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Minimum Cost Optimal Control:
An Application to Flight Level Tracking

John Lygeros

Abstract— In earlier work we established a link be-
tween finite time viability and invariance for continu-
ous systems and the viscosity solutions to partial dif-
ferential equations which are variants of the standard
Hamilton-Jacobi equation. In this paper we show how
these results can be applied to address the problem
of ensuring that an aircraft does not deviate from the
flight level assigned to it by air traffic control. The
application illustrates the advantages of the proposed
viability characterisation: it makes the numerical solu-
tion of the problem easier!

I. Introduction

Because of their importance in applications rang-
ing from engineering to biology and economics, ques-
tions of reachability, viability and invariance have
been studied extensively in the dynamics and control
literature. Most recently, the study of these concepts
has received renewed attention through the study of
safety problems in hybrid systems. Reachability com-
putations have been used in this context to address
problems in the safety of ground transportation sys-
tems [12], [15], air traffic management systems [11],
[25], [26], flight control [16], [21], etc.

Direct characterisation of reachability concepts is
one of the topics addressed by viability theory [1].
The development of computational tools to support
the numerous viability theory methods is an ongoing
effort (see, for example, [6]). An alternative, indirect
approach to reachability questions is using optimal
control methods. In this case, the reachable, viable,
or invariant sets are characterised as level sets of the
value function of an appropriate optimal control prob-
lem. Using dynamic programming, the value function
can in turn be characterised as the solution to a par-
tial differential equation.

In earlier work we have demonstrated how reach-
ability questions can be encoded as optimal con-
trol problems where the cost is the minimum of a
function of the state over a given horizon [13], [14].
The objective of the controller is either to maximise
this quantity (SupMin problem), or to minimise it
(InfMin problem). We also showed how to charac-
terise the two value functions as viscosity solutions
to first order partial differential equations, which are
variants of the standard Hamilton-Jacobi equation.
An overview of these results is given in Section II.
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The main advantage of this approach is that the
resulting partial differential equations have very good
properties in terms of their numerical solution. The
value functions of the optimal control problems we use
can be shown to be uniformly continuous. Moreover,
they are characterised as solutions to partial differen-
tial equations in the standard Hamilton-Jacobi form,
with continuous Hamiltonians and simple boundary
conditions. Therefore, very efficient algorithms devel-
oped for this class of equations [22], [23], [19], [17],
whose properties have been extensively tested in the-
ory and in applications, can be directly applied to our
problem.

In this paper we demonstrate how one can take
advantage of these properties to numerically solve a
problem of flight level tracking. The problem is to
ensure that an airliner does not deviate excessively
from the flight level assigned to it by air traffic con-
trol. Excessive deviations are dangerous since they
may bring the aircraft in conflict with other aircraft
moving at different flight levels (and typically differ-
ent directions). At the same time, the aircraft has to
ensure that it maintains certain bounds on its speed
and flight path angle (to avoid stall, for reasons of
passenger comfort, etc.) In Section III we show how
all these constraints can be encoded in an appropri-
ate SupMin optimal control problem. We then use
the numerical algorithms of [22], [23] coded by [19],
[17] to compute the solution to the problem.

II. SupMin and InfMin Optimal Control

A. Statement of the Problems

Consider a continuous time control system,

ẋ = f(x, u) (1)

with x ∈ R
n, u ∈ U ⊆ R

m, f(·, ·) : R
n × U → R

n, a
function,

l(·) : R
n → R, (2)

and an arbitrary time horizon, T ≥ 0. Let U[t,t′] de-
note the set of Lebesgue measurable functions from
the interval [t, t′] to U . To eliminate technical diffi-
culties we impose the following standing assumption.

Assumption 1: U ⊆ R
m is compact. f and l are

bounded and uniformly continuous.



Under Assumption 1 system (1) with initial condition
x(t) = x ∈ R

n admits a unique solution x(·) : [t, T ] →
R

n for all t ∈ [0, T ], x ∈ R
n and u(·) ∈ U[t,T ].

