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Abstract

Questions of reachability for continuous and hybrid systems can be formulated as optimal control or game theory problems,
whose solution can be characterized using variants of the Hamilton-Jacobi-Bellman or Isaacs partial differential equations. The
formal link between the solution to the partial differential equation and the reachability problem is usually established in the
framework of viscosity solutions. This paper establishes such a link between reachability, viability and invariance problems and
viscosity solutions of a special form of the Hamilton-Jacobi equation. This equation is developed to address optimal control
problems where the cost function is the minimum of a function of the state over a specified horizon. The main advantage of
the proposed approach is that the properties of the value function (uniform continuity) and the form of the partial differential
equation (standard Hamilton-Jacobi form, continuity of the Hamiltonian and simple boundary conditions) make the numerical
solution of the problem much simpler than other approaches proposed in the literature. This fact is demonstrated by applying
our approach to a reachability problem that arises in flight control and using numerical tools to compute the solution.
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1 Introduction

Because of their importance in applications ranging
from engineering to biology and economics, questions
of reachability, viability and invariance have been
studied extensively in the dynamics and control lit-
erature. Most recently, the study of these concepts
has received renewed attention through the study of
safety problems in hybrid systems. Reachability com-
putations have been used in this context to address
problems in the safety of ground transportation sys-
tems [1,2], air traffic management systems [3–5], flight
control [6,7], etc.

Direct characterization of reachability concepts is one
of the topics addressed by viability theory [8]. The
development of computational tools to support the
numerous viability theory methods is an ongoing ef-
fort (see, for example, [9]). Methods for directly ad-
dressing reachability questions have also been pro-
posed in the hybrid systems literature. For exam-
ple, for certain classes of continuous dynamics, exact
computation of the set of reachable states is possible
(see [10] for an overview). Motivated by this observa-
tion, computational tools to exactly compute the set
of reachable states whenever possible have been de-
veloped [11–14]. For more general classes of systems,
tools have been developed to compute numerical ap-
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proximations of these sets [15–21].

An alternative, indirect approach to reachability
questions is using optimal control methods. In this
case, the reachable, viable or invariant sets are char-
acterized as level sets of the value function of an
appropriate optimal control problem. Using dynamic
programming, the value function can in turn be
characterized as the solution to a partial differential
equation. In this paper we adopt such an optimal
control approach to the reachability problem. We
discuss how reachability questions can be encoded
as optimal control problems where the cost is the
minimum of a function of the state over a given
horizon. The objective of the controller is either to
maximize this minimum (SupMin problem) or to
minimize the minimum (InfMin problem). We show
how the value function of the former problem can be
used to answer viability questions, whereas the value
function of the latter problem can be used to answer
invariance questions. We then proceed to character-
ize the two value functions as viscosity solutions to
first order partial differential equations, which are
variants of the standard Hamilton-Jacobi equation.

The main advantage of the approach developed here
is that the resulting partial differential equations have
very good properties in terms of their numerical solu-
tion. The value functions of the optimal control prob-
lems we use can be shown to be uniformly continuous.
Moreover, they are characterized as solutions to par-
tial differential equations in the standard Hamilton-
Jacobi form, with continuous Hamiltonians and sim-
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ple boundary conditions. Therefore, very efficient al-
gorithms developed for this class of equations [20–
23], whose properties have been extensively tested in
theory and in applications, can be directly applied
to our problem. Even though the study of the prop-
erties of the numerical solutions is beyond the scope
of this paper, we exploit this fact in Section 4, where
the algorithms of [22,23] coded by [20,21] are used to
compute the solutions to a reachability problem that
arises in flight control.

In Section 2 we pose two optimal control problems,
which we refer to as the SupMin and InfMin prob-
lems, and establish their relation to invariance and
viability questions for continuous dynamical systems.
To motivate the new solution we develop for these
problems, we summarize some of the existing ap-
proaches that can be used to address viability and in-
variance questions in the framework of optimal con-
trol, and argue that the proposed solution of the Sup-

Min and InfMin problems has certain advantages.
The characterization of the value functions as viscos-
ity solutions of appropriate partial differential equa-
tion are given in Section 3 (for the SupMin prob-
lem) and Section 5 (for the InfMin problem). To il-
lustrate the possible applications of our approach, in
Section 4 we encode a viability problem that arises
in flight control as a SupMin problem and use the
numerical tools of [20,21] to provide a solution. Di-
rections for future work are discussed in Section 6.
Most of the proofs have been omitted in the interest
of space. Complete proofs of all the facts (as well as
simple motivating examples) can be found in [24].

2 SupMin and InfMin Optimal Control Prob-
lems

2.1 Statement of the Problems

Consider a continuous time control system,

ẋ = f(x, u) (1)

with x ∈ R
n, u ∈ U ⊆ R

m, f(·, ·) : R
n × U → R

n, a
function,

l(·) : R
n → R, (2)

and an arbitrary time horizon, T ≥ 0. Let U[t,t′] de-
note the set of Lebesgue measurable functions from
the interval [t, t′] to U . To eliminate technical diffi-
culties we impose the following standing assumption.

Assumption 1 U ⊆ R
m is compact. f and l are

bounded and Lipschitz continuous.

Assumption 1 is used in Sections 3 and 5 to ensure
that the value functions of the optimal control prob-
lems considered there have certain continuity proper-
ties. In addition, it also ensures that for every x ∈ R

n,
t ∈ [0, T ] and u(·) ∈ U[t,T ], system (1) admits a
unique solution, denoted by φ(·, t, x, u(·)) : [t, T ] →
R

n, with φ(t, t, x, u(·)) = x. Assumption 1 is suffi-
cient for the results presented below. Not all of it,
however, is necessary. Some parts can be relaxed or

replaced by alternative assumptions. We will not at-
tempt such fine tuning of the results here. The reader
is referred to [25] for various improvements that can
be pursued.

