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Stochastic Reachability for Discrete Time Systems: An Application to Aircraft Collision
Avoidance

Oliver Watkins and John Lygeros

Abstract— Methods of approximating reachability proba-
bilities and their possible application to the problem of
conflict detection in air traffic control are presented. A gen-
eral description of stochastic reachability for discrete time
systems and an analytical formulation for their solution is
given. We then outline the problem of separation assurance
in air traffic control and the role of conflict detection within
this. A randomized conflict detection algorithm is described
in detail and its performance is compared with another
conflict detection algorithm.

I. I NTRODUCTION

Most methods of calculating conflict probabilities refer
to a probability measure that an aircraft is in a conflict
situation at a particular time instant, [9], [8], [1], [5].
These probability measures also tend to make significant
simplifications for the sake of mathematical tractability,
such as simplified conflict probability measures [9] or
that the uncertainty characteristics remain constant [8].
In this paper we present a step towards a method of
conflict detection that approximates the probability that
an aircraft will not enter conflict for an entire flight. We
refer to this as thesurvival probability, and refer to its
complement as theoverall conflict probability.

We base the calculations of the overall conflict probabil-
ity on an exact knowledge of the flight statistics. Clearly
this cannot be achieved in a real situation, but gives a
measure of the potential of conflict probes.

II. STOCHASTIC REACHABILITY

A. Problem Formulation

The general problem of conflict detection or avoidance
may be cast as a stochastic reachability problem. We
consider the trajectory of a general discrete time stochas-
tic difference equation:

yk+1 = f(yk) + wk; y0 � P (y0) (1)

Where f(yn) governs the deterministic dynamics and
wk is an innovation governing the stochastic dynamics.
We wish to determine the probability that the trajectory
y will enter a target zoneT during a specified time
interval [0; � ] (each time step is of length�t = �=K,

K being the total number of time steps, typical values
for � are in the region of 20 minutes). The dual of this
problem is the probability that the trajectory will remain
outside the target set for the whole time interval, referred
to as the survival probability. The survival probabilityS
may be written thus:

S = Pfyk =2 T ;8k = 0; 1; : : : ;Kg;

This equation may be reformulated as follows:

S = Pfy0 =2 T g \ fyk =2 T ;8k = 1; 2; : : : ;Kg;
S = Pfy0 =2 T gPfyk =2 T ;8k = 1; 2; : : : ;Kjy0 =2 T g;

Repeated application of this reformulation results in the
conditional expression:

S = Pfy0 =2 T g
KY
k=1

Pfyk =2 T jyi =2 T ; i = 0; 1; : : : ; k�1g:
(2)

So the problem is decomposed into determining the
probability of entry into the target zone at each time
step, given that the trajectory up to that point does not
enter the target zone. Note that�t is typically small
enough that the target zone cannot be ‘jumped over’ in
a single time step.

B. Methods of approximating stochastic reachability

The problem of approximating stochastic reachability
probability as described above may be cast in a Bayesian
format.

P (ykjy0 : : : yk�2 =2 T \ yk�1)P (yk�1jy0 : : : yk�2 =2 T ) =

P (yk�1jy0 : : : yk�2 \ yk)P (ykjy0 : : : yk�2 =2 T )

We may then evaluate the probability thatyk is not in
T :

P (ykjy0 : : : yk�1 =2 T )P (yk�1 =2 T jy0 : : : yk�2 =2 T ) =Z
yk�1 =2T

P (ykjy0 : : : yk�2 \ yk)P (ykjyo : : : yk�2 =2 T )dyk�1



Whence we may infer the following expression of the
survival probability at time stepk:

=

Z
yk�1 =2T

P (ykjyk�1 \ y0 : : : yk�2)P (yk�1jy0 : : : yk�2)dyk�1
(3)

All terms of this expression are known, however, they
may not be analytically evaluated. We propose a gen-
eral algorithm to approximate the survival probability
described in equation (2) and (3).