We introduce two optimal control problems with
value functions V1 : R

n × [0, T ] → R and V2 : R
n ×

[0, T ] → R given by

V1(x, t) = sup
u(·)∈U[t,T ]

min
τ∈[t,T ]

l(φ(τ, t, x, u(·))) (3)

V2(x, t) = inf
u(·)∈U[t,T ]

min
τ∈[t,T ]

l(φ(τ, t, x, u(·))). (4)

The minimum with respect to time is well defined by
continuity. In the first problem the objective of the
input u is to maximise the minimum value attained
by the function l along the state trajectory over the
horizon [t, T ]. In the second problem, on the other
hand, the objective of u is to minimise this minimum.
For obvious reasons we will subsequently refer to the
first optimal control problem as the SupMin problem
and to the second problem as the InfMin problem.

B. Connection to Reachability

Given the control system of equation (1), the hori-
zon T ≥ 0 and a set of states K ⊆ R

n, a number of
questions can be naturally formulated regarding the
relation between the set K and the state trajectories
of (1) over the horizon T . Problems of interest include
the following.

Viability Does there exist a u(·) ∈ U[0,T ] for which the
trajectory x(·) satisfies x(t) ∈ K for all t ∈ [0, T ]?
Invariance Do the trajectories x(·) for all u(·) ∈ U[0,T ]

satisfy x(t) ∈ K for all t ∈ [0, T ]?
Reachability Does there exist a u(·) ∈ U[0,T ] and a
t ∈ [0, T ] such that the trajectory satisfies x(t) ∈ K?

As usual, Kc stands for the complement of the set K
in R

n. One would typically like to characterise the
set of initial states for which the answer to the via-
bility/invariance/reachability questions is “yes”. Or,
more generally, one would like to characterise the sets

Viab(t, K) = {x ∈ R
n | ∃u(·) ∈ U[t,T ] ∀τ ∈ [t, T ]

x(τ) ∈ K}
Inv(t, K) = {x ∈ R

n | ∀u(·) ∈ U[t,T ] ∀τ ∈ [t, T ]
x(τ) ∈ K}

Reach(t, K) = {x ∈ R
n | ∃u(·) ∈ U[t,T ] ∃τ ∈ [t, T ]

x(τ) ∈ K},

Notice that Reach(t, K) = (Inv(t, Kc))c, therefore,
the invariance and reachability problems are duals of
one another and need not be treated separately.

There is in fact a direct connection between these
sets and the solutions to the SupMin and InfMin op-
timal control problems. If we chose l(·) such that

K = {x ∈ R
n | l(x) > 0} and L = {x ∈ R

n | l(x) ≥ 0}
then one can show the following.

Proposition 1: Viab(t, K) = {x ∈ R
n | V1(x, t) >

0} and Inv(t, L) = {x ∈ R
n | V2(x, t) ≥ 0}.

C. Alternative Characterisations

We first point out that the set Inv(t, K) can be com-
puted using the standard Hamilton-Jacobi-Bellman
equation (see [27], [16] for more on this observa-
tion). Consider again that the closed set L = {x ∈
R

n | l(x) ≥ 0} and let

V3(x, t) = inf
u(·)∈U[t,T ]

l(x(T )).

A standard optimal control argument (see for exam-
ple [10], [7]) shows that V3 is a viscosity solution for
the terminal value problem

∂V3

∂t
(x, t) + inf

u∈U

∂V3

∂x
(x, t)f(x, u) = 0 (5)

with V3(x, T ) = l(x) over (x, t) ∈ R
n × [0, T ].

Proposition 2: For all (x, t) ∈ R
n × [0, T ],

V2(x, t) = minτ∈[t,T ] V3(x, τ). Moreover, Inv(t, L) =⋂
τ∈[t,T ]{x ∈ R

n | V3(x, τ) ≥ 0}.
Proposition 2 shows that one can compute Inv(t, L)
by solving a standard Hamilton-Jacobi-Bellman equa-
tion (5) and then taking the intersection of the level
sets of the solution (or, equivalently, computing the
minimum of the value function over time horizon
[t, T ]).

