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Abstract— We develop a model for General Stochastic Hy-
brid Systems (GSHS) which is a generalization of Piecewise-
Deterministic Markov Processes (PDMP), introduced by Davis
and stochastic hybrid systems proposed by Hu, Lygeros and
Sastry. This model possesses certain desirable properties,
as the strong Markov property and the càdlàg property.
Extending results available for PDMP, we develop the extended
generator formula and the differential formula for GSHS.
Then we investigate the dynamic programming for GSHS,
using the differential formula.

I. INTRODUCTION

In the face of growing complexity of control systems,
stochastic modelling has got a crucial role. Indeed, stochas-
tic techniques for modelling control and hybrid systems
have attracted attention of many researchers and consti-
tute one of the hottest issues in contemporary high level
research. As a consequence researchers all over the world
have united their efforts in the framework of an international
projects like Columbus [6], Hybridge [10] and al. This
paper presents some results of research activity in the
Columbus project, that aims to form a bridge between the
US and the European control research communities. The
project scope is to develop a methodology for the design
of embedded controllers for safety critical systems, with
particular emphasis on air-traffic control, flight control and
automotive control.

Some of the most used stochastic processes are the
piecewise-deterministic Markov processes (PDMP), intro-
duced in [7], and applied by us to hybrid system modelling
in [3]. The other modelling approaches are those presented
in [9], [8], see [11] for quick presentation and compar-
isons. In the paper [4] we have proposed a very general
formal model for stochastic hybrid systems (SHS) extending
the model from [9], where the deterministic differential
equations for the continuous flow are replaced by their
stochastic counterparts, and the reset maps are generalized
to (state-dependent) distributions that define the probability
density of the state after a discrete transition. In this model
transitions are always triggered by deterministic conditions
(guards) on the state.

In this paper we propose a new model for General
Stochastic Hybrid Systems (GSHS), which is a gener-
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alization both of PDMP and SHS. The class of GSHS
allows: 1. Diffusion processes in the continuous evolution;
2. Spontaneous discrete transitions (according to a transition
rate); 3. Forced transitions (driven by a boundary hitting
time); 4. Probabilistic reset of the hybrid state as a result
of discrete transitions.

The difference between GSHS and PDMP is that for
GSHS between two consecutive jumps the process is a
diffusion while for PDMP the inter-jumps motion is de-
terministic, according to a vector field. GSHS are, in fact,
a kind of extended SHS for which the transitions between
modes are triggered by some stochastic event (boundary
hitting time and transition rate).

The paper is structured as follows. The next section
introduces the mathematical model, which is required by
some safety critical situations in air traffic control (ATC). In
section 3 some useful and necessary properties of our model
are established. Mainly, we prove the expression of the
process generator. Based on this we derive the differential
formula for GSHS. In section 4 we put the bases of the
dynamic programming for our model. The results in this
section are based on the GSHS differential formula obtained
in the section 3. The conclusions of our work are drawn in
the final section.

II. THE MATHEMATICAL MODEL

Motivation
In air traffic management (ATM), the following safety
critical situations have been identified [11]: vertical cross-
ings; overtake manoeuvres in unmanaged airspace; ATC
sector transitions; missed approaches. The modelling of
these situations by different stochastic hybrid system models
described in [11] leads to the necessity to develop further a
more general class of stochastic hybrid processes than those
found in the literature. This is because: 1. Different types of
models seem to be needed to capture the different situations.
This implies that a number of different techniques and
tools must be mastered to be able to deal with all the
cases of interest. If a GSHS framework were available the
process would be more efficient, since a single set of results,
simulation procedures, etc. could be used in all cases. 2.
Certain situations, such as vertical crossings during descent
and missed approaches due to runway incursions, would be
more accurately modelled by GSHS.

The above discussion also suggests that none of the safety
critical situations seems to require resetting the continuous
state of the system during discrete transitions. It should be



noted, however, that this may depend on the coordinate
frames used in the definition of the continuous state. For
example, if the positions of all aircraft are given in a global
coordinate frame, then the continuous state will remain
constant during discrete transitions. If on, the other hand,
the positions of aircraft are given in coordinates relative to
their flight plan or to one another, then the continuous state
may experience discrete transitions whenever aircraft reach
way points, execute turns, etc.

