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1. INTRODUCTION

Deterministic hybrid systems have been the topic
of intense research in recent years. By con-
trast, relatively few classes of stochastic hybrid
processes have been studied in detail. Even though
deterministic hybrid models can capture a wide
range of behaviors encountered in practice, sto-
chastic features are very important in modelling,
because of the uncertainty inherent in most real
world applications. Certain classes of stochastic
hybrid models have been proposed in the lit-
erature. For example, Levy processes and jump
processes that have been studied extensively in
the stochastic processes literature (Ethier and
Kurtz, 1986) can be considered as stochastic hy-
brid systems, even though the hybrid aspect of
the dynamics is fairly weak. Closer to the frame-
work developed in recent years for deterministic
hybrid systems are the Piecewise Deterministic
Markov Processes (PDMP) of (Davis, 1993), the
Switched Diffusion Processes (SDP) of (Ghosh
et al., 1997) and the so called Stochastic Hy-

brid Systems (SHS) of (Hu et al., 2000). Sto-
chastic extensions of timed automata have been
studied in (Kwiatkowska et al., 1999; Baier et
al., 1999; Kwiatkowska et al., 2000). The most im-
portant difference among the models lies in where
the randomness is introduced. Some models allow
diffusions to model continuous evolution (Ghosh
et al., 1997; Hu et al., 2000), while others do not
(Ethier and Kurtz, 1986; Davis, 1993). Likewise,
some models force transitions to take place from
certain states (e.g. (Hu et al., 2000)), others only
allow transitions to take place at random times
(e.g. using a generalized Poisson process (Ghosh et
al., 1997)), while others allow both (Davis, 1993).
This paper attempts to precisely characterize the
similarities and differences of three classes of sto-
chastic hybrid processes: PDMP, SDP and SHS.
We start by giving a brief overview of the au-
tonomous versions of the three classes (Section 2).
We then proceed to characterize the differences
in descriptive power between them (Section 3).
The analysis is based on the stochastic properties
of the models: their Markov properties, extended



generators, etc. For PDMP and SDP these prop-
erties have been studied in detail in the liter-
ature (Davis, 1993), (Ghosh et al., 1997). The
Markov property for SHS was established in (Hu
et al., 2000). To complete the comparison, we also
derive the expression of the infinitesimal generator
for SHS. Our work is motivated by the neces-
sity to develop an appropriate stochastic hybrid
framework for modelling Air Traffic Management
(ATM) systems. The ultimate goal of our work
(under the European Commission’s HYBRIDGE
project) is to use theoretical tools developed for
stochastic hybrid models as a basis for designing
and analyzing advanced ATM concepts for the
European airspace.

2. AUTONOMOUS STOCHASTIC HYBRID
MODELS

In this section we review stochastic hybrid models
introduced by Davis (Davis, 1993), Ghosh et.
al. (Ghosh et al., 1997) and Hu et. al. (Hu et
al., 2000). In order to study the similarities and
differences among these models we use a common
formalism inspired by the formalism developed
for deterministic hybrid systems in (Lygeros et
al., 2003).

2.1 Notation

For a subset A, of a topological space X, 2A

denotes the power set (set of all subsets) of A,
∂A denotes the boundary of A in X. B(A) de-
notes the Borel σ-algebra of A (the smallest σ-
algebra containing the open subsets of A). For a
complete, separable metric space Y , P(Y ) denotes
the space of probability measures endowed with
the topology of weak convergence. Let M(Y ) be
the set of all nonnegative, integer-valued, σ-finite
measures on B(Y ). LetMσ(Y ) be the smallest σ-
field onM(Y ) with respect to which all the maps
from hB : M(Y ) → N ∪ {∞} with B ∈ B(Y )
of the form hB(µ) → µ(B) are measurable. No-
tice that (M(Y ),Mσ(Y )) is a measurable space.
Ck(Rn,Rm) denotes the class of functions from
Rn to Rm which are differentiable k times, with
continuous k-order derivatives. Given a function
θ ∈ C1(Rn,R) and a vector field f : Rn → Rn,
we use Lfθ to denote the Lie derivative of θ
along f , i.e. Lfθ(x) =

Pn
i=1

∂θ
∂xi
(x)fi(x). Given

a function f ∈ C2(Rn,R), we use Hf to de-
note the Hamiltonian operator applied to f , i.e.
Hf (x) = (hij(x))i,j=1...n ∈ Rn×n, where hij(x) =
∂2f

∂xi∂xj
(x). Given a matrix A = (aij)i,j=1...n ∈

Rn×m, AT denotes the traspose matrix of A and
Tr(A) denotes its trace, i.e. Tr(A) =

Pn
i=1 aii.