Unfortunately this approach will not work for the
SupMin problem. There are, however, other methods
in the optimal control literature that can be adapted
to characterise the set Viab(t, K). For example, one
can treat the problem as maximising the “exit time”
from the set K. It can be shown [10], [3] that this
involves solving a standard Hamilton-Jacobi-Bellman
equation over the set K (and possibly pieces of its
boundary), with rather complicated boundary condi-
tions (e.g. “freezing” of the value function at certain
parts of the boundary of K). Moreover, the value
function will not be continuous in general. These fea-
tures suggest that numerical computations are likely
to be difficult with this approach.

Another approach was proposed in [25] in the
context of differential games. This approach in-
volves a Hamilton-Jacobi equation with a discontin-
uous Hamiltonian. Continuity of the Hamiltonian is
desirable, because it greatly simplifies both the theo-
retical analysis and the numerical solution of the par-
tial differential equation.

The approach most closely related to the one dis-
cussed here is that of [5], [9], where a generalised ver-
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sion of the SupMin optimal control problem is formu-
lated and solved. Related work on differential games
includes [4] (extending the results of [5]) and [18]
(based on the classical results of [8]). In [5] the value
function of the problem is shown to satisfy a set of
discontinuous, quasi-variational inequalities. Though
this approach is conceptually appealing, the disconti-
nuity and the implicit dependence of the Hamiltonian
on the value function severely limit its usefulness from
the numerical computation point of view (as the au-
thors of [5] point out). The authors of [9] simplify this
characterisation to a continuous variational inequality.
In [9] specialised numerical schemes were developed to
exploit the continuity of the Hamiltonian to numeri-
cally approximate the solutions of the inequalities.

While all these approaches are sound in theory,
none is entirely satisfactory from the point of view
of numerical computation. Some involve discontinu-
ous Hamiltonians [5], [25], while others require dis-
continuous viscosity solutions to be computed over
complicated domains with complicated boundary con-
ditions [10], [3]. The best approach in this respect
seems to be that of [9], which involves a continu-
ous value function charactersied as a viscosity solu-
tion to a continuous variational inequality. The draw-
back is that the characterisation is not in terms of a
standard Hamilton-Jacobi equation; this implies that
specialised numerical tools have to be developed. In
the next section we present a solution to the Sup-
Min problem (and hence a charactersiation of the
set Viab(t, K)) where the Hamiltonian is not only
continuous, but the equation is also is in the stan-
dard Hamilton-Jacobi form and can therefore be ap-
proached numerically using well established schemes
for solving these types of equation.

D. Solution to the SupMin Problem

The solutions to the SupMin and InfMin problems
turn out to be very similar; for the most part the
only difference between the two characterisations is
replacing sup’s by inf’s in the equations. Since the
numerical example in the next section relies on the
SupMin characterisation, we give the results only for
this case. Results in this direction were first reported
in [13]; a complete discussion can be found in [14].

First, we note that the value function V1 satisfies
the following version of the optimality principle.

Lemma 1: For all (x, t) ∈ R
n × [0, T ] and all h ∈

[0, T − t]:

1. V1(x, t) ≤ V1(x, t + h) and V1(x, T ) = l(x).

2. V1(x, t) = supu(·)∈U[t,t+h]
[min{minτ∈[t,t+h] l(x(τ)),

V1(x(t + h), t + h)}].
Lemma 1 makes two assertions. The first is that the
“value” of a given state x can only decrease as the

“time to go” increases. Starting from x the minimum
value that l experiences over a certain time horizon is
less than or equal to the minimum value that l would
experience if we stopped the evolution at any time
before the horizon expires. The second part of the
lemma is a variant of the standard principle of opti-
mality: it relates the optimal cost to go from (x, t)
to the optimal cost to go from (x(t + h), t + h) and
the minimum value experienced by l over the interval
[t, t + h].