Description

General Stochastic Hybrid Systems (GSHS) are a class
of non-linear stochastic continuous-time hybrid dynamical
systems. GSHS are characterized by a hybrid state defined
by two components: a continuous state (denoted by x)
and a discrete state (denoted by i). The continuous state
evolves in given modes X i (open subsets of Euclidean
space) and the discrete variable belongs to a countable
set Q. The continuous state is governed by a stochastic
differential equation (SDE) that depends on the hybrid
state. The discrete dynamics produces transitions in both
(continuous and discrete) state variables. Transitions occur
either when the continuous state hits the boundary of the
state space (forced transitions) or according to a probability
law (spontaneous transitions). Whenever a transition occurs,
the hybrid state is reset instantaneously to a new value,
according to a probability law depending on the pre-jump
location. A sample trajectory has the form (qt, xt, t ≥ 0),
where (xt, t ≥ 0) is piecewise continuous and qt ∈ Q is
piecewise constant. Let 0 < T1 < T2 < . . . < Ti < Ti+1 <
. . . be the sequence of jump times.

State space

Let Q be a countable set of discrete states and let d : Q → N

and X : Q → Rd(·) be two maps assigning to each discrete
state i ∈ Q an open subset X i ⊆ Rd(i). We call the set
X(Q, d,X ) =

⋃
i∈Q{i}×X i the hybrid state space of the

GSHS and x = (i, xi) ∈ X(Q, d,X ) the hybrid state. The
closure of the hybrid state space will be X = X ∪ ∂X ,
where ∂X =

⋃
i∈Q{i} × ∂X i.

It is clear that, for each i ∈ Q, the state space X i is a
Borel space (homeomorphic to a Borel subset of a complete
separable metric space). It is possible to define a metric ρ
on X in such a way the restriction of ρ to any component
X i is equivalent to the usual Euclidean metric [7]. Then
(X,B(X)) is a Borel space. Moreover, X is a homeomor-
phic with a Borel subset of a compact metric space (Lusin
space) because it is a locally compact Hausdorff space with
countable base (see [7] and the references therein).

Construction

Consider a function m : Q → N and two functions b :
Q × X(·) → Rd(·), σ : Q × X(·) → Rd(·)×m(·).

Assumption 1: For all i the functions b(i, ·) : X i →
Rd(i) and σ(i, ·) : X i → Rd(i)×m(i) are bounded and
Lipschitz continuous.
This assumption ensures the existence and uniqueness of

the solution of the SDE

dx(t) = b(i, x(t))dt + σ(i, x(t))dWt, (1)

for any i ∈ Q (Th.6.2.2. in [1]). (Wt, t ≥ 0) is an
m(i)-dimensional standard Wiener process in a complete
probability space. Equation (1) defines a family of diffusion
processes Mi = (Ωi,F i,F i

t , x
i
t, θ

i
t, P

i, P i
xi), i ∈ Q with

state spaces Rd(i), i ∈ Q. For each i ∈ Q we have:
(Ωi,F i, P i) -the underlying probability space, F i

t -the
natural filtrations, θi

t the shift operator, P i
xi probabilities

on the trajectories, with the usual meaning, as in the theory
of Markov processes [7].

The switching mechanism between the diffusions is gov-
erned by two functions: a jump rate λ : X → R+ and a
transition measure R : X × B(X) → [0, 1].

Assumption 2: (i) λ : X → R+ is a measurable function
such that t → λ(xi

t(ωi)) is integrable on [0, ε(xi)), for some
ε(xi) > 0 for each xi ∈ X i and each ωi starting at xi. (ii)
For each i ∈ Q the restriction of λ to X i is bounded.
Let ci = sup

xi∈Xi

λ(xi). (iii) For all A ∈ B(X), R(·, A) is

measurable and for all x ∈ X the function R(x, ·) is a
probability measure.

Since X is a Borel space, it is homeomorphic to a subset
of the Hilbert cube1, H (Urysohn’s theorem, Prop. 7.2 [2]).
Therefore, its space of probabilities is homeomorphic to
the space of probabilities of the corresponding subset of
H (Lemma 7.10 [2]). There exists a measurable function
z : H × X → X such that R(x, A) = pz−1(A), A ∈
B(X), where p is the probability measure on H associated
to R(x, ·) and z−1(A) = {ω ∈ H|z(ω, x) ∈ A}.
The measurability of such a function is guaranteed by the
measurability properties of the transition measure R.