2.2 Piecewise Deterministic Markov Process

Piecewise Deterministic Markov Processes (PDMP)
involve a hybrid state space, with both continuous
and discrete states. Randomness appears only in
the discrete transitions; between two consecutive
transitions the continuous state evolves accord-
ing to a nonlinear ordinary differential equation.
Transitions occur either when the state hits the
state space boundary, or in the interior of the
state space, according to a generalized Poisson
process. Whenever a transition occurs, the hybrid
state is reset instantaneously according to a prob-
ability distribution which depends on the hybrid
state before the transition. We introduce formally
PDPM following the notation of (Bujorianu and
Lygeros, 2003; Lygeros et al., 2003). Let Q be a
countable set of discrete states, and let d : Q→ N
and X : Q→ Rd(.) be two maps assigning to each
discrete state i ∈ Q a subset of Rd(i). We call the
set D = Si∈Q {i}×X(i) the hybrid state space of
the PDMP and α = (i, x) ∈ D the hybrid state.
We define the boundary of the hybrid state space
as ∂D = Si∈Q {i}×∂X(i). A vector field f on the
hybrid state space D is a function f : D → Rd(.)
assigning to each hybrid state α = (i, x) a di-
rection f(α) ∈ Rd(i). The flow of f is a function
Φ : D × R → D with Φ(α, t) =

·
ΦQ(α, t)
ΦX(α, t)

¸
,

where ΦQ(α, t) ∈ Q and ΦX(α, t) ∈ X(i), such
that for α = (i, x), Φ(α, 0) = α and for all t ∈ R,
ΦQ(α, t) = i and d

dtΦX(α, t) = f(Φ(α, t)). Let
Γ = {α ∈ ∂D | ∃(α0, t) ∈ D ×R+, α = Φ(α0, t)};
D∗ = D∪Γ. Define B(D∞) = σ

³S
i∈Q {i} × B(X(i))

´
where D∞ = Q × R∞. The space (D∞,B(D∞))
is a Borel Space and B(D∞) is a sub-σ-algebra
of its Borel σ-algebra. We can now introduce the
following definition.

Definition 1. (PDMP). A Piecewise Determinis-
tic Markov Process is a collection H = ((Q, d,X),
f, Init, λ,R) where

• Q is a countable set of discrete variables;
• d : Q→ N is a map giving the dimensions of
the continuous state spaces;

• X : Q→ Rd(.) maps each i ∈ Q into a subset
X(i) of Rd(i);

• f : D → Rd(.) is a vector field;
• Init : B(D∞)→ [0, 1] is an initial probability
measure on (D∞,B(D∞)),with Init(Dc) = 0;

• λ : D∗ → R+ is a transition rate function;
• R : B(D∞) × D∗ → [0, 1] is a transition
measure, with R(Dc, .) = 0.

To ensure the process is well-defined, the following
assumption is introduced in (Davis, 1993).

Assumption A: The sets X(i) are open. For
all i ∈ Q, f(i, .) is globally Lipschitz continuous.



λ : D∗ → R+ is measurable. For all α ∈ D there
exists ε > 0 such that the function t→ λ(Φ(α, t))
is integrable for all t ∈ [0, ε). For all A ∈ B(D∗),
R(A, ·) is measurable.
To define the PDMP executions we introduce
the notion of exit time t∗ : D → R+ ∪
{∞}, as t∗(α) = inf {t > 0 : Φ(α, t) /∈ D} and
of survivor function F : D × R+ → [0, 1], as

F (α, t) = exp
³
− R t

0
λ(Φ(α, τ))dτ

´
if t < t∗(α)

and F (α, t) = 0 if t ≥ t∗(α). The executions of
the PDMP can be thought of as being generated
by the following algorithm.

