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Abstract

Many engineering problems can be cast as optimization problems subject to con-
vex constraints that are parameterized by an uncertainty or ‘instance’ parameter. A
recently emerged successful paradigm for attacking these problems is robust optimiza-
tion, where one seeks a solution which simultaneously satisfies all possible constraint
instances. In practice, however, the robust approach is effective only for problem
families with rather simple dependence on the instance parameter (such as affine
or polynomial), and leads in general to conservative answers, since the solution is
usually computed by transforming the original semi-infinite problem into a standard
one, by means of relaxation techniques.

In this paper, we take an alternative ‘randomized’ or ‘scenario’ approach: by
randomly sampling the uncertainty parameter, we substitute the original infinite
constraint set with a finite set of N constraints.

We show that the resulting randomized solution fails to satisfy only a small por-
tion of the original constraints, provided that a sufficient number of samples is drawn.
Our key result is to provide an efficient explicit bound on the measure (probability
or volume) of the original constraints that are possibly violated by the randomized
solution. This volume rapidly decreases to zero as N is increased.
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1 Introduction

Uncertain convex programming [4, 13] deals with convex optimization problems in which

the constraints are imprecisely known. In formal terms, an uncertain convex program

(UCP) is a family of convex optimization problems whose constraints are parameterized

by an uncertainty (or instance) parameter δ ∈ ∆ ⊂ R
�:

UCP :

{
min

x∈X⊆ n
cT x subject to f(x, δ) ≤ 0, δ ∈ ∆

}
, (1)

where x ∈ X is the optimization variable, X is convex and closed, the function f(x, δ) :

X × ∆ → R
p is continuous and convex in x for all δ, and the inequality f(x, δ) ≤ 0 is

intended element-wise. In the above problem family the optimization objective is assumed

to be linear and ‘certain’ without loss of generality.

A paradigm that emerged around 1997 for the solution of uncertain programs, and that

is now the mainstream approach to the problem, is that of robustness [3, 4, 5, 12, 13]: in

robust convex programming one searches for a solution which is feasible for all possible

instances of the uncertain parameter δ, and hence for all problem instances belonging to

the family UCP. This amounts to solving the following program:

RCP: min
x∈ n

cT x subject to x ∈ X ∩ Ω, (2)

where

Ω
.
=

⋂
δ∈∆

{x : f(x, δ) ≤ 0} (3)

(throughout, we assume that X ∩ Ω �= ∅).
Special cases of the above problem are robust linear programs [5], for which f(x, δ) is

affine in x, and robust semidefinite programs [13], for which the set Ω is expressed as

Ω
.
=

⋂
δ∈∆

{x : F (x, δ) 	 0} ,

where F (x, δ) = F0(δ)+
∑n

i=1 xiFi(δ), Fi(δ) = F T
i (δ), and ‘	’ means ‘negative semidefinite’.
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Robust convex programs arise in many contexts, and have found applications in, to

mention but a few, truss topology design [3], robust antenna array design, portfolio op-

timization, and robust estimation and filtering, [13, 11]. In the context of systems and

control engineering, robust semidefinite programs proved to be useful in constructing Lya-

punov functions for uncertain systems, and in the design of robust controllers, see e.g.

[1].

The RCP problem is still a convex optimization problem, but since it involves an

infinite number of constraints, it is in general numerically hard to solve, [4]. For this

reason, in all the previously cited literature particular relaxations of the original problem

are sought in order to transform the original semi-infinite optimization problem into a

standard convex optimization one. Typical relaxation methods require the introduction of

additional ‘multiplier’ or ‘scaling’ variables, over which the optimization is to be performed.