The sample path of the stochastic process (xt)t>0 with
values in X , starting from a fixed initial point x0 =
(i0,xi0) ∈ X is defined in a similar manner as PDMP
[7]. We have to precise, from the beginning, that the above
recipe gives a sample path of GSHS starting with a initial
diffusion path whose starting point is x0. An arbitrary point
x0 does not define in a unique way a diffusion path!

Let xi
t be a sample path of the diffusion process (1) which

starts at (i, xi) and let ωi be the associated event in the
underlying probability space (Ωi,F i, P i). Let t∗(ωi) be the
first exit time of xi

t from the set X i. Define a function
F : R+ × Ωi → [0, 1] by

F (t, ωi) = I(t<t∗(ωi)) exp(−

∫ t

0

λ(i, xi
s(ωi)))ds. (2)

Using this function we define a stopping time Si associated
to the diffusions (xi

t). In other words, F can be thought of as
the survivor function for the stopping time. Obviously, the
stopping time Si is the minimum of two stopping times: the
first exit time from X i and the stopping time with the expo-
nential survivor function equal to exp(−

∫ t

0 λ(i, xi
s(ωi)))ds,

1H is the product of countably many copies of [0, 1].



i.e.

Si(ωi) = inf{t > 0|F (t, ωi) ≤ e−cit}, or

P i[Si > t] = P i{ωi|F (t, ωi) ≥ e−cit}.

To construct the stochastic process associated with the
GSHS we define the event ω and the associated sample
path inductively. Select an initial hybrid state (i0, x

i0
0 ). Take

a solution of (1) starting at xi0
0 and let ωi0 be the associated

event in the underlying probability space. Define the first
jump time of the process T1(ω) = Si0(ωi0). Define the
sample path xt(ω) up to the first jump time by: (i) If
T1(ω) = ∞ then xt(ω) = (i0, x

i0
t (ωi0)), for all t ≥ 0.

(ii) If T1(ω) < ∞, then xt(ω) = (i0, x
i0
t (ωi0)) for all

0 ≤ t < T1(ω) and xT1(ω) = z(ω, (i0, x
i0
T1

(ωi0))).
The process restarts from xT1 (ω) = (i1, x

i1
1 ) according

to the same recipe, using now the process (xi1
t ). Thus

if T1(ω) < ∞ we define the next jump time T2(ω) =
T2(ωi0 , ωi1) = T1(ωi0)+Si1 (ωi1 ). The sample path xt(ω)
between the two jump times is defined by: (i) If T2(ω) = ∞
then xt(ω) = (i1, x

i1
t−T1

(ω)) for all t ≥ T1(ω). (ii) If
T2(ω) < ∞ then xt(ω) = (i1, x

i1
t (ω)) for all 0 ≤ T1(ω) ≤

t < T2(ω) and xT2(ω) = z(ω, (i1, x
i1
T2

(ω))). And so on.
We denote by Nt(ω) =

∑
k

I(t≥Tk) the number of jump

times in the interval [0, t]. To eliminate pathological solu-
tions that take an infinite number of discrete transitions in a
finite amount of time (known as Zeno solutions) we impose
the following assumption.

Assumption 3: For every starting point x ∈ X , ENt <
∞, for all t ∈ R+.

Formal Definitions
Definition 1: A GSHS is a collection H =

((Q, d, m,X ), b, σ, Init, λ, R) where
• Q is a countable set of discrete variables;
• d : Q → N gives the dimensions of the modes;
• m : Q → N gives the dimension of the Weiner processes
that govern the continuous state evolution;
• X : Q → Rd(.) maps each q ∈ Q into an open subset Xq

of Rd(q);
• b : X(Q, d,X ) → Rd(.) is a vector field;
• σ : X(Q, d,X ) → Rd(·)×m(·) is a X(·)-valued matrix;
• Init : B(X) → [0, 1] is an initial probability on X ;
• λ : X(Q, d,X ) → R+ is a transition rate function;
• R : X × B(X) → [0, 1] is a transition measure.

