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Abstract

Switching Linear Systems (SLSs) are a subclass of hybrid systems characterized by a Finite
State Machine (FSM) and a set of linear dynamical systems, each corresponding to a state of the
FSM. The transition between two different states of the FSM is caused by external uncontrollable
events that act as discrete disturbances. In the past few years structural properties of SLSs
have been the topic of intensive study and in particular much work has been devoted to the
attempt of characterizing their stability and/or stabilizability properties. We focus on the
class of uncontrolled SLSs with a dwell time associated to each transition. Loosely, a dwell
time function assigns to each transition a dwell time that serves as a minimal delay for the
transitions. Notice that in our setting the dwell time is associated with transitions rather than
with locations. The motivation to use the notion of dwell time function lies in the possibility to
quantify the balance between long delays for some transitions and short delays for others. For
instance, in a cycle of transitions, instantaneous transitions could be compensated by long delays
elsewhere in the cycle. A recent result (see ”Can linear stabilizability analysis be generalized
to switching systems?” by E. De Santis, M.D. Di Benedetto, G. Pola), which extends Kalman
decomposition to the class of controlled SLSs, shows that a controlled SLS is asymptotically
stabilizable if and only if an uncontrolled SLS, appropriately associated to the controlled SLS,
is asymptotically stable. Then, the stabilizability problem for the class of controlled SLSs
directly translates to the stability analysis of uncontrolled SLSs. Therefore, we focus on stability
problems for uncontrolled SLSs. It is well-known that if transitions are sufficiently delayed
and if the dynamics in each location is asymptotically stable, then the uncontrolled SLS is
asymptotically stable. The case of stability under quadratic Lyapunov function analysis is
investigated. In this special case, an explicit condition on the dwell time function that ensures
asymptotic stability is provided. Although this condition is based on estimates and is therefore
conservative, it yields the possibility of instantaneous transitions when applied to the case where
a common quadratic Lyapunov function exists. With respect to previous work in this research
area, our approach gives less conservative conditions.

Switching linear systems are an important subclass of hybrid systems and they have been extensively
studied in the literature. Considerable attention has been payed to the characterization of their
stability properties (e.g. [1], [2], [6], [8], [10], [9], [13], [12] and [14]). Despite the simple dynamics
within each location, due to the interaction among the locations a satisfactory stability theory for
switching linear systems is still lacking. This paper, following the approaches developed in [6, 13],
offers new sufficient conditions ensuring asymptotic stability. In specific cases these yield tighter
results than those in [6, 13].

Switching linear systems are dynamical systems characterized by a hybrid state composed by a
discrete component `, called location and a continuous component x. The evolution of the discrete
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component ` is may be thought of as being caused by unknown and external discrete disturbance,
and follows a discrete event system [7]. The evolution of the continuous component x is governed
by linear differential equations depending on the current discrete state `. In our setting there is no
state reset, that is, whenever a discrete transition occurs, the continuous state does not jump. This
implies that the continuous state evolution is a continuous function of the time. A formal definition
of switching linear systems based on [3], is given below.

Definition 1 A Switching Linear System (SLS) S is a tuple (L, ∆, E, Rn, A) where L = {l1, l2, ..., lN}
is a finite set of locations, N ∈ N; E ⊂ L × L is a collection of discrete transitions; ∆ : E → R

+

is the dwell time function; R
n is the continuous state space; A : L → R

n×n is a family of square
matrices associated with each location.

Loosely, the dwell time function ∆ enables transitions with a delay. The transition e can take place
∆(e) units of time after the previous transition. The precise effect of ∆ can be formalized using
the language of timed automata. In this framework ∆ specifies a family of guards. Notice that
there are no invariants, i.e., transitions are not forced. Given a SLS S = (L, ∆, E, Rn, A), the tuple
DS = (L, ∆, E) can be viewed as a Timed Automaton (TA), having state set L, transition relation
E, and guards defined by ∆. TA DS characterizes the structure of discrete variables of S. Moreover
DS can be decomposed into its strongly connected components [7], i.e. the maximal sets of mutually
reachable states, and all strongly connected components determine a directed acyclic graph.
In principle we would like to allow a instantaneous jumps from one location to the other. To avoid
technical complications concerning Zeno behavior, however, we assume a uniform minimal dwell
time. To that effect we choose δmin > 0 and we require that for all e ∈ E: ∆(e) ≥ δmin. It should
be emphasized that δmin is a design parameter and can be chosen arbitrarily small.
Summarizing, in our setting a switching linear systems consists of a finite number of locations
` ∈ L. In location ` the continuous state x evolves according to d