We introduce two optimal control problems with
value functions V1 : R

n × [0, T ] → R and V2 :
R

n × [0, T ] → R given by

V1(x, t) = sup
u(·)∈U[t,T ]

min
τ∈[t,T ]

l(φ(τ, t, x, u(·))) (3)

V2(x, t) = inf
u(·)∈U[t,T ]

min
τ∈[t,T ]

l(φ(τ, t, x, u(·))). (4)

The minimum with respect to time is well defined by
continuity. In the first problem the objective of the
input u is to maximize the minimum value attained
by the function l along the state trajectory over the
horizon [t, T ]. In the second problem, on the other
hand, the objective of u is to minimize this minimum.
For obvious reasons we will subsequently refer to the
first optimal control problem as the SupMin problem
and to the second problem as the InfMin problem.

Optimal control problems of this type have been stud-
ied in the literature for the last 15 years, starting
with the pioneering work of Barron and co-workers
(see [26] for an overview). The SupMin problem is
a special case of the optimal control problem treated
by [27,28], where l is also allowed to depend on t
and u. We will present a solution different from that
of [27,28] for this problem, which we believe has ad-
vantages in terms of numerical implementation. The
InfMin problem was also treated in [28] and in [29]
from a viability point of view. As we will see in Sec-
tion 2.2, the implications of the InfMin problem from
the point of reachability can also be deduced indi-
rectly using standard, terminal cost, optimal control
arguments. We will also present a direct solution to
the InfMin problem (Section 5) and establish a re-
lation between the two. We believe that the direct
solution has computational advantages over both the
indirect approach and the solution discussed in [28].

The main contribution of this paper is a characteriza-
tion of the value functions V1 and V2 as viscosity so-
lutions to appropriate partial differential equations.
More specifically, we show that V1 is a viscosity solu-
tions of the terminal value problem

∂V1

∂t
(x, t) + min

{

0, sup
u∈U

∂V1

∂x
(x, t)f(x, u)

}

= 0 (5)

with V1(x, T ) = l(x) over (x, t) ∈ R
n × [0, T ]. Like-

wise, V2 is a viscosity solution to the terminal value
problem

∂V2

∂t
(x, t) + min

{

0, inf
u∈U

∂V2

∂x
(x, t)f(x, u)

}

= 0 (6)

with V2(x, T ) = l(x) over (x, t) ∈ R
n × [0, T ].

Partial differential equations of the form (5) and (6)
were also proposed in relation to reachability prob-
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lems in [30,6]. The treatment in these references as-
sumed the existence of differentiable (classical) solu-
tions to the partial differential equations. It is well
known that the value functions of optimal control
problems are often not differentiable (or even con-
tinuous). We will study equations (5) and (6) in the
standard viscosity framework [31]. Recall that a vis-
cosity solution is not necessarily a differentiable func-
tion. However, it can be shown that wherever the vis-
cosity solution is differentiable it satisfies the partial
differential equation in the classical sense [31].

2.2 Connection to Reachability

Given the control system of equation (1), the horizon
T ≥ 0 and a set of states K ⊆ R

n, a number of
questions can be naturally formulated regarding the
relation between the set K and the state trajectories
of (1) over the horizon T . Problems of interest include
the following.

Viability Does there exist a u(·) ∈ U[0,T ] for which
the trajectory x(·) satisfies x(t) ∈ K for all t ∈
[0, T ]?

Invariance Do the trajectories x(·) for all u(·) ∈
U[0,T ] satisfy x(t) ∈ K for all t ∈ [0, T ]?

Reachability Does there exist a u(·) ∈ U[0,T ] and a
t ∈ [0, T ] such that the trajectory satisfies x(t) ∈
K?

One would typically like to characterize the set of
initial states for which the answer to the viabil-
ity/invariance/reachability questions is “yes”. Or,
more generally, one would like to characterize the sets

Viab(t, K) = {x ∈ R
n | ∃u(·) ∈ U[t,T ] ∀τ ∈ [t, T ]

φ(τ, t, x, u(·)) ∈ K}

Inv(t, K) = {x ∈ R
n | ∀u(·) ∈ U[t,T ] ∀τ ∈ [t, T ]

φ(τ, t, x, u(·)) ∈ K}

Reach(t, K) = {x ∈ R
n | ∃u(·) ∈ U[t,T ] ∃τ ∈ [t, T ]

φ(τ, t, x, u(·)) ∈ K},

The notation used here differs from the standard no-
tation used in viability theory (see, for example, [8]).
Viab(t, K) is not the set of states that can remain in
K for time t, it is the set of states that can remain in K
for time T−t. This difference in notation is motivated
by the connection we seek to establish between these
sets and certain Hamilton-Jacobi equations, which
are solved backwards in time from a given termi-
nal condition. Clearly, Reach(t, K) = (Inv(t, Kc))

c
,

therefore, the invariance and reachability problems
are duals of one another and need not be treated sep-
arately 1 .

We first establish a connection between viability and
the SupMin optimal control problem. Assume that
the set K is open 2 and is related to the zero level set

1 As usual, Kc stands for the complement of the set K
in R

n.
2 The argument when K is closed is somewhat more
complicated. Since it is tangential to the main theme of

of a continuous function l : R
n → R by K = {x ∈

R
n | l(x) > 0}. A natural choice for the function l

is the signed distance to the set K. To ensure that l
satisfies Assumption 1 one can impose a saturation
to the distance function at some value. The following
fact is easy to establish.

Proposition 1 Viab(t, K) = {x ∈ R
n | V1(x, t) >

0}.