Now we can define the GSHS execution:
Definition 2: A stochastic process xt = (q(t), x(t)) is

called a GSHS execution if there exists a sequence of
stopping times T0 = 0 < T1 < . . . such that ∀k ∈ N,
• x0 = (q0, x

q0

0 ) is a Q × X-valued random variable
extracted according to the probability measure Init;
• For t ∈ [Tk, Tk+1), qt = qTk

is constant and x(t) is a
(continuous) solution of the SDE:

dx(t) = b(qTk
, x(t))dt + σ(qTk

, x(t))dWt (3)

where Wt is the m-dimensional standard Wiener;

• Tk+1 = Tk +Sik where Sik is chosen according with the
survivor function (2).
• The probability distribution of x(Tk+1) is governed by
the law R

(
(qTk

, x(T−
k+1)), ·

)
.

The executions of the GSHS can be thought of as being
generated by the following algorithm.

Algorithm 1 (GSHS Executions): set T = 0
select X-valued random variable x̂ according to Init
repeat

set i = X−1(x̂)
select R+-valued random variable Ŝ such that

Ŝ = inf{t > 0|F (t, ·) ≤ e−cit}
set xt as solution of (1) with initial condition

equal to x̂, for all t ∈ [T, T + Ŝ)
select X-valued random variable x̂

according to R(., x
Ŝ
)

set T = T + Ŝ
until true
All random extractions in Algorithm 1 are assumed to be

independent.

III. MODEL PROPERTIES

In [5] we proved that, under Assumptions 1, 2 and 3, any
GSHS defines: 1. a Borel right process; 2. a càdlàg process,
i.e. for all ω the trajectories t 7→ xt(ω) are right continuous
on [0,∞) with left limits on (0,∞).

The Process Generator
We denote by Bb(X) the set of all bounded measurable

functions f : X → R. This is a Banach space under the
norm ‖f‖ = supx∈X |f(x)|. Let (Pt) be the semigroup of
the whole Markov process (xt), i.e. Ptf(x) = Exf(xt) =
Ex{f(xt)|t < ζ}, where f is bounded B-measurable
function and ζ is the lifetime when the process retires to
∆ (where ∆ is the cemetery point for X , i.e.an adjoined
point to X , whose existence is assumed in order to have
a probabilistic interpretation of Px(xt ∈ X) < 1), i.e.
ζ = inf{t|xt = ∆}. Associated with the semigroup (Pt) is
its strong generator which is the ‘derivative’ of Pt at t = 0.
Let D(L) ⊂ Bb(X) be the set of functions f for which the
following limit exists limt↘0

1
t
(Ptf − f) and denote this

limit Lf . This refers to convergence in the norm ‖·‖, i.e.
for f ∈ D(L) we have limt↘0 ||

1
t
(Ptf − f) − Lf || =

0. Specifying the domain D(L) is an essential part of
specifying L.

Proposition 1 (Martingale property): [7] For f ∈ D(L)
we define the real-valued process (Cf

t )t≥0 by

Cf
t = f(xt) − f(x0) −

∫ t

0

Lf(xs)ds. (4)

Then for any x ∈ X , the process (Cf
t )t≥0 is a martingale

on (Ω,F ,Ft, Px).
There may be other functions f , not in D(L), for which
something akin to (4) is still true. In this way we get the
notion of extended generator of the process.
Let D(L̂) be the set of measurable functions f : X →
R with the following property: there exists a measurable



function h : X → R such that t → h(xt) is integrable
Px − a.s. for each x ∈ X and the process

Cf
t = f(xt) − f(x0) −

∫ t

0

h(xs)ds

is a local martingale. Then we write h = L̂f and call
(L̂, D(L̂)) the extended generator of the process (xt).
Following [7], for A ∈ B(X) define p, p∗ and p̃ as follows:

p(t, A) =
∞∑

k=1

I(t≥Tk)I(xTk
∈A); p∗(t) =

∑
t≥Tk

I(x
T

−

k
∈∂X)

;

p̃(t, A) =
∫ t

0 R(xs, A)λ(xs)ds +
∫ t

0 R(A, xs−)dp∗(s)
=

∑
Tk≤t

R(xTk−, A).

