is characterised in terms of DCPN, as part of the characterisation in
Appendix C of PDP in terms of DCPN.

Foreachf € K,z € Ey, 0 € Kand A C Ey, thevalueof Q(0', A; 6, x) isameasure for the
probability that if ajump occurs, and if the value of the PDP just prior to the jumpis (6, ),
then the value of the PDP just after the jumpisin (¢', A). Measure Q(¢', A; 0, z) is
characterised in terms of the DCPN by the reachability graph (RG) (see Appendix C),
elements D, G and Rules Ry — R, and the set 7, asbelow. Thisis donein four steps:
1. Determine which transitions are pre-enabled in (0, x).
2. Determine for each pre-enabled transition the probability with which it isenabled in
(0, z).
3. Determine for each pre-enabled transition whether its firing can possibly lead to discrete
state 0'.
4. Usethe results of the previous two steps and the set of firing functions to characterise Q.

Step 1: Determine which transitionsare pre-enabled in (6, x).

Consider all arrowsin the RG leaving node . These arrows are labelled by names of
transitions which are pre-enabled in ¢, for example T (if T} is pre-enabled in 0), 71 + T3 (if T}
and 75, are both pre-enabled and there is a non-zero probability that they fire at exactly the
same time), etc. Therefore the arrows leaving # may be characterised by these labels. Denote
the multi-set of arrows, characterised by these labels, by By. This set is amulti-set since there
may exist several arrows with the same label (e.g. if one transition is pre-enabled by different
sets of input tokens). We use notation B € By for an element B of By (e.g. B = T} represents
an arrow with 77 aslabel), and notation 7" € B for atransition 7" in label B (e.g. asin
B=T+1T).

Step 2: Determinefor each pre-enabled transition the probability with which it is
enabled in (0, x).
Given that ajump occursin (6, x), the set of transitions that will actually firein (6, z) isnot
empty, and is given by one of the labelsin By. In the following, we determine, for al B € By,
the probability ps(0, z) that all transitionsin label B will fire.
¢ Denote the vector of input colours of transition 7" in a particular label by ¢7.. For a
transition in alabel this vector is unique since we consider transitions with multiple
vectors of input colours separately in the multi-set By.
e Consider themulti-set B = {B € By|vVT € B : T € Tz and &% € 9Gr}.
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o If BY # () then this set contains al transitions that are enabled in (6, z). Rules R, — R,
are used (R, is not applicable) to determine for each B € B the probability with which
thetransitionsin label B will actudly fire:

— Rules R, and 5 are used asfollows: if B issuch that there exists B’ € Bg’ such
that the transitionsin B form areal subset of the set of transitionsin B’, then
pi(0, ) = 0. The set of thus eliminated labels B is denoted by ;.

— Rules R, and R, are used as follows: If the multi-set B — B, contains m
elements, then each of these labels gets a probability pp (0, z) = 1/m.

e If B = () then only Delay transitions can be enabled in (0, ). Consider the multi-set

BY ={B € By|VT € B: T € Tp}. Each B € B} consists of one delay transition, with
5(ch)
> or(ch)

TeB?

pe(0, ) =

Step 3: Determine for each pre-enabled transition whether itsfiring can possibly lead to
discrete state ',

In the RG, consider nodes # and 6’ and delete all other nodes that are elements of K, including
the arrows attached to them. Also, delete all nodes and arrows that are not part of a directed
path from 6 to #’. Theresidue is named RGgyy:. Then, if # and 6’ are not connected in RGy, by
at least one path, ajump from (0, z) to astatein (¢, A) is not possible.

Step 4. Usetheresults of the previous two steps and the set of firing functionsto
characterise ).
From the previous step we have

e Q0" A;0,x) = 0if 0 and 0" are not connected in RGyy by at least one path.