Using the Hamilton-Jacobi characterization in the
next section, it is easy to show that the level sets of
V1(x, t) are independent of the choice of the function
l.

To establish the connection between invariance
and the InfMin optimal control problem, con-
sider a closed set 3 , L, that can be written as the
level set of a continuous function l : R

n → R,
L = {x ∈ R

n | l(x) ≥ 0}.

Proposition 2 Inv(t, L) = {x ∈ R
n | V2(x, t) ≥ 0}.

2.3 Alternative Characterizations

We first point out that the set Inv(t, K) can be
computed using the standard Hamilton-Jacobi-
Bellman equation (see [6,30] for more on this
observation). Consider again that the closed set
L = {x ∈ R

n | l(x) ≥ 0} and let

V3(x, t) = inf
u(·)∈U[t,T ]

l(φ(T, t, x, u(·))).

A standard optimal control argument (see for exam-
ple [32,25]) shows that V3 is a viscosity solution for
the terminal value problem

∂V3

∂t
(x, t) + inf

u∈U

∂V3

∂x
(x, t)f(x, u) = 0 (7)

over (x, t) ∈ R
n × [0, T ] with V3(x, T ) = l(x).

Proposition 3 For all (x, t) ∈ R
n × [0, T ],

V2(x, t) = min
τ∈[t,T ]

V3(x, τ).

Moreover

Inv(t, L) =
⋂

τ∈[t,T ]

{x ∈ R
n | V3(x, τ) ≥ 0}.

Proof: The second claim is easy to establish from
the first. We show that for all (x, t) ∈ R

n × [0, T ] and
for all ε > 0, V2(x, t) ≥ minτ∈[t,T ] V3(x, τ) − ε and
V2(x, t) ≤ minτ∈[t,T ] V3(x, τ) + ε. If these hold for all
ε > 0, the first claim follows. Choose u(·) ∈ U[t,T ]

such that V2(x, t) ≥ minτ∈[t,T ] l(φ(τ, t, x, u(·))) − ε

the paper it is omitted.
3 The argument when L is open is again somewhat more
complicated and is omitted.
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and notice that

min
τ∈[t,T ]

V3(x, τ) ≤ min
τ∈[t,T ]

l(φ(τ, t, x, u(·)))

≤ V2(x, t) + ε.

To show the second inequality, choose s ∈ [t, T ]
and u(·) ∈ U[s,T ] such that l(φ(T, s, x, u(·))) ≤
minτ∈[t,T ] V3(x, τ) + ε. Define û(·) ∈ U[t,T ] by
û(τ) = u(τ + s − t) if τ ∈ [t, t + T − s) and
û(τ) = u(T ) if τ ∈ [t + T − s, T ]. By unique-
ness, φ(τ, t, x, û(·)) = φ(τ + s − t, s, x, u(·)) for all
τ ∈ [t, t + T − s]. Therefore,

V2(x, t) ≤ min
τ∈[t,T ]

l(φ(τ, t, x, û(·)))

≤ l(φ(t + T − s, t, x, û(·)))

= l(φ(T, s, x, u(·)))

≤ min
τ∈[t,T ]

V3(x, τ) + ε.

Proposition 3 shows that one can compute Inv(t, L)
by solving a standard Hamilton-Jacobi-Bellman
equation (7) and then taking the intersection of the
level sets of the solution (or, equivalently, computing
the minimum of the value function over time horizon
[t, T ]). In this case, the only advantage of solving the
InfMin optimal control problem to characterize the
set Inv(t, L) is that one does not have to perform the
extra step of taking the intersection of the level sets.

One might expect a similar approach to work for
the set Viab(t, K). This is not the case in general,
however. Roughly speaking, the argument in Propo-
sition 3 breaks down because it is impossible to ex-
change the order of the universal quantification over
τ ∈ [t, T ] with the existential quantification over
u(·) ∈ U[t,T ] (or, equivalently, exchange the min over t
with the sup over u(·)); in Proposition 3 both quanti-
fiers were universal and could therefore be exchanged.

Even if this direct assault does not work, there are
other methods in the optimal control literature that
can be adapted to characterize the set Viab(t, K).
For example, one can treat the problem as max-
imizing the “exit time” from the open set K. It
can be shown that this involves solving a standard
Hamilton-Jacobi-Bellman equation over the set K
(and possibly pieces of its boundary), with rather
complicated boundary conditions [33,25]. Moreover,
the value function will not be continuous in general.
These features suggest that numerical computations
are likely to be more difficult with this approach.
By contrast, the characterization proposed here is
such that the value function is continuous (Lemma 2
below) and the terminal value problem (5) is solved
over the entire R

n× [0, T ] with very simple boundary
conditions. This allows one to deal with the problem
using well established numerical methods like those
of [22,23].

Another approach is to solve the modified terminal
value problem

−
∂V

∂t
(x, t) =



























supu∈U
∂V
∂x

(x, t)f(x, u)

if x ∈ K

min
{

0, supu∈U
∂V
∂x

(x, t)f(x, u)
}

if x ∈ Kc.

(8)

This approach was proposed in [4] in the context of
differential games, where a relation to reachability
problems was discussed for the case of classical so-
lutions. Notice that with this approach the Hamil-
tonian will in general be discontinuous. Continuity
of the Hamiltonian is desirable, because it simplifies
both the theoretical analysis and the numerical solu-
tion of the partial differential equation; it is unclear
how would even define a viscosity solution for (8). The
authors of [34] also consider a Hamiltonian similar to
that of equation (8) for differential games. They do
so in the context of viability theory, however, and do
not establish a relation to a partial differential equa-
tion. Such a relation could be established indirectly,
based on the characterization of the value functions
of various exit time optimal control problems as cap-
ture basins [35].