Algorithm 2.2 : (Generation of PDMP Ex-
ecutions)

set T = 0
select D-valued random variable α̂ according

to Init
repeat
select R+-valued random variable T̂ such

that P (T̂ > t) = F (α̂, t)
set αt = Φ(α̂, t− T ) for all t ∈ [T, T + T̂ )
select D-valued random variable α̂ ac-

cording to R(.,Φ(α̂, T̂ ))
set T = T + T̂

until true

All random extractions in Algorithm 2.2 are as-
sumed to be independent. To ensure that αt is
defined on the entire R+ it is necessary to exclude
Zeno executions (Lygeros et al., 2003). The fol-
lowing assumption is introduced in (Davis, 1993)
to accomplish this.

Assumption B: Let Nt =
P

i I(t≥Ti) be the
number of jumps in [0, t]. Then E[Nt] < ∞ for
all t.

Under Assumptions A and B, Algorithm 2.2 de-
fines a strong Markov process (Davis, 1993). The
expression of the infinitesimal generator of this
process is given by (see (Davis, 1993)),

LPDMP θ (β) = Lfθ(β)+
λ(β)

Z
D∗

R(dα, β) (θ(α)− θ(β))

where θ belongs to the domain of generator as
defined in (Davis, 1993).

2.3 Switching Diffusion Process

Switching Diffusion Processes involve a hybrid
state space, with both continuous and discrete
states. The continuous state evolves according to
a stochastic differential equation (SDE), while the
discrete state is a controlled Markov chain. Both
the dynamics of the SDE and the transition ma-
trix of the Markov Chain depend on the hybrid
state. The continuous hybrid state evolves without
jumps, i.e. the evolution of the continuous state

can be assumed to be a continuous function of
time. In the following we introduce formally SDP
following (Ghosh et al., 1997). To allow a compari-
son with PDMP and SHS we restrict our attention
to autonomous SDP.

Definition 2. (SDP). A Switching Diffusion Process
is a collection H = (Q,X, f, Init, σ, λij) where

• Q = {1, 2, ..., N} is a finite set of discrete
variables, N ∈ N;

• X = Rn is the continuous state space;
• f : Q×X → Rn is a vector field;
• Init : B(Q×X) → [0, 1] is an initial proba-
bility measure on (Q×X,B(Q×X));

• σ : Q×X → Rn×n is a state dependent real-
valued matrix;

• λij : X → R, i, j ∈ Q are a set of x-
dependent transition rates, with λij(.) ≥ 0
if i 6= j and

P
j∈Q λij(x) = 0 for all i ∈ Q,

x ∈ X.

As for PDMP, we will use α = (q, x) to denote the
hybrid state of an SDP. To ensure the SDP model
is well-defined (Ghosh et al., 1997) introduce the
following assumption.

Assumption C: The functions f(i, x), σkj(i, x)
and λkj(x) are bounded and Lipschitz continuous
in x.

Assumption C ensures that for any i ∈ Q,
the solution to the SDE dx(t) = f(i, x(t))dt +
σ(i, x(t))dWt, whereWt is an n-dimensional stan-
dard Wiener process, exists and is unique (see, for
example, Theorem 6.2.2. in (Arnold, 1974)).

For i, j ∈ Q and x ∈ Rn let ∆(i, j, x) be con-
secutive, with respect to lexicographic ordering
on Q × Q, left closed, right open intervals of the
real line, each having length λij(x) (for details
see (Ghosh et al., 1997)). Now define a function
h : Rn ×Q× R → R by setting h(x, i, z) = j − i,
if z ∈ ∆(i, j, x); h(x, i, z) = 0 otherwise. SDP
executions can be defined using h.

Definition 3. (SDP execution). A stochastic process
αt = (q(t), x(t)) is called an SDP execution if it is
the solution of the following stochastic differential
equation and stochastic integral:

dx(t) = f(q(t), x(t))dt+ σ(q(t), x(t))dWt,

dq(t) =

Z
R
h(x(t), q(t−), z)ϕ(dt, dz)

for t ≥ 0 with x(0) = x0, q(0) = q0, where
α0 = (q(0), x(0)) is a random variable extracted
according to the probability measure Init;Wt is a
n-dimensional standard Wiener process; ϕ(dt, dz)
is anM(R+×R)-valued Poisson random measure
with intensity dt×m(dz), wherem is the Lebesgue



measure on R (see (Jacod and Shiryayev, 1987));
ϕ(., .), Wt, and (q(0), x(0)) are independent.