dt
x = A(`)x. A transition

e ∈ E from location `1 to `2 can occur only ∆(e) times units after location `1 was entered. Recall
that a hybrid time basis τ is an infinite or finite sequence of intervals Ij satisfying the following
conditions: Ij = {t ∈ R

+
0 : tj ≤ t ≤ t′j}; if card(τ) = m + 1 < ∞, then Im is of the form

Im =
{
t ∈ R

+
0 : tm ≤ t < ∞

}
and t′m = ∞; for all j, tj ≤ t′j and for j > 0, tj = t′j−1. Denote by T

the set of all hybrid time bases. The definition of SLSs temporal evolution can be then formalized
by means of the notion of execution.

Definition 2 An execution χ of a SLS S is a collection (`0, x0, τ, `, x) with (`0, x0) ∈ L×R
n, τ ∈ T ,

` : τ → L, x : R
+
0 × N → R

n satisfying:

• Discrete evolution: For all j: (`(Ij), `(Ij+1)) ∈ E and `(I0) = `0.

• Continuous evolution: x(0, `(I0)) = x0, ∀t ∈ Ij x satisfies d
dt

x(t) = A`(Ij )x(t), and x(t′j , `(Ij)) =
x(tj+1, `(Ij+1)).

The problem we address in this paper is the analysis of asymptotic stability of SLSs according to
the following definition.

Definition 3 [3] A Switching Linear System S is stable if for all ε > 0 there exists δ > 0 such that
for any continuous initial state x0 with ‖x0‖ < δ, ‖x(t, j)‖ < ε, ∀t ≥ 0, ∀j ≥ 0, for all executions
with continuous initial state x0. An SLS S is (globally) asymptotically stable if it is stable and for
any ε > 0 and for any x0 ∈ R

n, there exists time t such that x(t, j) ∈ εB, ∀t ≥ t, ∀j ≥ j, for all
executions with initial continuous state x0, where j = inf {j : t ∈ Ij}.

Stability analysis of switching linear systems has been addressed in the literature in several papers,
for a survey see [2] and [14]. A recent result [5], which extends Kalman decomposition to the
class of controlled SLSs, shows that a controlled SLS is asymptotically stabilizable if and only if an
uncontrolled SLS, appropriately associated to the controlled SLS, is asymptotically stable. Then,
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the stabilizability problem for the class of controlled SLSs directly translates to the stability analysis
of uncontrolled SLSs.
As shown by Liberzon et al. [10] and Johansson et al. [8], existence of a common Lyapunov function
for all subsystems ẋ = A(`)x, ` ∈ L ensures asymptotic stability for all dwell time function ∆.
In general, such function can be searched by using LMI techniques. In particular, its existence is
ensured in the case of subsystems with asymptotically stable matrices either commuting pairwise
(see [12]) or generating a solvable Lie algebra (see [9] and [1]). Moreover, stability results for SLSs
exhibiting a minimum time separation between consecutive switchings are given by Morse [13] and
Hesphana et al. [6]. In [13] Morse introduced the notion of minimum dwell time. In our notation this
amounts to the requirement that ∆(`1, `2) ≥ δ1 for an appropriately chosen set of positive numbers
δj called minimum dwell times. Notice that the minimum dwell time for a particular transitions
only depends on the ‘departure location’ and not on the destination. In [6], Hesphana et al. propose
a more flexible notion, that of average dwell time. Asymptotic stability is ensured if the number of
jumps in a time unit is less than a prescribed parameter.
In the present paper we analyse the dwell time function ∆, explicitly incorporating the possibility
that the minimum dwell time may depend on the transition rather than the location. Also, our
analysis is concerned with the interaction among the dwell times corresponding to different tran-
sitions. Regarding the latter, this means that large dwell times for one transition allows for small
dwell times of subsequent transitions.
The problem we address in this paper is formalized in the following.