Firstly we note that a random movementwk from an
initial position y gives rise to a probability distribution
N (y; V ), in which V is the variance ofwk . Denote
this distributionp(y; t). wk is assumed to be stationary
and isotropic, thusp(y; t) will have the same shape for
all mean positionsy. The conditional distribution of
position given thaty has not enteredT before timet
is denoted bypc(y; t):

pc(yk; k�t) = P (ykjyi =2 T ; i = 0; 1; : : : ; k � 1) (4)

The algorithm is then written thus:

Algorithm II.1 (Estimation of S)

Initialisation Set:

pc(y; 0) =

(
p(y; 0) for y =2 T
0 for y 2 T

Repeat

Discretize the distributionpc(y; t) into a finite
set of elements, in each of whichpc(y; t) is
adequately approximated by a single value over
the element.

Redistribute each element with distribution
p(y;�t), except those centered inT .

Sum the redistributed minor distributions to give
the new distribution att+�t. S is given by the
integral of the volume under the new distribution.

Until t > �

Note that the ‘distribution’ referred to in the penultimate
instruction of the algorithm is not a true probability
distribution, as the integral under it is not equal to 1, but
the probability that the aircraft has not entered conflict
to that point.

C. Model for Application to Aircraft Survival Probabil-
ity

The intended application area for this algorithm is sepa-
ration assurance in air traffic control. A substantial task

in separation assurance is to identify potential conflict
situations sufficiently early to resolve them safely. This
application may be cast exactly as described in section
II-A. Each aircraft involved in an encounter is modelled
using a non-linear stochastic differential equation. This
may be approximated by discrete time stochastic differ-
ence equation, in which the stochastic noise represents
all sources of position uncertainty such as wind. The
target zoneT models an exclusion zone around each
aircraft.

1) General Model: The model we use is taken from
[9], which models a two aircraft encounter in two
dimensions. For simplicity we also work in two dimen-
sions; extensions to three dimensions are discussed in
section V. The basis of the model is that each aircraft
follows a flight plan made up of 4D waypoints, at
each discrete time step all waypoints that have been
passed are discarded, and the aircraft’s current position
is encoded as the first waypoint. This represents a form
of state feedback, ensuring the nominal flight direction
is towards the next waypoint, thus limiting the size of
lateral deviations from the flight plan. The general model
in two dimension is given by:

x1k+1 = f1(x
1
k) + w1k;

x2k+1 = f2(x
2
k) + w2k;

y1k = x1k + v1k;

y2k = x2k + v2k:

In whichxik gives the position of aircrafti at time stepk,
with position uncertainty due the stochastic innovations
wi
k, mainly due to wind on the aircraft.yik is the

observed position, affected by radar uncertaintyvik. yik is
observed at every radar scan, typically every 12 seconds.
The conflict zoneT is a circle given by:

T = fjjx1k � x2kjj < sg;
in which s is the minimum permitted separation (cur-
rently set at5nmi).

2) Coordinate Transformations:Conflict situations are
dependent solely on the relative position of the aircraft,
which enables a significant simplification to be made to
the dynamics.

We assume that the disturbanceswi
k are both zero mean

Gaussian and homogeneous. We may therefore break
down the relative motion of the two aircraft into two new
sets of dynamics, one encompassing all deterministic
dynamics, referred to as the deterministic aircraft, the
other encompassing all stochastic dynamics, referred to
as the stochastic aircraft.

2



Equiprobability Ellipse forys
x1

x2

Direction of flight

yr

Conflict area,T

Fig. 1. Transformed conflict geometry

The implications of this transformation is that the de-
terministic dynamics may be trivially simulated, while
more complex simulations are performed on the stochas-
tic dynamics. The stochastic dynamics are given by the
following equation:

xsk+1 = w2k � w1k (5)

As the two innovationsw1k and w1k are zero mean
Gaussian we may replace them with a single innovation
uk.

Figure 1 illustrates the transformed conflict geometry.

D. Erzberger and Paielli model

Work by Erzberger and Paielli [3], [6], [7], has suggested
suitable flight path statistics. Analysis of track data led
to the following variance matrix being proposed:

�Vi(t) =

�
�2a(t) 0
0 �2c (t)

�
:

Where�2a(t) and �2c (t) are the along-track and cross-
track variances respectively, each local with respect to
the reference path. The growth of these values with time
has been empirically established in [6], specifically:

�2a = r2at
2

�2c = minfr2cs2(t); ��2cg
Wherera andrc are suitable constants,s(t) the distance
travelled, and��2c a saturation value for the cross track
variance.