The approach most closely related to the one pro-
posed here is that of [27,28], where a generalized ver-
sion of the SupMin optimal control problem is formu-
lated and solved. Related work on differential games
includes [36] (extending the results of [27]) and [37]
(based on the classical results of [38]). In [27] the value
function of the problem is shown to satisfy a set of
discontinuous, quasi-variational inequalities. Though
this approach is conceptually appealing, the discon-
tinuity and the implicit dependence of the Hamilto-
nian on the value function severely limit its useful-
ness from the numerical computation point of view
(as the authors of [27] point out). The authors of [28]
simplify this characterization to the following contin-
uous variational inequality

sup
u∈U

min{l(x) − V (x, t),

∂V

∂t
(x, t) +

∂V

∂x
(x, t)f(x, u)} = 0. (9)

The main advantage of equation (9) over the char-
acterization of [27] is that the Hamiltonian is con-
tinuous. In [28] specialized numerical schemes were
developed to exploit this fact and approximate the
solutions to the variational inequality (9). The ad-
vantage of equation (5) over this approach is that
the Hamiltonian is not only continuous, but the
problem is also is in the standard Hamilton-Jacobi
form. Equation (5) can therefore be approached
numerically using well established schemes for solv-
ing Hamilton-Jacobi equations. It should be noted
that [27] also establish a partial differential equation
in standard Hamilton-Jacobi form whose solution
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is equivalent to that of the quasi-variational in-
equalities. Still, the Hamiltonian in this equation
is discontinuous (may even take the value +∞ in
certain cases); therefore the Hamilton-Jacobi char-
acterization suffers from the same drawbacks as the
quasi-variational inequality characterization. In [28]
a continuous variational inequality was also proposed
to address the InfMin problem. A similar discussion
extends to the relative merits of this approach over
existing approaches and equation (6).

3 Solution to the SupMin Problem

We start by showing that V satisfies an appropriate
version of the optimality principle.

Lemma 1 For all (x, t) ∈ R
n × [0, T ] and all h ∈

[0, T − t], V1(x, t) ≤ V1(x, t + h) and V1(x, T ) = l(x).
Moreover

V1(x, t) = sup
u(·)∈U[t,t+h]

min{ min
τ∈[t,t+h]

l(φ(τ, t, x, u(·))),

V1(φ(t + h, t, x, u(·)), t + h)}.

Proof: For the first part, the fact that V1(x, T ) =
l(x) is immediate from the definition of V1. Moreover,
V1(x, t) = supu(·)∈U[t,T ]

minτ∈[t,T ] l(φ(τ, t, x, u(·)))

and V1(x, t+h) = supu(·)∈U[t+h,T ]
minτ∈[t+h,T ] l(φ(τ, t+

h, x, u(·))). Assume, for the sake of contradiction,
that V1(x, t) > V1(x, t + h). Then there exists
u1(·) ∈ U[t,T ] such that for all u2(·) ∈ U[t+h,T ],
minτ∈[t,T ] l(φ(τ, t, x, u1(·))) > minτ∈[t+h,T ] l(φ(τ, t +
h, x, u2(·))). Choose u2(·) ∈ U[t+h,T ] according to
u2(τ) = u1(τ − h) for τ ∈ [t + h, T ]. By uniqueness,
φ(τ, t + h, x, u2(·)) = φ(τ − h, t, x, u1(·)) for all τ ∈
[t + h, T ]. Therefore, minτ∈[t,T ] l(φ(τ, t, x, u1(·))) >
minτ∈[t,T−h] l(φ(τ, t, x, u1(·))), which is a contradic-
tion. The last part is a special case of Proposition
3.1 of [27].

Lemma 1 makes two assertions. The first is that the
“value” of a given state x can only decrease as the
“time to go” increases. Starting from x the minimum
value that l experiences over a certain time horizon is
less than or equal to the minimum value that l would
experience if we stopped the evolution at any time
before the horizon expires. This is the reason why the
extra min was introduced in the Hamilton-Jacobi-
Bellman equation to produce the terminal value prob-
lem (5). The second part of the lemma is a variant
of the standard principle of optimality: it relates the
optimal cost to go from (x, t) to the optimal cost to
go from (x(t + h), t + h) and the minimum value ex-
perienced by l over the interval [t, t + h].

One can show that under Assumption 1 the value
function V1 is bounded and uniformly continuous.

Lemma 2 There exists a constant C > 0 such that
|V1(x, t)| ≤ C and |V1(x, t) − V1(x̂, t̂)| ≤ C(|x − x̂| +
|t − t̂|), for all (x, t), (x̂, t̂) ∈ R

n × [0, T ].

Lemma 2 is a special case of Proposition 3.1 of [27].

Next, introduce the Hamiltonian H1 : R
n × R

n → R

defined by

H1(p, x) = min

{

0, sup
u∈U

pT f(x, u)

}

. (10)

Lemma 3 There exists a constant C > 0 such that
for all p, q ∈ R

n and all x, y ∈ R
n, |H1(p, x) −

H1(q, x)| < C|p − q| and |H1(p, x) − H1(p, y)| <
C|p||x − y|.

The proof is straightforward. Finally, the following
fact (see, for example, [32], page 546) saves us the
trouble of checking the viscosity conditions at the
initial time.

Lemma 4 Assume that V1 satisfies the viscosity con-
ditions for equation (5) over R

n × (0, T ). Then for
all W : R

n × [0, T ] → R such that V1 − W attains a
local maximum (minimum) at (x0, t0) ∈ R

n × [0, T ),
∂W
∂t

(x0, t0) + H1

(

∂W
∂x

(x0, t0), x0

)

≥ 0 (≤ 0).