It can be shown (Ghosh et al., 1997) that the
SDP defines a Markov process, whose infinitesimal
generator is given by

LSDP θ (i, x) =LSDP
c θ (i, x) + (1) NX
j=1

λij(x) (θ(j, x)− θ(i, x))


where LSDP

c θ (i, x) = Lfθ(i, x)+ 1
2Tr(σ(i, x)σ(i, x)

T

Hθ(i, x)). θ is assumed to belong to the domain of
generator defined in (Ghosh et al., 1997).

2.4 Stochastic Hybrid System

Stochastic Hybrid Systems (SHS), involve a hy-
brid state space, with both continuous and dis-
crete states. The continuous state obeys an SDE
that depends on the hybrid state. Transitions oc-
cur when the continuous state hits the boundary
of the state space. Whenever a transition occurs
the hybrid state is reset instantly to a new value.
The value of the discrete state after the transi-
tion is determined deterministically by the hybrid
state before the transition. The new value of the
continuous state, on the other hand, is governed
by a probability law which depends on the last
hybrid state. We introduce formally SHS follow-
ing (Hu et al., 2000). To make the comparison
with SDP and PDMP easier we make a minor
change to the definition of (Hu et al., 2000): we
allow probabilistic choice of the initial condition.

Definition 4. (SHS). A Stochastic Hybrid Sys-
tem is a collectionH = (Q,X,Dom, f, g, Init,G,R)
where

• Q is a countable set of discrete variables;
• X = Rn is the continuous state space;
• Dom : Q → 2X assigns to each i ∈ Q an
open subset of X;

• f, g : Q×X → Rn are vector fields;
• Init : B(Q×X) → [0, 1] is an initial proba-
bility measure on (Q×X,B(Q×X)) concen-
trated on ∪i∈Q {i} ×Dom(i);

• G : Q×Q→ 2X assigns to each (i, j) ∈ Q×Q
a guard G(i, j) ⊂ X such that
· For each (i, j) ∈ Q × Q, G(i, j) is a
measurable subset of ∂Dom(i) (possibly
empty);

· For each i ∈ Q, the family {G(i, j) | j ∈
Q} is a disjoint partition of ∂Dom(i);

• K : Q × Q × X → P(X) assigns to each
(i, j) ∈ Q×Q and x ∈ G(i, j) a reset proba-
bility kernel on X concentrated on Dom(j).

We again use α = (q, x) to denote the hybrid
state of an SHS. To ensure that the model is well-
defined (Hu et al., 2000), we impose the following
assumption:

Assumption D: The functions f(i, x) and g(i, x)
are bounded and Lipschitz continuous in x. For all
i, j ∈ Q and for any measurable set A ⊂ Dom(j),
K(i, j, x)(A) is a measurable function in x.

The first part of Assumption D ensures that for
any i ∈ Q, the solution of the SDE dx(t) =
f(i, x(t))dt + g(i, x(t))dWt, where Wt is a 1-
dimensional standard Wiener process, exists and
is unique (see Theorem 6.2.2 in (Arnold, 1974)).
Moreover, the assumption on K ensures that
events we encounter later are measurable w.r.t.
the underlying σ-field, hence their probabilities
make sense. We can introduce the SHS execution.

Definition 5. (SHS Execution). A stochastic process
αt = (q(t), x(t)) is called a SHS execution if there
exists a sequence of stopping times T0 = 0 ≤ T1 ≤
T2 ≤ . . . such that for each j ∈ N,
• α0 = (q(0), x(0)) is a Q×X-valued random
variable extracted according to the probabil-
ity measure Init;

• For t ∈ [Tj , Tj+1), q(t) = q(Tj) is constant
and x(t) is a (continuous) solution of the
SDE:

dx(t) = f(q(Tj), x(t))dt+ g(q(Tj), x(t))dWt

(2)
whereWt is a 1-dimensional standardWiener
process;

• Tj+1 = inf {t ≥ Tj : x(t) /∈ Dom(q(Tj))};
• x(T−j+1) ∈ G(q(Tj), q(Tj+1)), where x(T−j+1)
denotes limt↑Tj+1 x(t);

• The probability distribution of x(Tj+1) is
governed by the lawK

¡
q(Tj), q(Tj+1), x(T

−
j+1)

¢
.

To highlight the relation of SHS to PDMP
and SDP, let D =

S
i∈Q {i} × Dom(i); ∂D =S

i∈Q {i}×∂Dom(i) =
S
i∈Q

³
{i} ×Sj∈Q,j 6=iG(i, j)

´
.