The projection of the feasible set of the relaxed problem onto the space of original problem

variables is in general an ‘inner’ approximation of the original feasible set, and therefore

relaxation techniques provide an upper bound on the actual optimal solution of RCP. The

main difficulties with the relaxation approach are that the sharpness of the approximation

is in general unknown (except for particular classes of problems, see [6, 14]), and that the

method itself can be applied only when the dependence of f on δ has a particular and

simple functional form, such as affine, polynomial or rational. As an additional remark,

we note that the standard convex optimization problem achieved through relaxation often

belongs to a more complex class of optimization problems than the original one, that is

relaxation lifts the problem class. For example, robust linear programs may result in second

order cone programs (see for instance [18]), and robust second order cone programs may

result in semidefinite programs ([22, 21]).

In this paper, we pursue a different philosophy of solution, which is based on random-

ization of the parameter δ. The key idea is to assume that the uncertain problem family (1)

is parameterized by an instance parameter δ which is a random variable. Then, by drawing
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N random samples of the instance parameter, we substitute the infinite constraint set of

RCP with a finite set of N constraints, and look for an optimal solution which is feasible

with respect to this sampled constraint set. Solving this randomized or ‘sampled’ coun-

terpart of RCP amounts to solving a standard convex program with N constraints. The

feasible set of the randomized problem is an outer approximation of the feasible set of RCP,

as opposed to the inner approximation obtained via the relaxation approach. Therefore,

the randomized approach yields a solution that outperforms the optimal objective value

of RCP. The price which is paid is that the randomized solution is feasible for many – but

not all – the instances of δ.

This ‘constraint sampling’ approach is not new, as it is equivalent to the ‘scenario’

approach used in stochastic programming, see for instance [20]. In this setting, the crucial

question to which this paper is devoted (and which is completely open, to the best of the

authors knowledge) is the following

How many samples (scenarios) need to be drawn in order to guarantee that the
resulting randomized solution violates only a ‘small portion’ of the constraints?

Using statistical learning techniques, we provide an explicit bound on the measure

(probability or volume) of the set of original constraints that are possibly violated by

the randomized solution. This volume rapidly decreases to zero as N is increased, and

therefore the obtained randomized solution can be made approximately feasible for the

robust problem by sampling a sufficient number of constraints. A further advantage of

the method is that the original problem is not lifted to a more complex class since, for

instance, the randomized version of a robust linear program is still a linear program.

Constraint reduction methods have been proposed by other researchers in different

contexts. Approximate linear programs for queuing networks with a reduced number of

constraints have been studied in [19]. Dynamic programming is considered in [15] where

an approximated cost-to-go function is introduced to implement a linear program-based

solution with a low number of constraints. These mentioned contributions propose ad-hoc
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constraint reduction methods that exploit the specific structure of the problem at hand.

The literature on probabilistic methods for general convex optimization problems is

very scarce. Independently of the present work, a general constraint sample complexity

evaluation for linear programs has been derived in [10], motivated by applications in dy-

namic programming and adaptive control. Admittedly, the sample complexity bounds

derived in [10] are loose, since they are directly based on the Vapnik-Chervonenkis uniform

convergence theory, and hence suffer from the conservatism of this theory. In the different

– though strictly related – setting of feasibility determination, the idea of approximate

feasibility has been discussed in [2], where a method for reducing the problem of finding an

approximately feasible x point is reduced to a convex optimization problem. For another

contribution in a similar direction, see [9]. This paper presents a general theory for robust

convex programming in a probabilistic setting. We show that a generic uncertain convex

program can be solved by resorting to random sampling, and that a rapidly decreasing

bound for the sample size exists, which credits the method with wide applicability.

This paper is organized as follows. Section 2 contains the main result (Theorem 1),

whose complete proof is reported in a separate section (Section 3.2). In Section 4 the

main result is extended to problems with non-unique optimal solutions (Theorem 3) and to

problems with convex objective. Section 5 presents numerical examples and applications to

robust linear programming, robust least-squares problems, and semidefinite programming.

Conclusions are finally drawn in Section 6.