We are now in a position to prove the main result of
this section.

Theorem 1 V1 is the unique bounded and uniformly
continuous viscosity solution of the terminal value
problem

∂V

∂t
(x, t) + H1

(

∂V

∂x
(x, t), x

)

= 0

over (x, t) ∈ R
n × [0, T ] with boundary condition

V (x, T ) = l(x).

Proof: By Lemma 1, V1(x, T ) = l(x). Therefore,
under Lemma 4, it suffices to show that

(1) For all (x0, t0) ∈ R
n × (0, T ) and for all smooth

W : R
n × (0, T ) → R, if V1 − W attains a

local maximum at (x0, t0), then ∂W
∂t

(x0, t0) +

min
{

0, supu∈U
∂W
∂x

(x0, t0)f(x0, u)
}

≥ 0.
(2) For all (x0, t0) ∈ R

n × (0, T ) and for all smooth
W : R

n × (0, T ) → R, if V1 − W attains a
local minimum at (x0, t0), then ∂W

∂t
(x0, t0) +

min
{

0, supu∈U
∂W
∂x

(x0, t0)f(x0, u)
}

≤ 0.

Uniqueness then follows by Lemmas 2 and 3 and
a standard uniqueness result for viscosity solu-
tions [32].

Part 1: Consider an arbitrary (x0, t0) ∈ R
n × (0, T )

and a smooth W : R
n× (0, T ) → R such that V1−W

attains a local maximum at (x0, t0). Then, there
exists δ1 > 0 such that for all (x, t) ∈ R

n × (0, T )
with |x − x0|

2 + (t − t0)
2 < δ1 (V1 − W )(x0, t0) ≥

(V1 − W )(x, t). We would like to show that
∂W
∂t

(x0, t0) + min
{

0, supu∈U
∂W
∂x

(x0, t0)f(x0, u)
}

≥
0. Assume, for the sake of contradiction, that this is
not the case. Then, for some θ > 0,

∂W

∂t
(x0, t0) + min

{

0, sup
u∈U

∂W

∂x
(x0, t0)f(x0, u)

}

< −2θ < 0. (11)
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We distinguish two cases.

Case 1.1: supu∈U
∂W
∂x

(x0, t0)f(x0, u) < 0. Then
∂W
∂t

(x0, t0) + supu∈U
∂W
∂x

(x0, t0)f(x0, u) < −2θ.
Moreover, there exists an ε > 0 such that for all
u ∈ U , ∂W

∂x
(x0, t0)f(x0, u) < −ε. Therefore, since W

is smooth, there exists δ2 ∈ (0, δ1) such that for all
(x, t) ∈ R

n × (0, T ) with |x − x0|
2 + (t − t0)

2 < δ2

and all u ∈ U ,

∂W

∂t
(x, t) + min

{

0,
∂W

∂x
(x, t)f(x, u)

}

=
∂W

∂t
(x, t) +

∂W

∂x
(x, t)f(x, u)

< −θ < 0.

Consider an arbitrary u(·) ∈ U[t0,T ]. By continuity of
the solution with respect to time, there exists δ3 > 0
such that |φ(t, t0, x0, u(·)) − x0|

2 + (t − t0)
2 < δ2 for

all t ∈ [t0, t0 + δ3]. Therefore,

V1(φ(t0 + δ3, t0, x0, u(·)), t0 + δ3) − V1(x0, t0)

≤ W (φ(t0 + δ3, t0, x0, u(·)), t0 + δ3) − W (x0, t0)

=

∫ t0+δ3

t0

d

dt
W (φ(t, t0, x0, u(·)), t)dt

=

∫ t0+δ3

t0

(

∂W

∂t
(φ(t, t0, x0, u(·)), t)+

∂W

∂x
(φ(t, t0, x0, u(·)), t)f(φ(t, t0, x0, u(·)), u(t))

)

dt

< −θδ3.

By Lemma 1,

V1(x0, t0) = sup
u(·)∈U[t0,t0+δ3]

[

min

{

min
t∈[t0,t0+δ3]

l(φ(t, t0, x0, u(·))), V1(φ(t0 + δ3, t0, x0, u(·)), t0 + δ3)

}]

.

Therefore, there exists u(·) ∈ U[t0,t0+δ3] such that

V1(x0, t0) ≤ min

{

min
t∈[t0,t0+δ3]

l(φ(t, t0, x0, u(·))), V1(φ(t0 + δ3, t0, x0, u(·)), t0 + δ3)

}

+
θδ3

2

≤ V1(φ(t0 + δ3, t0, x0, u(·)), t0 + δ3) +
θδ3

2

which is a contradiction.

Case 1.2: supu∈U
∂W
∂x

(x0, t0)f(x0, u) ≥ 0. By equa-

tion (11), ∂W
∂t

(x0, t0) < −2θ < 0. Since W is smooth,
there exists δ2 ∈ (0, δ1) such that for all (x, t) ∈
R

n×(0, T ) with |x−x0|
2 +(t− t0)

2 < δ2,
∂W
∂t

(x, t) <
−θ < 0. Therefore,

V1(x0, t0 + δ2) − V1(x0, t0)

≤ W (x0, t0 + δ2) − W (x0, t0)

=

∫ t0+δ2

t0

∂W

∂t
(x0, t)dt

< −θδ2.

This contradicts Lemma 1.

Part 2: Consider an arbitrary (x0, t0) ∈ R
n × (0, T )

and a smooth W : R
n× (0, T ) → R such that V1−W

attains a local minimum at (x0, t0). Then, there exists
δ1 > 0 such that for all (x, t) ∈ R

n × (0, T ) with
|x − x0|

2 + (t − t0)
2 < δ1, (V1 − W )(x0, t0) ≤ (V1 −

W )(x, t). We would like to show that ∂W
∂t

(x0, t0) +

min
{

0, supu∈U
∂W
∂x

(x0, t0)f(x0, u)
}

≤ 0.