Note that p, p∗ are counting processes, p∗(t) is counting
the number of jumps from the boundary of the process
(xt). p̃(t, A) is the compensator of p(t, A) (see [7] for more
explanations). The process q(t, A) = p(t, A) − p̃(t, A) is a
local martingale.

Given a function f ∈ C1(Rn, R) and a vector field
b : Rn → Rn, we use Lbf to denote the Lie derivative of
f along b given by Lbf(x) =

∑n
i=1

∂f
∂xi

(x)fi(x). Given a
function f ∈ C2(Rn, R), we use Hf to denote the Hamilto-
nian operator applied to f , i.e. Hf (x) = (hij(x))i,j=1...n ∈

Rn×n, where hij(x) = ∂2f
∂xi∂xj

(x). AT denotes the trans-
pose matrix of a matrix A = (aij)i,j=1...n ∈ Rn×m and
Tr(A) denotes its trace.

Theorem 2: Let H be an GSHS as in definition 1. Then
the domain D(L) of the extended generator L of H, as a
Markov process, consists of those measurable functions f
on X∪∂X satisfying:
1. f : X → R, B−measurable; t → f(xi

t(ωi)) have second
order derivatives on [0, Si(ωi)), for all ωi ∈ Ωi;
2. the boundary condition

f(x) =

∫

X

f(y)R(x, dy)), x ∈ ∂X ;

3. Bf ∈ Lloc
1 (p) (see the definition in [7])2 where

Bf(x, s, ω) := f(x) − f(xs−(ω)).

For f ∈ D(L), Lf is given by

Lf(x) = Lcontf(x)+λ(x)

∫

X

(f(y)−f(x))R(x, dy) (5)

where:

Lcontf(x) = Lbf(x) +
1

2
Tr(σ(x)σ(x)T

H
f (x)). (6)

Proof: Let (L̃, D(L̃)) be the extended generator of
(xt). We want to show that (L̃, D(L̃)) = (L, D(L)).

2f is in Lloc

1
(p) if for some sequence of stopping times σn ↑ ∞

Ex

∑

i

|f(xTi∧σn) − f(xTi∧σn−)| < ∞

Suppose first that f satisfies 1-3. Then Bf ∈ Lloc
1 (p̃) and∫

[0,t]×X
Bfdp̃ = I1 + I2, where

I1 =

∫

[0,t]

∫

X

(f(y) − f(xs))R(xs, dy)λ(xs)ds

I2 =

∫

[0,t]

∫

X

(f(y) − f(xs−))R(xs−, dy)dp∗(s).

Now the support of p∗ is contained in the countable set
{s : xs− ∈ ∂X} and because of the boundary condition 2.
the second integral I2 vanishes. Thus

∫
[0,t]×X

Bfdq =
∑

Tk≤t

(f(xTk
) − f(xTk−)) −

∫
[0,t]

∫
X

(f(y) − f(xs))R(xs, dy)λ(xs)ds.

This is a local martingale because of condition 3. Let Tm

denote the last jump time prior or equal to t. Then
∑

Tk≤t

(f(xTk
) − f(xTk−)) = {f(xt) − f(xTm)} + Sm

where

Sm =
m∑

k=1

(f(xTk
) − f(xTk−1

))} − {f(xt) − f(xTm)+

+
m∑

k=1

(f(xTk−) − f(xTk−1
))}.

The first bracketed term on the right is equal to f(xt) −
f(x). Note that xTk− = x

ik−1

Tk−Tk−1
, if xTk−1

=

(ik−1, x
ik−1

k−1 ). Then Itô-formula gives the second term

f(xTk−) − f(xTk−1
) =

∫ Tk

Tk−1
Lcontf(xs)ds+

+
∫ Tk

Tk−1
< σ(xs),∇f(xs) > dW (s).

The second term is therefore equal to
∫ t

0 Lcontf(xs)ds+∫ t

0
< σ(xs),∇f(xs) > dW (s) and we obtain

Cf
t := f(xt) − f(x) −

∫ t

0
Lf(xs)ds =

=
∫ t

0 < σ(xs),∇f(xs) > dW (s) +
∫
[0,t]×X

Bfdq

is a local martingale (the sum between a continuous mar-
tingale and a discrete martingale), where L is given by (5).
Thus f ∈ D(L̂) and L̂f = Lf .
Conversely, suppose that f ∈ D(L̂). Then the process
Mt := f(xt) − f(x) −

∫ t

0 h(xs)ds is a local martingale,
where h = L̂f . Then Mt must be the sum between a
continuous martingale M c

t and a discrete martingale Md
t .