As for the PDMP, let B(D∗) denote the σ-algebra
on the set D∗ = Q × Rn generated by the sets
{{i} × B(Rn)}. One can then consider the reset
probability kernel K of an SHS as a transition
measure R : B(D∗) × D∗ → [0, 1] such that
R(·, (i, x)) = 0, for all (i, x) ∈ D∗\∂D; for all
(i, x) ∈ ∂D the function R(·, (i, x)) is a probability
measure concentrated on {j}×Dom(j) where j is
the unique value of the discrete state such that
x ∈ G(i, j). An SHS is a homogenous Markov
process whose sample paths are the SHS stochas-
tic executions. The state space of this process is
D∗, but clearly it can be restricted to D ∪ ∂D.
From the definition of SHS it is easy to see that
the càdlàg property is fulfilled. The underlying
probability space can be defined in a canonical



way. The jump times T1 < T2 < T3 < ... are
random variables which are defined for each sto-
chastic execution as exit times (see Definition 5).
We can now introduce the following result where
the expression of SHS infinitesimal generator is
given.

Theorem 1. Let (αt) be an SHS. Then the do-
main D(LSHS) of the extended generator LSHS

of (αt) consists of those measurable functions θ on
D ∪ ∂D satisfying: (1) θ ∈ C2(Rn,R); (2) (Bound-
ary condition) θ(α) =

R
D θ(β)R(dβ, α)), α ∈ ∂D;

(3) Bθ ∈ Lloc1 (p), where Bθ(α, s, ω) := θ(α) −
θ(αs−(ω)). For θ ∈ D(L), LSHSθ is given by

LSHSθ (α) =LSHS
c θ(α) + (3)Z
D∗
(θ(β)− θ(α)R(dβ, α))

where LSHS
c θ(α) = Lfθ(α)+1

2Tr(g(α)g(α)
THθ(α)).

3. MODEL COMPARISON

Randomness enters in different places for the the
three classes of stochastic hybrid processes dis-
cussed in Section 2. In this section we highlight the
similarities and differences among these classes.
It is simple to check that the only stochastic
processes that can be executions of all three mod-
els (PDMP, SDP and SHS) can be trivially repre-
sented a finite family of ODE (parametrized by q).
The particular ODE and its initial condition are
determined according to a probability distribution
and no discrete transitions are permitted from
them on. Pairwise comparisons, however, provide
some more insight into the differences in descrip-
tive power between the three classes of model. To
formalize the pairwise comparisons we introduce
the concept of modification.

Definition 6. (Modification) Given two stochas-
tic processes αt and α̂t defined on the same un-
derlying probability space (Ω,P), we say that αt
is a modification of α̂t if P(αt = α̂t) = 1 for all t.

A comparison between PDMP and SDP. To find
a subclass of PDMP and a subclass of SDP that
coincide in the sense of modification we have to
assume that the number of discrete states of the
PDMP is finite, to eliminate the diffusion element
of the SDP. Moreover, it is necessary to assume
for all discrete states i of the PDMP, X(i) = Rd(i)
and a relation between the SDP transition matrix
(λij) and the PDMP transition rate and transition
measure has to be established. These qualitative
remarks are formalized in the following lemmas.

Lemma 2. (SDP→PDMP) Let HSDP = (Q,X,
f, Init, σ, λij) be a SDP with X = Rn. Suppose

that σ(i, x) = 0 for all (i, x) ∈ Q×X. Then, there
exists a PDMP HPDMP which is a modification
of HSDP .

Lemma 3. (PDMP→SDP) Let HPDMP = ((Q,
d,X), f, Init, λ,R) be a PDMP, and assume that

(1) |Q| = N ∈ N;
(2) X(i) = Rd(i), ∀i ∈ Q;
(3) For any i, j ∈ Q, R({(j, x), j ∈ Q} , (i, x)) =

1.

Then there exists a SDP HSDP which is a modi-
fication of HPDMP .

Condition (3) effectively implies that the evolu-
tion of the continuous state of HPDMP is con-
tinuous as a function of time. Condition (2) can
be weakened to t∗(α) = ∞, ∀α ∈ D. Lemmas 2
and 3 indicate that the common model for SDP
and PDMP is a stochastic hybrid model with
deterministic continuous evolution between two
consecutive jumps (as in PDMP) and with dis-
crete state switchings governed by a transition
rate depending on the last hybrid state and on
the next discrete state (as in SDP). Finally no
jumps on the continuous state are allowed when a
switching occurs (as in SDP).