Assume, for the sake of contradiction, that for some
θ > 0,

∂W

∂t
(x0, t0) + min

{

0, sup
u∈U

∂W

∂x
(x0, t0)f(x0, u)

}

> 2θ > 0.

Therefore, there exists û ∈ U such that ∂W
∂t

(x0, t0)+

min
{

0, ∂W
∂x

(x0, t0)f(x0, û)
}

> 2θ > 0. By smooth-
ness of W , there exists δ2 ∈ (0, δ1) such that for all
(x, t) ∈ R

n × (0, T ) with |x − x0|
2 + (t − t0)

2 < δ2

∂W

∂t
(x, t) + min

{

0,
∂W

∂x
(x, t)f(x, û)

}

> θ > 0.

(12)
By continuity of the solution with respect to t, there
exists δ3 > 0 such that |φ(t, t0, x0, û) − x0|

2 + (t −
t0)

2 < δ2 for all t ∈ [t0, t0 + δ3]. Therefore, for all
t ∈ [t0, t0 + δ3],

V1(φ(t, t0, x0, û), t) − V1(x0, t0)

≥ W (φ(t, t0, x0, û), t) − W (x0, t0)

=

∫ t

t0

(

∂W

∂t
(φ(τ, t0, x0, û), τ) +

∂W

∂x
(φ(τ, t0, x0, û), τ)f(φ(τ, t0, x0, û), û)

)

dτ

≥

∫ t

t0

(

∂W

∂t
(φ(τ, t0, x0, û), τ)+

min

{

0,
∂W

∂x
(φ(τ, t0, x0, û), τ)f(φ(τ, t0, x0, û), û)

})

dτ

> θ(t − t0).

In particular,

V1(φ(t0 + δ3, t0, x0, û), t0 + δ3) − V1(x0, t0) > θδ3.
(13)

By Lemma 1,

V1(x0, t0) ≥ min

{

min
t∈[t0,t0+δ3]

l(φ(t, t0, x0, û)), V1(φ(t0 + δ3, t0, x

Case 2.1: V1(φ(t0 + δ3, t0, x0, û), t0 + δ3) ≤
mint∈[t0,t0+δ3] l(φ(t, t0, x0, û)). Then V1(x0, t0) ≥
V1(φ(t0 + δ3, t0, x0, û), t0 + δ3) and therefore
V1(φ(t0 + δ3, t0, x0, û), t0 + δ3)− V1(x0, t0) ≤ 0. This
contradicts equation (13).
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Case 2.2: V1(φ(t0 + δ3, t0, x0, û), t0 + δ3) >
mint∈[t0,t0+δ3] l(φ(t, t0, x0, û)). Then

V1(x0, t0) ≥ min
t∈[t0,t0+δ3]

l(φ(t, t0, x0, û)).

Recall that for all t ∈ [t0, t0 + δ3] with t > t0

V1(φ(t, t0, x0, û), t)−V1(x0, t0) ≥ θ(t− t0) > 0 (14)

(in fact, V1(φ(·, t0, x0, û), ·) is monotone increasing as
a function of t ∈ [t0, t0 +δ3]). By Lemma 1, for all t ∈
[t0, t0 + δ3], l(φ(t, t0, x0, û)) ≥ V1(φ(t, t0, x0, û), t) ≥
V1(x0, t0). Hence,

V1(x0, t0) = min
t∈[t0,t0+δ3]

l(φ(t, t0, x0, û)).

The minimum occurs at t = t0 and the minimizer
is unique. If this were not the case, then there
would exist τ ∈ [t0, t0 + δ3] with τ > t0 such that
mint∈[t0,t0+δ3] l(φ(t, t0, x0, û)) = l(φ(τ, t0, x0, û)).
Then

V1(x0, t0) = l(φ(τ, t0, x0, û)) ≥ V1(φ(τ, t0, x0, û), τ),

which would contradict equation (14). Therefore,

V1(x0, t0) = min
t∈[t0,t0+δ3]

l(φ(t, t0, x0, û)) = l(x0).

By Lemma 1, V1(x0, t0) ≤ V1(x0, t0 + δ3) ≤ l(x0).
Therefore, V1(x0, t0 + δ3) = l(x0) = V1(x0, t0). How-
ever,

V1(x0, t0 + δ3) − V1(x0, t0)

≥ W (x0, t0 + δ3) − W (x0, t0)

=

∫ t0+δ3

t0

∂W

∂t
(x0, t)dt

≥

∫ t0+δ3

t0

(

θ − min

{

0,
∂W

∂x
(x0, t)f(x0, û)

})

dt

≥ θδ3.

This contradiction completes the proof.

4 Flight Level Control: A Numerical Case
Study

To illustrate the results of Section 3, we consider the
problem of maintaining an aircraft at a desired flight
level. Commercial aircraft at cruising altitudes are
typically assigned a flight level by Air Traffic Control
(ATC). The flight levels are separated by a few hun-
dred feet (e.g. 500 or 1000, depending on altitude and
the type of airspace). Air traffic moves in different
directions at different flight levels (north to south in
one level, east to west in another, etc.). This arrange-
ment is desirable because it greatly simplifies the task
of ATC: the problem of ensuring aircraft separation,
which is normally three dimensional, can most of the

Yg

Xg

Yb

Xb

Yw

Xw
α

γ

V

L

D

T

mg

h

Fig. 1. Coordinate frames and forces for the aircraft
model.

time be decomposed to a number of two dimensional
(or even one dimensional) problems.