Under Assumption 1, the value function V1 turns
out to be bounded and uniformly continuous (see, for
example, Proposition 3.1 of [5]).

Lemma 2: There exists a constant C > 0 such that
|V1(x, t)| ≤ C and |V1(x, t) − V1(x̂, t̂)| ≤ C(|x − x̂| +
(t − t̂)), for all (x, t), (x̂, t̂) ∈ R

n × [0, T ].

Based on these two lemmas, the following charac-
terisation of V1 was derived in [13].

Theorem 1: V1 is the unique bounded and uni-
formly continuous viscosity solution of the terminal
value problem

∂V

∂t
(x, t) + min

{
0, sup

u∈U

∂V

∂x
(x, t)f(x, u)

}
= 0

over (x, t) ∈ R
n × [0, T ] with boundary condition

V (x, T ) = l(x).

Finally, it is easy to show that if V1 is used to char-
acterise the set Viab(t, K) the result is independent
of the function l used to characterise the set K.

Proposition 3: Let l : R
n → R and l̂ : R

n → R

be two uniformly continuous, bounded functions such
that {x ∈ R

n | l(x) > 0} = {x ∈ R
n | l̂(x) > 0}. Let

V1 : R
n × [0, T ] → R and V̂1 : R

n × [0, T ] → R be
the viscosity solutions of the terminal value problem
of Theorem 1 with boundary conditions V1(x, T ) =
l(x) and V̂1(x, T ) = l̂(x) respectively. Then {x ∈
R

n | V1(x, t) > 0} = {x ∈ R
n | V̂1(x, t) > 0} for

all t ∈ [0, T ].

III. Flight Level Control: A Numerical
Study

To illustrate the application of the above results,
we consider the problem of maintaining an aircraft at
a desired flight level. Commercial aircraft at cruis-
ing altitudes are typically assigned a flight level by
Air Traffic Control (ATC). The flight levels are sep-
arated by a few hundred feet (e.g. 500 or 1000, de-
pending on altitude and the type of airspace). Air
traffic moves in different directions at different flight
levels (north to south in one level, east to west in an-
other, etc.). This arrangement is desirable because
it greatly simplifies the task of ATC: the problem of
ensuring aircraft separation, which is normally three
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dimensional, can most of the time be decomposed to
a number of two dimensional (in some places even one
dimensional) problems.

Changes in the flight level happen occasionally and
have to be cleared by ATC. At all other times the air-
craft have to ensure that they remain within certain
bounds (e.g. ±250 feet) of their assigned level. At
the same time, they also have to maintain limits on
their speed, flight path angle, acceleration, etc. im-
posed by limitations of the engine and airframe, pas-
senger comfort requirements, or to avoid dangerous
situations such as aerodynamic stall. In this section
we formulate a a SupMin optimal control problem
that allows us to address such constraints.

A. Aircraft Model

We restrict our attention to the movement of the
aircraft in the vertical plane and describe the motion
using a point mass model. Such models are commonly
used in ATC research (see, for example, [16], [20]).
They are fairly simple, but still capture the essential
features of aircraft flight. The analysis presented here
is an extension to three dimensions of an aerodynamic
envelope protection problem studied in [16].

Three coordinate frames are used to describe the
motion of the aircraft: the ground frame (Xg–Yg),
the body frame (Xb–Yb) and the wind frame (Xw–
Yw). The angles of rotation between the frames are
denoted by θ (ground to body frame, known as the
pitch angle), γ (ground to wind frame, known as the
flight path angle) and α (wind to body frame, known
as the angle of attack). V ∈ R denotes the speed
of the aircraft (aligned with the positive Xw direc-
tion) and h its altitude. Figure 1 shows the different
forces applied to the aircraft: its weight (mg, acting
in the negative Yg direction), the aerodynamic lift (L,
acting in the positive Yw direction), the aerodynamic
drag (D, acting in the negative Xw direction) and the
thrust exerted by the engine (T , acting in the positive
Xb direction).

A force balance leads to the following equations of
motion

mV̇ = T cos(α) − D − mg sin(γ)
mV γ̇ = L + T sin(α) − mg cos(γ).