Problem 4 Given a SLS S = (L, ∆, E, Rn, A), find conditions on the dwell time function ∆ that
ensures the asymptotic stability of S.

Since the dwell time induces guards only, it is easily seen that all locations should be Hurwitz.

Lemma 5 A necessary condition for a SLS S = (L, ∆, E, Rn, A) to be asymptotically stable is that
A(`) is Hurwitz for any ` ∈ L.

In the sequel we therefore assume that SLSs under consideration satisfy the necessary condition
above. Moreover given the topological properties of discrete variables acting on SLSs the following
result holds.

Lemma 6 An SLS S is asymptotically stable if and only if each strongly connected component of S
is asymptotically stable.

Let S = (L, ∆, E, Rn, A) be a SLS such that A(`) is Hurwitz for any ` ∈ L. Consider a family of
symmetric and positive definite matrices {Q`}`∈L. There exists a unique family of symmetric and
positive definite matrices {P`}`∈L such that:

AT (`)P` + P`A(`) = −Q`, ∀` ∈ L. (1)

Functions V`(x) = xT P`x are Lyapunov functions for systems ẋ = A(`)x, ` ∈ L. Given positive real
numbers c` > 0, ` ∈ L, let us define the sets

Ω(`, c`) =
{
x ∈ R

n | xT P`x ≤ c`

}
.

By analyzing mutual position of sets Ω(`, c`), in the continuous state space, a condition on the dwell
time function may be found, ensuring asymptotic stability of the SLS under consideration.

Proposition 7 Let S = (L, ∆, E, Rn, A) be a SLS such that A(`) is Hurwitz for all ` ∈ L. For any
e = (`1, σ, `2) ∈ E define

∆1(e) := max

(

δ0, max
x0∈Ω(`1,c`1

)
min

{

t ≥ 0 : eA(`1)tx0 ∈ λe Ω(`1, c`1)
})

, (2)

where λe = max {λ > 0 : λ Ω(`1, c`1) ⊂ Ω(`2, c`2)}. If ∆(e) ≥ ∆1(e) for any e ∈ E, the SLS S is
asymptotically stable.
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Remark 8 Sets Ω(`, c`), ` ∈ L are domains of attraction [4], induced by quadratic Lyapunov func-
tions. By replacing in Proposition 7 sets Ω(`, c`), ` ∈ L with general domains of attraction, results
still hold. However we restrict our attention to sets Ω(`, c`), since they allow algebraic estimates of
function ∆1(.).

The computation of (2) may be done numerically. In the following we derive an estimate of the
function ∆1(.) defined in (2), which can be easily computed. Given a square matrix M , σ+(M)
and σ−(M) denote the largest and the smallest eigenvalue of M respectively. Finally for any ` ∈ L,
let us write P` = R`R` where R` is the unique positive definite symmetric square root of P`. The
following result holds.

Proposition 9 Let S = (L, ∆, E, Rn, A) be a SLS such that A(`) is Hurwitz for any ` ∈ L. Define
for any e = (`1, σ, `2) ∈ E,

∆2(e) := max

(

δ0,−−
σ−(Q`1)

σ+(P`1)
ln

(
c`2

c`1

σ−
(
R−1

`2
P`1R

−1
`2

)
))

. (3)

If ∆(e) ≥ ∆2(e) for any e ∈ E, the SLS S is asymptotically stable.

Proof. Let λ1 be defined as

λ1 = max{λ ≥ 0 | λΩ(`1, c`1) ⊂ Ω(`2, c`2)}.

Let x0 ∈ Ω(`1, c`1). We want to find an estimate for the smallest time instant τ1 such that

eA(`1)tx0 ∈ λ1Ω(`1, c`1) t ≥ τ1.