Changes in the flight level happen occasionally and
have to be cleared by ATC. At all other times the air-
craft have to ensure that they remain within certain
bounds (e.g. ±500 feet) of their assigned level. At the
same time, they also have to maintain certain limits
on their speed, flight path angle, acceleration, etc. im-
posed by limitations of the engine and airframe, pas-
senger comfort requirements, or to avoid dangerous
situations such as aerodynamic stall. In this section
we formulate a a SupMin optimal control problem
that allows us to address such constraints.

4.1 Aircraft Model

We restrict our attention to the movement of the air-
craft in the vertical plane and describe the motion us-
ing a point mass model. Such models are commonly
used in ATC research (see, for example, [6,39]). They
are fairly simple, but still capture the essential fea-
tures of aircraft flight. The analysis presented here
extends to three dimensions the aerodynamic enve-
lope protection problem studied in [6].

Three coordinate frames are used to describe the mo-
tion of the aircraft: the ground frame (Xg–Yg), the
body frame (Xb–Yb) and the wind frame (Xw–Yw).
The angles of rotation between the frames are de-
noted by θ (ground to body frame, known as the pitch
angle), γ (ground to wind frame, known as the flight
path angle) and α (wind to body frame, known as the
angle of attack). V ∈ R denotes the speed of the air-
craft (aligned with the positive Xw direction) and h
its altitude. Figure 1 shows the different forces ap-
plied to the aircraft: its weight (mg, acting in the neg-
ative Yg direction), the aerodynamic lift (L, acting in
the positive Yw direction), the aerodynamic drag (D,
acting in the negative Xw direction) and the thrust
exerted by the engine (T , acting in the positive Xb

direction).

A force balance leads to the following equations of
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motion

mV̇ = T cos(α) − D − mg sin(γ)

mV γ̇ = L + T sin(α) − mg cos(γ).

From basic aerodynamics, the lift and drag can be
approximated by

L =
SρV 2

2
(C0 + C1α)

D =
SρV 2

2
(B0 + B1α + B2α

2),

where Bi and Ci are (dimension-less) aerodynamic
coefficients, S is wing surface area and ρ is air density.

A three state model with x1 = V , x2 = γ and x3 = h
suffices for our purposes. The system is controlled
by two inputs, the thrust, u1 = T , and the angle of
attack 4 , u2 = α. We assume rectangular bounds on
the inputs, u ∈ U = [Tmin, Tmax]×[αmin, αmax]. After
a small angle approximation on α the equations of
motion become

ẋ =









−SρB0

2m
x2

1 − g sin(x2)
SρC0

2m
x1 − g cos(x2)

x1

x1 sin(x2)









+









1
m

0

0









u1

+









− Sρ
2m

x2
1(B1u2 + B2u

2
2)

SρC1

2m
x1u2

0









4.2 Cost Function and Optimal Controls

For safety reasons, certain combinations of speed and
flight path angle should be avoided, because they
may result in aerodynamic stall. Part of the task of
the Flight Management System (FMS) is therefore
to keep V and γ within a safe “aerodynamic enve-
lope”. Following [6], we consider a simplified rect-
angular envelope; improvements that can be intro-
duced to make the envelope more realistic are dis-
cussed in [4]. We require that Vmin ≤ x1 ≤ Vmax and
γmin ≤ x2 ≤ γmax, for some 0 < Vmin ≤ Vmax and
γmin ≤ γmax. In addition, to ensure that the aircraft
does not stray away from its flight level we require
that hmin ≤ x3 ≤ hmax for some hmin ≤ hmax. We
set 5 K = [Vmin, Vmax] × [γmin, γmax] × [hmin, hmax].

To encode these constraints as a cost in a Sup-

4 In practice, one can only control the second derivative
of the angle using the aerodynamic surfaces. We ignore
this complication here.
5 Strictly speaking, to follow the development on Sec-
tion 2.2 one needs to assume that the set K is open. It is
easy to see, however, that allowing K to be closed makes
no difference in this case.

Min problem we define a function l(·) : R
3 → R by

l(x) = min{x1 − Vmin, Vmax − x1

x2 − γmin, γmax − x2,

x3 − hmin, hmax − x3}.

Notice that l(x) ≥ 0 for x ∈ K and l(x) < 0 for
x 6∈ K. Clearly, l is Lipschitz continuous. To keep l
bounded (and since we are only interested in the be-
havior around the set K) we “saturate” the function
l outside the set [Vmin − δV, Vmax + δV ] × [γmin −
δγ, γmax + δγ] × [hmin − δh, hmax + δh] for some
δV, δγ, δh > 0.

The problem is now in a form that we can apply the
results of Section 3. The quantity to be maximized
in the Hamiltonian of equation (10) in this case is
quadratic in u,

p1

m
u1 −

p1Sρx2
1

2m
(B1u2 + B2u

2
2) +

p2SρC1x1

2m
u2.

The maximizers, û1 and û2 depend on the sign of p1.
Recall that x1 > 0 and let p̂ = p2C1−p1B1x1

2p1B2x1
. Then

• If p1 < 0 then û1 = Tmin and

û2 =















αmin if p̂ > (αmin + αmax)/2

{αmin, αmax} if p̂ = (αmin + αmax)/2

αmax if p̂ < (αmin + αmax)/2

• If p1 = 0 then û1 = [Tmin, Tmax] and

û2 =















αmin if p2 < 0

[αmin, αmax] if p2 = 0

αmax if p2 > 0

• If p1 > 0 then û1 = Tmax and

û2 =















αmin if p̂ ≤ αmin

p̂ if αmin < p̂ < αmax

αmax if p̂ ≥ αmax.