From Th.(26.12), p.69 [7], we have M d
t = Mρ

t for some
predictable integrand ρ ∈ Lloc

1 (p), where
Mρ

t =
∫

X×R+
ρI(s≤t)dq =

∑
Tk≤t

ρ(xTk
, Tk, ω)−

∫ t

0

∫
X

ρ(y, s, ω){R(xs, dy)λ(xs)ds − R(xs−, dy)dp∗(s)}.
Since Md

t and Mρ
t agree, their jumps ∆Md

t and ∆Mρ
t

must agree; these only occur when t = Tk for
some k and are given by: ∆Md

t = f(xt) − f(xt−);
∆Mρ

t = ρ(xt, t, ω) −
∫

X
ρ(y, t, ω)R(xt−, dy)I(xt−∈∂X).

Thus ρ(xt, t, ω) = f(xt)− f(xt−) on the set (xt− /∈ ∂X),
which implies that ρ(x, t, ω) = f(x)− f(xt−) for all (x, t)



except perhaps a set to which the process ‘never jumps’,
i.e. G ⊂ R+ × X such that Ez

∫
G

p(dt, dx) = 0, ∀z ∈ X .
Suppose that z = xt− ∈ ∂X . Then equating
∆Md

t and ∆Mρ
t gives f(xt) − f(z) = ρ(xt, t, ω) −∫

X
ρ(y, t, ω)R(z, dy) and hence f(x)−f(z) = ρ(x, t, ω)−∫

X
ρ(y, t, ω)R(z, dy), except on a set A ∈ B(X) such that

R(z, A) = 0. Integrating both sides of the previous equality
with respect to R(z, dx), we obtain

∫
X

f(x)R(z, dx) −
f(z) =

∫
X

ρ(x, t, ω)R(z, dx) −
∫

X
ρ(y, t, ω)R(z, dy) = 0.

Thus f satisfies the boundary condition. For fixed z, define
ρ̃(x, t, ω) = ρ(x, t, ω) − (f(x) − f(z)).

Using the boundary condition we get∫
X

ρ̃(y, t, ω)R(z, dy) =
∫

X
ρ(y, t, ω)R(z, dy) = ρ̃(x, t, ω).

Then ρ̃(x, t, ω) =
∫

X
ρ̃(y, t, ω)R(z, dy).

However, the right-hand side does not depend on x, and
hence ρ̃(x, t, ω) = u(t, ω) for some predictable process u.
The general expression for ρ is thus

ρ(x, t, ω) = f(x) − f(xt−) + u(t, ω)I(xt−∈∂X).

Inserting this in the expression of M ρ
t we find that Mρ

t

does not depend on u, then we can take u ≡ 0, obtaining
ρ = Bf ; hence the part 3 of theorem is satisfied.

Finally, consider the sample paths of Mt, MBf
t + M c

t ,
for t < T1(ω), starting at x ∈ X . We have

Mt = f(xt(ωi0)) − f(x) +
∫ t

0
h(xs(ωi0))ds

while, because p = p∗ = 0 on [0, T1),
MBf

t = −
∫
[0,t]

∫
X

(f(y)−

−f(xs(ωi0)))R(xs(ωi0), dy)λ(xs(ωi0))ds.

So, since Mt = MBf
t + M c

t for all t a.s., it must be the
case that Mt = M c

t for t ∈ [0, T1) and the generator
coincides with the generator Lcont associated to the stochas-
tic equation, the function f(xt(ωi0)) should have second
order derivatives on [0, T1). The general case follows by
concatenation. Similar calculations show that

MBf
t + M c

t = f(xt) − f(x) −
∫ t

0
Lf(xs)ds, ∀t ≥ 0

with L given by (5). Hence f ∈ D(L) and Lf = L̂f. This
completes the proof.�

The Differential Formula for GSHS

We need a further operator C, defined as follows

Cf(z) :=

∫

X

f(y)R(z, dy) − f(z), z ∈ ∂X

We can state the following result, which is a simple corol-
lary of Th.2, but which plays a fundamental role in the
GSHS control theory.