Notice that eA(`1)tx0 ∈ λ1Ω1 if and only if

(eA(`1)tx0)
TP`1e

A(`1)tx0 ≤ c1λ
2
1. (4)

Define x(t) = eA(`1)tx0 and z(t) = x(t)T P`1x(t). By (1) if follows that

d

dt
z(t) = −x(t)TQ`1x(t)

≤ −σ−1(Q`1)x(t)Tx(t)

≤ −
σ−(Q`1)

σ+(P`1)
︸ ︷︷ ︸

µ

z(t).

It follows that
z(t) ≤ e−µtz(0).

Now, take for z(0) = c1, the ‘worst’ possible case and combining this with (4), then it follows that
we can take

τ1 = −
1

µ
ln λ2

1 = −
σ−(Q`1)

σ+(P`1)
ln λ2

1. (5)

Finally, we derive an expression for λ2
1. We want to find the largest λ1 such that x ∈ λ1Ω(`1, c`1)

implies x ∈ Ω(`2, c`2). In other words there should hold

xTP`1x ≤ c`1λ
2
1 ⇒ xTP`2x ≤ c`2 .

To find λ1 we observe that

max
xTP`1

x≤c1λ2

1

xTP`2x = max
xTP`1

x=c1λ2

1

xTP`2x.
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Decompose P2 = R2R2 where R2 = RT
2 > 0. Then

max
xTP1x=c1λ2

1

xTP2x = max
yTR

−1

2
P1R2y=c1λ2

1

yTy =
c1λ

2
1

σ−(R−1
2 P1R2)

.

We want this maximum not exceed c2 and therefore we take

λ2
1 =

c`2

c`1

σ−
(
R−1

`2
P`1R

−1
`2

)
.

Substituting this in (5) yields

τ1 = −−
σ−(Q`1)

σ+(P`1)
ln

(
c`2

c`1

σ−
(
R−1

`2
P`1R

−1
`2

)
)

.

Therefore by defining

∆2(e) := max

(

δ0,−
σ−(Q`1)

σ+(P`1)
ln

(
c`2

c`1

σ−
(
R−1

`2
P`1R

−1
`2

)
))

,

the statement follows.
It is easy to see that ∆2(e) ≥ ∆1(e) for all e ∈ E. Note that ∆2(.) depends on matrices Q`1 , Q`2

and constants c`2 and c`1 .
Consider a SLS S = (L, ∆, E, Rn, A) and assume that there exists a symmetric and positive definite
matrix P = P T > 0 satisfying Lyapunov equations (1) for all ` ∈ L with P` = P and for some
matrices Q`. In this case a common Lyapunov function V (x) = xT Px exists and the SLS is
asymptotically stable for all dwell time functions ∆. This actually means that even if ∆(e) = δ0 for
all e ∈ E, the SLS (L, ∆, E, Rn, A) is asymptotically stable. By considering the same case in the
estimate (3), by choosing c`1 = c`2 , it is easily seen that ∆2(e) = δ0 for all e ∈ E: thus, estimate (3)
of ∆ and ∆ coincide if a common quadratic Lyapunov function exists.

Propositions 7 and 9 provide sufficient conditions on dwell time function ∆(.) that guarantee asymp-
totic stability of SLSs. Then one might think to find the smallest values for ∆(.), ensuring asymptotic
stability of the SLS under consideration; however an optimization problem is not well posed in this
context since more than one function should be minimized. Indeed, the optimization problem can
be formulated by defining a function of dwell times associated to any discrete transition. Let F :
(
R

+
0

)card(E)
→ R be a function associating to dwell times ∆(e1), ∆(e2), ... of discrete transitions

e ∈ E, a real number F(∆(e1), ∆(e2), ...) and consider the following optimization problem:

min
{Ω(`,c`)}`∈L

F(∆(e1), ∆(e2), ...) (6)

where for any ` ∈ L, Ω(`, c`) depends itself on P` and c`. The existence of solution to Problem
(6) actually depends on function F(∆(e1), ∆(e2), ...). Further investigations will concentrate on
studying conditions on F , ensuring existence of the solution. Moreover some computable procedure
solving Problem (6 ) will be investigated, taking particular attention to the rule of constants c`,
` ∈ L and matrices P`, ` ∈ L.
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