A comparison between SHS and SDP. To find
a subclass of SHS and a subclass of SDP that
coincide in the sense of modification we have
to assume that the number of discrete states of
the SHS is finite, the diffusion process for the
SDP is governed by a standard 1-dimensional
Wiener process. It is also necessary to assume
thatDom(i) = Rn, since the continuous motion of
the SDP is unconstrained. The last one together
with Assumption D implies that the guards G
have to be empty. Finally, since the evolution of
the continuous state of an SDP is continuous in
time, the reset relation R of the SHS also has to
be trivial. These remarks are formalized in the
following lemmas.

Lemma 4. (SHS→SDP) LetHSHS = (Q,X,Dom,
f, g, Init,G,R) be a SHS with X = Rn. As-
sume that the cardinality of the set Q is finite,
Dom(i) = Rn, for all i ∈ Q, G(i, j) = ∅ for all
i, j ∈ Q and R(., (., x)) = 0if x ∈ Rn; R(., (., x)) =
1 if x = ∆ where ∆ is the compactification point
of Rn. Then, there exists an SDP HSDP which is
a modification of HSHS .

Lemma 5. (SDP→SHS) Let HSDP = (Q,X, f,
Init, σ, λij) be a SDP with X = Rn. Assume
that rank(σ(i, x)) ≤ 1 for all (i, x) ∈ Q × X
and λij(x) = 0 for all i, j ∈ Q, x ∈ X. Then,
there exists a SHS HSHS which is a modification
of HSDP .



Lemmas 4 and 5 indicate that the common model
between SHS and SDP are a finite family of SDE
(parametrized by q) driven by a 1-dimensional
Wiener process. The particular SDE and its initial
condition are determined according to a proba-
bility distribution and no discrete transitions are
permitted from them on.

A comparison between SHS and PDMP. To find
a subclass of SHS and a subclass of PDMP that
coincide in the sense of modification we have to
eliminate the diffusion component of the SHS,
since PDMP are deterministic processes between
two consecutive jumps. We also have to assume
that the dimension of the continuous state space is
bounded. We have to eliminate jumps governed by
the transition rate λ and establish a relation be-
tween the transition measures of SHS and PDMP.
These qualitative remarks are formalized in the
following Lemmas 6 and 7.

Lemma 6. (SHS→PDMP) Consider a SHS,HSHS =
(Q,X,Dom, f, g, Init,G,R), with X = Rn. As-
sume that g(i, x) = 0, for all (i, x) ∈ Q × X.
Then, there exists a PDMP HPDMP which is a
modification of HSHS .

Lemma 7. (PDMP→SHS) Consider a PDMP,
HPDMP = ((Q, d,X), f, Init, λ,R). Assume that

(1) There exists n ∈ N such that d(i) ≤ n for all
i ∈ Q;

(2) λ(i, x) = 0 for all (i, x) ∈ D(Q, d,X);
(3) For all i, j ∈ Q the set G(i, j) = {x ∈ ∂X(i) :

R({j} ×X(j), (i, x)) 6= 0} is measurable.
Then, there exists a SHS HSHS which is a modi-
fication of HPDMP .

Lemmas 6 and 7 suggest that the common model
between SHS and PDMP is a stochastic hy-
brid process where continuous evolution between
two consecutive jumps is deterministic and where
switchings between two discrete states occur only
when the continuous state hits the hybrid state
space boundary. Whenever a switching occurs, the
hybrid state jumps, according to a probability law
depending on the last hybrid state.

4. CONCLUSIONS AND FURTHER WORKS

In this paper we gave an overview of Stochastic
Hybrid Models developed in the literature. We de-
scribed Piecewise Deterministic Markov Process,
Switching Diffusion Process and Stochastic Hy-
brid System. We developed a comparison among
them, underlying the assumptions under which
they coincide. We developed the expression of
generator for Stochastic Hybrid Systems. Further
theoretical investigations will be concentrated on

the analysis of a possible general stochatic hybrid
model that could include PDMP, SDP and SHS
as special cases. This work can be considered as
a base for the building of an ATM mathematical
model; this is the aim of our further applied work
in the context of HYBRIDGE.
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