If § and 6" are connected then in RGyy 0ne or more paths from 6 to 6’ can be identified. Each
such path may consist of only one arrow, or of sequences of directed arrows that pass nodes
that enable immediate transitions. All arrows are labelled by names of transitions, therefore the
paths between ¢ and 6’ may be characterised by the labels on these arrows, i.e. by the
transitions that consecutively fire in the jump from ¢ to ¢'. Denote the multi-set of paths,
characterised by these labels, by L4¢:. Examples of elements of Ly, are T} (if 17 is
pre-enabled in ¢ and itsfiring leads to ¢'), T + 15 (if there is a non-zero probability that 7}
and 75, will fire at exactly the same time, and their combined firing leadsto 6'), T, o T5 (if T3 is
pre-enabled in ¢, its firing leads to the immediate transition 7, being enabled, and the firing of
T, leadsto ¢'), etc.
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Next, we factorise ) by conditioning on the path L € L4, along which the jump is made.
Under the condition that a jump occurs:

Q(ela A7 97 [B) = Z p@’,z’|9,m,L(6/7 A ’ 97 T, L) X pL\G,x(L | 67 .I'),

LeLyy

where py: 110..,.(0', A | 0, x, L) denotes the conditional probability that the DCPN state

immediately after thejumpisin (6, A), given that the DCPN state just prior to the jump
equals (6, x), given that the set of transitions L fires to establish the jump. Moreover,

Priee(L | 0, x) denotes the conditional probability that the set of transitions L fires, given that
the DCPN state immediately prior to the jump equals (6, z).

In the remainder of this appendix, first po..(L | 6, z) is characterised for each L € Lgg. Next,
Poaj0,2,0(0, A | 0,2, L) ischaracterised for each L € Ly

Characterisation of prjg.(L | 0,x) for each L € Lgy
First, assume that L, does not contain immediate transitions. Thisyields: each L € Lyy
either contains one or more guard transitions, or one delay transition (other combinations occur

with zero probability). In particular, Lgq isasubset of By defined earlier. Then pyjp.(L | 6, )
pL(QJ I’)
ZBECQQ/ pB<97 I)

is determined by prjo.(L | 0, 2) = , With pp (6, ) defined earlier.

Next, consider the situations where RGyy: may aso contain nodes that enable immediate
transitions. If L isof theform L = T o T}, with T; an immediate transition, then

Prioe(L | 0,2) = prjex(Tk | 0, x), with the right-hand-side constructed as above for the case
without immediate transitions. The same value pr, 9. (15 | 0, ) follows for caseslike

L =T,, oTjo T, withT; and T;,, immediate transitions. However, if the firing of T}, enables
more than one immediate transition, then the value of pr,9..(7% | 0, ) isequally divided
among the corresponding paths. This means, for example, that if thereare L, = 7 o T}, and
Ly = Ty T then prjo (L | 0,2) = proe(La | 6,2) = Sprjoa(Ti | 6,2)

With this, prje..(L | 0, 2) isuniquely characterised.

Characterisation of py ,/9,.,0.(6', A | 6,2, L) for each L € Lyy

For probability py: ./p...(0', A | 6, z, L), first notice that both (6, =) and (¢, «) represent
states of the complete DCPN, while thefiring of L changesthe DCPN only locally. Thisyields
that in general, several tokens stay where they are when the DCPN jumps from 6 to 6’ while
the set L of transitionsfires.
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® pyaoern(0,A|0,2,L)=0ifforal 2’ € A, thecomponents of x and 2’ that
correspond with tokens not moving to another place when transitions L fire, are unequal .

In all other cases:
e Assume L consists of onetransition 7' that, given 6 and x, is enabled and will fire.
Define again ¢7. as the vector containing the colours of the input tokens of 7'; ¢. may not
be unique. For each ¢ that can be identified, a sample from F (-, -; ¢%) provides a
vector ¢’ that holds a one for each output arc along which atoken is produced and a zero
for each output arc along which no token is produced, and it provides a vector ¢/
containing the colours of the tokens produced. These elements together define the size of
the jJump of the DCPN state. This gives:
p@’,z’|9,z,L(9/7 A ’ 0,z, L) = Z / ]:T(€/7 Cl; C%) X I(@',A;e’,c’,cgjﬂ)?
ENCED

where Lig: 4. < y istheindicator function for the event that if tokens corresponding

with ¢7. are removed by 7" and tokens corresponding with (¢’, ¢’) are produced, then the
resulting DCPN stateisin (¢, A).

e If L consists of several transitions 71, . . ., T,, that, given 6 and =, will al fire at the same
time, then the firing measure 7 in the equation above is replaced by a product of firing
measures for transitions 71, . . ., T),:

Do 0,0, (0, A 0,2, L) = Z / Fr(epciseq) x ... x

/ /. T
XFTk (€k7 Ck’ CT) X I(@ﬂA;e'l,c’l,c% 7"'7ek’ck’ch)’

where g Al e e )denotesmdlcatorfunctlon for the event that the combined

removal of c7, through ¢, by transitions 7' through T}, respectively, and the combined
production of (e}, ¢|) through (e}, ¢}.) by transitions 77 through 7}, respectively, leadsto
aDCPN statein (¢', A).
o If Lisof theform L = T} o T}, with T; an immediate transition, then the result is:
Po 0,000, A 0,2, L) = Z / Fr, (%;C],CJ) X Fr, (€} &; CTk)X
Ty, (€. s ) )
I(G’ A; e’ c’ 1€ 5Ch C) 3

where Iy Al el ) denotes indicator function for the event that the removal of c7,

and the production of (e}, ¢;) by transition 7}, leads to 7); having a vector of colours of
input tokens c; and the subsequent removal of ¢; and the production of (€, c;) by
transition 7; leadsto aDCPN statein (¢, A).
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e Incaseslike L = T,, o T} o T}, with T; and T;,, immediate transitions, the firing
functions of this sequence of transitions are multiplied in asimilar way as above.

With this, probability measure () of the constructed PDP is uniquely characterised in terms of
DCPN elements.
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E Acronymsand Symbols

Acronyms used

CTMC Continuous Time Markov Chain

DCPN Dynamically Coloured Petri Net

DSPN Deterministic and Stochastic Petri Net

ECPN Extended Coloured Petri Net

FSPN Fluid Stochastic Petri Net

FT Fault Tree

FTRE Fault Tree with Replaced Events

GSHP Generalised Stochastic Hybrid Process

GSPN Generalised Stochastic Petri Net

HLHPN High-Level Hybrid Petri Net

PDP Piecewise Deterministic Markov Process

PN Petri Net

RBD Reliability Block Diagram

RG Reachability Graph

RRG Reduced Reachability Graph

SDCPN Stochastically and Dynamically Coloured Petri Net
Symbolsused
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Ry— Ry
D, —-Ds

T, Tk
t.(0, )

too(0, )

Ok Ck
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Unity

Intersection

Number of elementsin a set
n-dimensional real numbers
Natural numbers

Boundary of open subset £
Rules

Conditions

Time

Stopping times

Time

Time until first boundary hit
Explosion time of flow ¢ ()

Samples from probability distributions

Number of jumps until time ¢
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¢9,x0
/\(915, l’t)

Ain (T)
Aino(T)
Ain,OE (T)
Aout (T>
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Continuous state

Discrete state

Hybrid state

Open subset of IR )

Digoint unity of al subsets Fy
Borel-measurable subsets of £
Reachable boundary of £
Countable domain for process {6, }
Function that maps K into IV
Lipschitz continuous function
Flow

Rate of Poisson point process
Survivor function

Indicator function

Transition measure

Set of places

The place that is connected to arc A

Set of transitions

Set of guard transitions

Set of delay transitions

Set of immediate transitions
Thetransition that is connected to arc A
Set of arcs

Set of ordinary arcs

Set of enabling arcs

Set of inhibitor arcs

Set of arcs connected to transition 7'

Set of input arcs of transition T’

Set of ordinary input arcs of transition T’
Set of input arcs of transition 7" that are either ordinary or enabling
Set of output arcs of transition T’
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P(A(T))
T,7T;

TG

TP

A, A;
C(P)ms
C, Ct

or

2t

Vg

PB|C
Qy

v, my
Uity Us
Vv,V

Ligt
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Node function

Set of colour types

Colour function

Initial marking

Set of token colour functions
Token colour function for place P
Set of transition guards
Transition guard for transition T’
Set of transition delays
Transition delay for transition T°
Set of firing measures

Firing measure for transition 7'
Place

Set of places connected to 7" by the set of arcs A(T))

Transition

Guard transition

Delay transition

Arc

Set of all multisets over C(P)

Colour of token or vector of colours
Rate of transition delay

Vector containing position and velocity of aircraft
Velocity of aircraft

Random number

Conditional probability density function
Auxiliary variable

Vector of zeros and ones

Element of K

Number of tokensin place P;

Nodes of reachability graph

Colour of jthtokenin place P; at timet
Set of paths characterised by labels

Set of transitions, element of £
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