Each aircraft is flying at a known heading�i, the
variance matrix in the global coordinate frame is rotated
appropriately:

Vi(t) = R(�i) �V (t)R(�i)
T

Where the rotation matrix,R(�i), is given by

R(�i) =

�
cos �i � sin �i
sin �i cos �i

�
;

Given the assumption that the wind on each aircraft is
independent we may thus infer that the distribution of
xsk is Gaussian, with zero mean and covariance:

V (t) = V1(t) + V2(t):

To ensure this variance is adhered to we must find a suit-
able distribution from which to drawuk, such that the
total position variance along the trajectory corresponds
to equation (II-D). We denote this distributionVsub.

Lemma II.2 The varianceVsub of the distribution from
which uk is drawn is given by:

Vsub = V (t+�t)� V (t)

Proof: If Vsub and V (t) are independent then, as re-
quired,V (t + �t) is given by a simple summation of
variances.V (t) represents the variance of all samples of
uk up to timet, asV (t+�t) is given by the variances
of all samples ofuk up to time t + �t, i.e. the same
sequence with one more sample,uk+1. As all samples
are independent we may conclude thatVsub, dependent
only on the expectation ofuk+1 is independent ofV (t).

Vsub may be rotated such that the equiprobability el-
lipses which it defines have their axes aligned with the
coordinate axes of the state space. In this caseVsub =
diag(�21 ; �

2
2), in which�21 and�22 describe the statistics

for the growth of uncertainties along each coordinate
axis. This transformation is applied in algorithm III.1.

III. N UMERICAL CALCULATION

A. Gridding methods and problems

An approximated implementation of equation (3), has
been formulated. Gridding the state space enables a
numerical integration to be performed, with arbitrarily
close accuracy. The implementation of this is quite
straightforward, however two problems become appar-
ent. The first of these is that misalignment between
a circular conflict zone and square elements introduce
potentially significant errors. Solving this problem by

3



reducing the element size is not practical due to the
second problem; the dimensionality of the problem
renders the calculation far too complex for meaningful
results to be obtained.

We now consider a randomized method, designed to
enable the calculations to be performed with much
greater computational efficiency.

B. Particle Diffusion

Randomized methods are becoming popular for solv-
ing complex numerical problems. By drawing sufficient
samples from a known distribution its properties may
be approximated arbitrarily closely, with well defined
bounds on the accuracy [10].

This approach is inspired by the randomized methods
used in [9]. We use a technique which we shall refer to
as ‘particle diffusion’. Algorithm II.1 may be considered
as a propagation of many aircraft, initially distributed
according to an initial probability distribution. At each
time step those that have entered the conflict zoneT are
removed from the simulation, randomized perturbations
are then added to the position of each aircraft and the
process is repeated. In this way the aircraft ‘diffuse’ over
time.

The geometry remains the same, i.e. a ‘deterministic
aircraft’ at positionxr and a ‘stochastic aircraft’ initially
located at the origin. A large numberN of aircraft are
created at timet = 0, located at the origin (for simplicity
we assume that each radar scan exactly observes the
aircraft position, thusxik = yik). At each time step a set
of random extractions are performed according to the
statistics ofVsub, which represent the stochastic part of
the movement of each aircraft. The random movements
are then simply added to the position of the stochastic
aircraft, those that enter the target zoneT are removed
from the simulation; the proportion of those remaining
gives the survival probability. This is implemented as
follows:

Algorithm III.1 (Randomized propagation of air-
craft positions)

Initialization Set C = 0N , a vector of zeros of
lengthN . Rotate the geometry of the encounter such
that Vsub = diag(�21 ; �

2
2) and createN aircraft at

positionsyi = (yi1; yi2) = (0; 0) for all i.
repeat

for i = 1..N
Extract �y1 and �y2 from distributions
N (0; �21) andN (0; �22) respectively.

Updateyi1 = yi1 +�y1, yi2 = yi2 +�y2

end
Update position ofT according to deterministic
relative motion
for i = 1::N

if yi 2 T
then Ci = 1

end

end

S = 1��N
i Ci=N

Until t > �

This algorithm is straightforward to implement, and
is much more computationally practical. Extension to
three dimensions will necessitate drawing another set
of random extractions, which will increase processing
time by approximately 50%. Work is in progress to
assess the accuracy of this algorithm. We conjecture
that is exhibits typical Monte-Carlo method convergence
characteristics; the error is of order1=

p
N .