The singularities (where the maximizer is not unique)
play very little role in the numerical computation and
so will not be investigated further here; a more thor-
ough treatment (for the 2 dimensional case with state
x1 and x2) can be found in [6].

4.3 Numerical Results

The resulting optimal Hamiltonian was coded in a nu-
merical tool developed at Stanford University [20,21]
for computing viscosity solutions to Hamilton-Jacobi
equations using the algorithms of [22,23]. The re-
sults are shown in Figure 2 for a B727 aircraft cruis-
ing at 35,000 feet. The aerodynamic parameters used
(adapted from [40]) were B0 = 0.07351, B1 = −1.5 ·
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Fig. 2. Two level sets of the value function V1(x, 0), for
T = 1s (top) and T = 2.5s (bottom).

10−3, B2 = 6.1 · 10−4, C0 = 0.1667 and C1 = 0.109.
The remaining parameters (adapted from Eurocon-
trol’s BADA database [39]) were m = 74 ·103Kg, g =
9.81m/s2, S = 158m2, ρ = 0.3804Kg/m3, αmin =
0◦, αmax = 16◦, Tmin = 34386N (“descent thrust”),
and Tmax = 53973N . The parameters used in the
function l were Vmin = 207m/s (“low speed buffeting
limit”), Vmax = 260m/s, γmin = −10◦, γmax = 10◦,
hmin = −150m, hmax = 150m, δV = 5m/s, δγ =
2.5◦, δh = 10m. For a 100×100×100 grid the compu-
tation took 2415 seconds on an Athlon 1.4 processor
running SuSE Linux.

Figure 2 shows the level set Viab(0, K) = {x ∈
R

3 | V1(x, 0) ≥ 0} for two different values of the
horizon, T = 1.0s and T = 2.5s. As expected
from Lemma 1, these sets are nested (the level set
“shrinks” as T increases). For T ≈ 2.5s the shrink-
ing stops; the level sets for values T ≥ 2.5 are all the
same. This means that for all states included in the
level set for T = 2.5s one can find control actions to
keep them in this level set (and hence in the desired
safety envelope) for ever. This does not imply that
the B727 can be stabilized in 2.5 seconds. It sim-
ply means that all states outside this level set are
doomed to leave the safe envelope after at most 2.5

seconds. Notice that these states correspond to large
values of flight path angle, where only a few seconds
are required to cover 150 meters vertically.

The general shape of the level sets suggests that cer-
tain states (e.g. combining high altitude with high
flight path angle, low speed with high flight path an-
gle etc.) are unsafe and should be avoided. If the air-
craft ever gets to such a state, then, whatever the
FMS does from then on, it will sooner or later violate
the flight envelope requirements. If the initial condi-
tion is inside the level set, however, unsafe states can
be avoided by applying the optimal controls of Sec-
tion 4.2 whenever the state trajectory hits the bound-
ary of the level set (see [7] for practical problems as-
sociated with such a control strategy).

5 Solution of the InfMin Problem

We conclude by stating the corresponding results for
the InfMin problem. All proofs are omitted in the
interest of space, the reader is referred to [24] for
more details. We start again by showing that V2 has
appropriate continuity properties and satisfies an ap-
propriate version of the optimality principle.

Lemma 5 For all (x, t) ∈ R
n × [0, T ] and all h ∈

[0, T − t], V2(x, t) ≤ V2(x, t +h) and V2(x, T ) = l(x).
Moreover,

V2(x, t) = inf
u(·)∈U[t,t+h]

min{ min
τ∈[t,t+h]

l(φ(τ, t, x, u(·))),

V2(φ(t + h, t, x, u(·)), t + h)}.

There exists a constant C > 0 such that |V2(x, t)| ≤ C
and |V2(x, t) − V2(x̂, t̂)| ≤ C(|x − x̂| + |t − t̂|) for all
(x, t), (x̂, t̂) ∈ R

n × [0, T ].

Lemma 5 can be used to show the following.

Theorem 2 V2 is the unique bounded and uniformly
continuous viscosity solution to the terminal value
problem

∂V

∂t
(x, t) + min

{

0, inf
u∈U

pT f(x, u)

}

= 0

over (x, t) ∈ R
n × [0, T ] with V (x, t) = l(x).

Finally, The following corollary is a direct conse-
quence of Theorem 2, Proposition 3 and the unique-
ness of viscosity solutions.

Corollary 1 Let V3 be the unique bounded, uniformly
continuous viscosity solution of the Hamilton-Jacobi-
Bellman equation (7). Then the function V2(x, t) =
minτ∈[t,T ] V3(x, τ) is the unique bounded, uniformly
continuous viscosity solution to the terminal value
problem (6).

We conjecture that this fact is true more generally,
even in cases where an integral as well as a terminal
cost is present.
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6 Concluding Remarks

The results presented in this paper establish a re-
lation between the viscosity solutions of Hamilton-
Jacobi partial differential equations (5) and (6) and
reachability computations. The results provide a the-
oretical foundation for extending the use of numerical
algorithms developed for the approximation of viscos-
ity solutions to partial differential equations [22,23]
to viability and invariance computations [20,21]. The
form of equations (5) and (6) (in particular the fact
that they are in standard Hamilton-Jacobi form, the
Hamiltonians are continuous, and the boundary con-
dition are particularly simple) make this approach
especially attractive from the point of view of numer-
ical computations.

Reachability and invariance can also be approached
using tools from viability theory. Viability theory
methods [8] have recently been extended from con-
tinuous systems to a broad class of hybrid systems
known as impulse differential inclusions [41]. Cur-
rent research concentrates on relating the results dis-
cussed here to the viability theory formulation.
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