From basic aerodynamics, the lift and drag can be
approximated by

L =
CLSρV 2

2
(1 + cα) = aLV 2(1 + cα)

D =
CDSρV 2

2
= aDV 2,

where, CL, CD, and c are (dimension-less) lift and
drag coefficients, S is the wing surface area, ρ is the

Yg

Xg

Yb Xb

Yw

Xw

α

γ

θ

V

L

D

T

Mgh

Fig. 1. Coordinate frames and forces for the aircraft model.

air density and, as is commonly done in practice, the
dependence of the drag on the angle of attack has been
suppressed.

A three state model with x1 = V , x2 = γ and
x3 = h suffices for our purposes. The system is con-
trolled by two inputs, the thrust, u1 = T , and the
pitch angle1, u2 = θ. We assume rectangular bounds
on the inputs, u ∈ U = [Tmin, Tmax] × [θmin, θmax].
After a small angle approximation on α (valid for air-
liners, which usually operate around trimmed flight
conditions) the equations of motion become

ẋ = f(x, u) =


 −aD

m x2
1 − g sin(x2)

aL

m x1(1 − cx2) − g cos(x2)
x1

x1 sin(x2)




+




1
m
0
0


u1 +


 0

alc
m x1

0


 u2

B. Cost Function and Optimal Controls

For safety reasons, certain combinations of speed
and flight path angle should be avoided, because they
may result in aerodynamic stall. Part of the task
of the Flight Management System (FMS) is there-
fore to keep V and γ within a safe “aerodynamic
envelope”. Following [16], we consider a simplified
rectangular envelope; improvements that can be in-
troduced to make the envelope more realistic are dis-
cussed in [24], [25]. We require that Vmin ≤ x1 ≤ Vmax

and γmin ≤ x2 ≤ γmax, for some Vmin ≤ Vmax and
γmin ≤ γmax. In addition, to ensure that the aircraft
does not stray away from its flight level we require
that hmin ≤ x3 ≤ hmax for some hmin ≤ hmax. We
set2 K = [Vmin, Vmax] × [γmin, γmax] × [hmin, hmax].

1In practice, one can only control the second derivative of the
pitch angle using the aerodynamic surfaces. This makes the
model weakly non-minimum phase. We ignore this complica-
tion here.

2Strictly speaking, to follow the development on Section II-B
one needs to assume that the set K is open. It is easy to see,
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To encode these constraints as a cost in a Sup-
Min problem we define a function l(·) : R

3 → R by

l(x) = min{x1 − Vmin, Vmax − x1

x2 − γmin, γmax − x2,

x3 − hmin, hmax − x3}.
Notice that l(x) ≥ 0 for x ∈ K and l(x) < 0 for x 6∈ K.
Clearly, l is Lipschitz continuous. To keep l bounded
(and since we are only interested in the behaviour
around the set K) we “saturate” the function l out-
side the set [Vmin−δV, Vmax +δV ]× [γmin−δγ, γmax+
δγ] × [hmin − δh, hmax + δh] for some δV, δγ, δh > 0.

The problem is now in a form that we can apply the
results of Section II-D. The Hamiltonian of Theorem 1
becomes

H1(p, x) =min
{

0, p1

(
−aD

m
x2

1 − g sin(x2)
)

+ p2

(
aL

m
x1(1 − cx2) − g

cos(x2)
x1

)

+ p3x1 sin(x2)

+
1
m

p1û1 +
aLc

m
x1p2û2

}
.

The optimal controls are given by

û1 =
{

Tmin if p1 < 0
Tmax if p1 > 0

û2 =
{

θmin if p2 < 0
θmax if p2 > 0

(recall that x1 > 0). The singularities at p1 = 0 and
p2 = 0 play very little role in the numerical compu-
tation and so will not be investigated further here; a
more thorough treatment (for the 2 dimensional case
with state x1 and x2) can be found in [16].