Theorem 3 (GSHS Differential Formula): If f satisfies
the conditions 1 and 3 of the Th.2. Then ∀t ≥ 0

f(xt) − f(x) =

∫ t

0

Lf(xs)ds +

∫ t

0

σ(xs) · ∇f(xs)dW+
(s)

∫
Bf q(s,du) +

∫ t

0

Cf(xs−)dp∗(s)

IV. CONTROL OF GSHS

In this section, we suppose that the state space of the
GSHS is a subset X of Rd, i.e. all the components which
appear in the general definition 1 can be embedded in a
possibly higher-dimensional space Euclidean space. Control
arises when b, σ from (1) or other local characteristics λ
or R depend on an additional control parameters. It is
important to distinguish at the outset between control in
the interior of the state space and control on the boundary
∂X . We suppose that the parameters associated with them
take values in possibly different sets U0, UΓ, respectively.

Assumption 4: (i) The state space is X∆ = X ∪ {∆}.
(ii) U0, UΓ are compact metrizable spaces.
(iii) The functions b : X∆ × U0 → Rd, σ : X∆ × U0 →
Rd×d and λ : X∆ × U0 → R+ are bounded and Lipschitz
continuous on X , uniformly in U0; λ(∆, u) = b(∆, u) = 0
and σ(∆, u) = 0 for all u ∈ U0.
(iv) R : X × U0 × B(X∆) → [0, 1] and Q : ∂X × UΓ ×
B(X) → [0, 1] are continuous functions such that for all
θ ∈ Cb(X∆) the maps (x, u0) 7→

∫
X∆

θ(y)R(x, u0, dy)

(x ∈ X , u0 ∈ U0) and (x, uΓ) 7→
∫

X
θ(y)Q(x, uΓ, dy) (x ∈

∂X , uΓ ∈ UΓ) are Lipschitz continuous in x, uniformly in
u0 and uΓ, respectively.

Feedback policies
The natural class of controls in Markovian optimization

problems is that of feedback policies, a feedback policy v
being in the present context a pair of measurable functions
v0 : X → U0 and vΓ : ∂X → UΓ. These are described as
a policy because they describe a rule of action: if the state
is x, apply control v0(x); if the boundary is hit at z, apply
boundary control vΓ(z). We now wish to construct a GSHS
corresponding to a control policy (v0, vΓ). This policy de-
fines a set of local characteristics (bv, σv , λv, Rv , Qv) by the
recipe: bv(x) = b(x, v0(x)), σv(x) = σ(x, v0(x)), λv(x) =
λ(x, v0(x)), Rv(x, dy) = R(x, dy, v0(x)), Qv(z, dy) =
Q(z, dy, vΓ(z)). We construct a GSHS having these local
characteristics as in section II. The problem is to choose
a policy v to minimize a given cost function, which is as-
sumed to be of the form Jx(v) = Ev

x{
∫ ∞

0
l(xt, v0(xt))dt+∫ ∞

0
c(xt−, vΓ(xt−))dp∗(t)}, where l : X∆×U0 → R+ and

c : ∂X × UΓ → R+ are bounded non-negative functions.
A policy v̂ minimizing Jx(v) for all x ∈ X over all
admissible policies v is optimal. But, also, the admissible
policies should be chosen such that between jump times,
the trajectory xt must satisfy the SDE (3). To guarantee
existence and uniqueness of a solution the functions x 7→
bv(x) and x 7→ σv(x) must satisfy the assumption 1.

We denote the set of all measurable functions v0 : X →
U0 by U ′

0 and the set of all measurable functions vΓ : ∂X →
UΓ by UΓ. Let U0 be the subset of U ′

0 such that for u0 ∈ U0

the equation (1), with b, σ defined as in assumption 4, has a
unique solution. Thus U0 consists of those control functions
for which the controlled GSHS can be constructed in the
direct way as in section II. We denote UF := U0 ×UΓ. The
aim is to chose a control v ∈ UF , which minimizes the cost



function Jx.
Assumption 5: (i) l : X ×U0 → R+ and c : ∂X×UΓ →

R+ are non-negative, bounded measurable functions. (ii)
For any x ∈ X , v ∈ UΓ and t > 0, Ev

xNt < ∞, where
Nt =

∑
i I(t≥Ti) and Ti are the jump times of the process

with control v. In particular, Ti → ∞ (P v
x a.s.).