IV. SIMULATION RESULTS

A. Classification of alerts

As discussed in the introduction we wish to maximise
the rate of successful alert while minimising the rate
of false alert. There are four alert possibilities for each
flight:

1) Successful alert; an alert is given, and the aircraft
subsequently enters conflict.

2) False alert; an alert is given, but the flight remains
conflict free.

3) Missed alert; no alert is given, but a conflict
occurs.

4) No alert; no alert is given, and the flight is conflict
free.

Of these 2 and 3 are situations where an incorrect alert
state is generated.

Figure 2 shows the general conflict geometry, we have
freedom to controlv1; v2; y1; y2 and �. For a given
conflict threshold there will be certain areas of the state
space in which the probability of conflict exceeds the
threshold. If we hold relative heading (�) and aircraft
speeds (v1 andv2) constant we may determine the initial
separations (y1; y2) for which probability of conflict is
greater than a specified alert threshold, which is helpful
in visualising the aircraft trajectories giving rise to each
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Fig. 2. General Conflict Geometry, showing the nominal aircraft
trajectories. The ‘*’ are the starting points for each trajectory.

Alert Zone Conflict Zone

MA
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Fig. 3. The four different alert situations that may occur (SA =
successful alert, FA = false alert, MA = missed alert, NA = no alert).

of the four alert classes. Figure 3 shows a pictorial
representation of the four alert classes.

B. Conflict Detection

In this section we compare algorithm III.1 with the
randomized method developed in [9]; already shown
to compare favourably with other algorithms in the
literature. The two algorithms use the same flight model,
although this model may easily be changed if other
comparisons were to be made. In common with the
comparison method, we stipulate that alerts must be
generated at least 1 minute before conflict to be judged
successful.

For a first assessment of this new algorithm we use
a set of simple encounter geometries; simply various
crossing angles between0Æ and90Æ, each with minimum
separation5nmi, except the parallel flight case, where
the nominal separation is8nmi. Comparative tests of
the method outlined here have been made in each of
these geometries.

Here we use SOC curves for comparison. These were
established by Kuchar [4], and provide an effective tool
for visualising results of conflict probes. The SOC curve
plots probability of false alert (P(FA)) against probability
of successful alert (P(SA)), for alert thresholds in the
interval [0; 1]. The optimal operation point is that closest

to the point (0; 1), which represents 100% successful
alerts with no false alerts, whence the optimal alert
threshold may be extracted. On each graph the optimal
operating points are shown with aÆ symbol.

At 90Æ crossing angle the comparison method can be
expected to perform particularly well, as the assumptions
used are largely satisfied. Figure 4 the close confor-
mance of the new and old methods in this geometry
(the dashed line shows the performance of the new algo-
rithm, the solid line the performance of the comparison
algorithm).
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Fig. 4. SOC curve for90Æ crossing angle.

The probability measure used in [9] appears to be
effective across a large range, closely matching the
results produced from the new algorithm even at more
acute crossing angles. Figure 5 shows the SOC curve
for a flight in which the crossing angle is30Æ.

The performance of all algorithms in parallel flight
situations has been a particular cause for concern. Figure
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Fig. 5. SOC curve for30Æ crossing angle.
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6 shows the performance of all the two algorithms in
this geometry. The new method, using more information
starts to perform better.
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Fig. 6. SOC curve for parallel flight

V. CONCLUSIONS ANDFURTHER WORK

The method outlined here is not intended to be used
in conflict resolution in its current form, but gives an
indicator of the potential of Monte Carlo methods for
conflict detection. Using the exact statistics of aircraft
position uncertainty is not practical, but gives a maxi-
mum amount of knowledge about the aircrafts’ future
trajectory, thus approximating the best possible conflict
detection.

As stated the method outlined in this paper only ap-
proximates the true conflict probability. Important work
therefore is either to place bounds on the accuracy of this
method, or find a way of calculating the overall conflict
probability and hence SOC curves without recourse to
randomized methods.

One factor that has been identified in this research is the
tendency for any false alerts generated to be generated
early in the detection time interval. Discarding predic-
tions from these times improves the shape of the SOC
curve. Figure 7 shows the effect of only considering
those predictions made within 5 minutes of minimum
separation, compared to using the alerts generated over
the whole prediction horizon.

This suggests further research is necessary to identify
the maximum length of prediction horizon over which
conflict detection will be considered worthwhile.
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