C. Numerical Results

The resulting optimal Hamiltonian was coded in a
numerical tool developed at Stanford University [19],
[17] for computing viscosity solutions to Hamilton-
Jacobi equations using the algorithms of [22], [23].
The results are shown in Figures 2 and 5. The param-
eters used were aL = 65.3Kg/m, aD = 3.18Kg/m,
m = 160 · 103Kg, g = 9.81m/s2, c = 6, θmin = −20◦,
θmax = 25◦, Tmin = 60 · 103N , and Tmax = 120 · 103N .
They correspond to an Airbus A330 aircraft cruising
at 35000 feet. The parameters used in the function l
were Vmin = 92m/s, Vmax = 170m/s, γmin = −20◦,
γmax = 25◦, hmin = −150m, hmax = 150m, δV =
5m/s, δγ = 2.5◦, δh = 10m. The computation was
performed on a 100×100×100 grid and required 10298
seconds on a Pentium III, 800MHz processor running
Red Hat Linux.

however, that allowing K to be closed makes no difference in
this case.

Fig. 2. Level set of V1(x, 0) for T = 1s.

Fig. 3. Level sets of V1(x, 0) for T = 2s.

Figures 2 and 3 show the level sets Viab(0, K) =
{x ∈ R

3 | V1(x, 0) ≥ 0} for two different values of the
horizon, T = 1.0s and T = 2.0s respectively. As ex-
pected from Part 1 of Lemma 1, these sets are nested
(the level set “shrinks” as T increases). For T ≈ 2.0s
the shrinking stops; the level sets for values T ≥ 2 are
all the same. The general shape of the level sets sug-
gests that certain states (e.g. combining high altitude
with high flight path angle, low speed with high flight
path angle etc.) are unsafe and should be avoided. If
the aircraft ever gets to such a state, then, whatever
the FMS does from then on, it will sooner or later
violate the flight envelope requirements. If the ini-
tial condition is inside the level set, however, unsafe
states can be avoided by applying the optimal controls
of Section III-B whenever the state trajectory hits the
boundary of the level set (see [21] for practical prob-
lems associated with such a control strategy).

Better intuition about the unsafe states can be ob-
tained if the level set for T = 2.0s is projected along
the three axes. The projection along the x2 axis leads
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Fig. 4. Projection of T = 2s level set along x3 axis.

Fig. 5. Projection of T = 2s level set along x1 axis.

to the square [Vmin, Vmax]× [hmin, hmax] in the x1–x3

plane. This suggests that any combination of speed
and altitude within these bounds is safe for some value
of flight path angle. The projection along the x3 axis
leads to the set shown in Figure 4; the shape of the
set is the same for all altitudes. Combinations of low
speed with high flight path angle and high speed with
low flight path angle are unsafe; the aircraft is bound
to violate the speed restrictions for such combinations.
The projection along the x1 axis is shown in Figure 5.
Combinations of high altitude with high flight path
angle and low altitude with low flight path angle are
unsafe for all speeds; the aircraft is bound to violate
the flight level limitations for such combinations. The
situation gets worse (i.e. the projection on the x2−x3

coordinates gets smaller) as the speed increases.

IV. Concluding Remarks

The aim of this paper was to demonstrate how theo-
retical results on the characterisation of minimum cost
optimal control problems can be useful in an air traffic
control context. We were able to exploit the advan-
tages of the characterisation of [13], [14] (namely, con-
tinuity of the value function, continuity of the Hamil-
tonian, standard Hamilton-Jacobi for an simple ter-
minal conditions) to provide a numerical solution to
the problem of preventing large deviations from a de-
sired flight level, while at the same time satisfying
constraints on speed and flight path angle.

Reachability and invariance can also be approached
using tools from viability theory. Viability theory
methods [1] have recently been extended from con-
tinuous systems to a broad class of hybrid systems
known as impulse differential inclusions [2]. Current
research concentrates on relating the results discussed
here to the viability theory formulation. In terms of
applications, current work concentrates on extending
this approach to the problem of auto-rotative landing
for helicopters.
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