For u0 ∈ U0, uΓ ∈ UΓ and f ∈ C2(X) we denote

Lu0f(x) = Lu0
contf(x) + (7)

+λ(x, u0)

∫

X

(f(y) − f(x))R(x, u0, dy),

where x ∈ X and Lu0
contf(x) is given by (6) with the

function b, σ depending on u0. As well, we denote

CuΓf(x) =

∫

X

(f(y) − f(x))Q(x, uΓ, dy), x ∈ ∂X . (8)

In the same manner, Lv, Cv denote (7) and (8) with
v0(x) and vΓ(x) replacing u0 and uΓ, respectively, for
v = (v0, vΓ). Thus Lv is the generator of the controlled
process with control v.

Hamilton-Jacobi-Bellman (HJB) equations
Because of boundary conditions, the HJB equation for

GSHS is a pair of equations:

min
u0∈U0

{Lu0V (x) + l(x, u0)} = 0, x ∈ X ; (9)

min
uΓ∈UΓ

{CuΓV (x) + c(x, uΓ)} = 0, x ∈ ∂X . (10)

Theorem 4: Suppose assumptions 4 and 5 are satisfied
and that
1. V is a piecewise C2 solution of (9) and (10).
2. ∀v ∈ UF , Ev

x

∑
i

I(t≥Ti)|V (xTi
) − V (xTi−)| < ∞.

3. ∀v ∈ UF , Ev
xV (xt) → 0 as t → ∞.

4. There exists v̂ ∈ UF such that at each x ∈ X (resp. x ∈
∂X) the value v̂0(x) (resp. v̂Γ(x)) achieves the minimum
in (9) (resp. in (10)).
Then v̂ is optimal in UF and V (x) = Jx(v̂).

Proof: Suppose V is a solution to (9) and (10) sat-
isfying the hypotheses of the theorem. Let v ∈ UF be an
arbitrary feedback control and let be (xt) the corresponding
controlled process. Then by differential formula

V(xt) − V(x) =

∫ t

0

LvV(xs)ds +

∫ t

0

σ(xs) · V(xs)dW(s)

+

∫

[0,t]×X

BvV dq +

∫ t

0

CvV(xs−
)dp∗(s)

Now from (9) and (10) we get LvV (x) ≥ −l(x, u0) and
CvV (x) ≥ −c(x, uΓ). Using the condition 2 from the
hypothesis of Th.2, the sum

∫ t

0
〈σ(xs), V (xs)〉 dW (s) +∫

[0,t]×X
BvV dq is a martingale. Thus, taking expectations

in in the previous differential formula we obtain V (x) ≤
Ev

x{
∫ s

0 l(xs, u0(xs))ds +
∫ s

0 c(xs−, uΓ(xs−))dp∗(s)} +
Ev

xV (xt).
Now let t → ∞ and invoke condition 2 of the to conclude
that V (x) ≤ Jx(v). Finally, let v̂ be the control policy
referred to in condition 4 of the theorem. Then, in an

analogous way as above, but with the inequality replaced
by equality we get that V (x) = Jx(v̂). Therefore, v̂ is
optimal.�

V. CONCLUSIONS

In this paper we review and develop a very general
model for stochastic hybrid systems, proposed in [4], [5].
The model answers important practical challenges and thus
needs to be explored. The generality of the model is an
essential asset, as it can be instantiated with almost all
stochastic hybrid system proposed in the literature. The
main technical contributions of this paper are: 1. Define
the model and establish some basic properties of the model
(existence of solution process, Borel “right” property); 2.
Define an algorithm to derive the GSHS executions; 3.
Prove the expression of the process generator; 4. Give
the differential formula for GSHS; 5. Define the dynamic
programming for GSHS.

Further developments of our model will include two main
tracks. First it is necessary a study of the reachability
problem for GSHS. Second it is natural to generalize
the results on relaxed controls, control via discrete-time
dynamic programming, non-smooth analysis, from PDMP
to GSHS.
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