2 Randomized Approach to Uncertain Convex Pro-

gramming

Consider (1), and assume that the support ∆ for δ is endowed with a σ-algebra D and that

a probability measure P over D is also assigned. Depending on the situation at hand, P can

have different interpretations. Sometimes, it is the actual probability that the uncertainty

parameter δ takes on value in a certain set. Other times, P simply describes the relative
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importance we attribute to different instances.

Definition 1 (Violation probability) Let x ∈ X be a candidate solution, then the prob-

ability of violation of x is defined as

V (x)
.
= P{δ ∈ ∆ : f(x, δ) > 0}

(here, it is assumed that {δ ∈ ∆ : f(x, δ) > 0} is an element of the σ-algebra D). �

For example, if a uniform (with respect to Lebesgue measure) probability density is

assumed, then V (x) measures the volume of ‘bad’ parameters δ such that the constraint

f(x, δ) ≤ 0 is violated. Clearly, a solution x with small associated V (x) is feasible for

‘most’ of the problem instances in the UCP family. We have the following definition.

Definition 2 (ε-level solution) Let ε ∈ [0, 1]. We say that x ∈ X is an ε-level robustly

feasible solution if V (x) ≤ ε. �

Our goal is to devise an algorithm that returns a ε-level solution, where ε is any fixed

small level. To this purpose, we now introduce the randomized counterpart of the robust

problem (2).

Assume that N independent identically distributed samples δ(1), . . . , δ(N) are drawn

according to probability P and consider the convex optimization problem

RCPN : min
x∈ n

cT x subject to x ∈ X (4)

f(x, δ(i)) ≤ 0, i = 1, . . . , N.

For the time being, we assume that RCPN admits a unique solution. Clearly, should RCPN

be unfeasible (i.e. ∩i=1,...,N

{
x : f(x, δ(i)) ≤ 0

} ∩ X = ∅), then RCP would be unfeasible

too. The uniqueness assumption is instead temporarily made for clarity in the presentation

and proof of the main result, and it is removed in the later Section 4.1.

Let then x̂N be the unique solution of problem RCPN . Since the constraints f(x, δ(i)) ≤
0 are randomly selected, x̂N is a random variable. The following key theorem pinpoints

the properties of x̂N .
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Theorem 1 Fix two real numbers ε ∈ [0, 1] (level parameter) and β ∈ [0, 1] (confidence

parameter) and let

N ≥ n

εβ
− 1 (5)

(remember that n = size of x). Then, with probability not smaller than 1−β, the random-

ized optimization problem RCPN returns an optimal solution x̂N which is ε-level robustly

feasible. �

In the theorem, probability 1− β refers to the probability P N (= P × · · · × P , n times) of

extracting a ‘bad’ multisample, i.e. a multisample δ(1), . . . δ(N) such that x̂N does not meet

the ε-level feasibility property. A subtle measurability issue arises regarding the definition

of this probability. In fact, without any extra assumptions, there is no guarantee that the

set of multisamples such that V (x̂N) ≤ ε is measurable, so that its probability may not be

well-defined. Here and elsewhere, the measurability of this set is taken as an assumption.

The proof Theorem 1, which requires the statement of some preliminary results, is

given in Section 3.2. We here remark that the ‘sample complexity’ of the algorithm (i.e.

the number N of random samples that need to be drawn in order to achieve the desired

probabilistic level in the solution) scales linearly with respect to 1/εβ, and with respect to

the number n of decision variables. The original semi-infinite problem is therefore replaced

by a standard convex problem with many constraints. For reasonable probabilistic levels,

the required number of these constraints appears to be manageable by current convex

optimization numerical solvers.

Remark 1 (Role of probability P ) Probability P plays a double role in our approach:

on the one hand, it is the probability according to which the uncertainty is sampled; on

the other hand, it is the probabilistic measure according to which the probabilistic levels

of quality mentioned in the above theorem are assessed.

In certain problems, P is the probability of occurrence of the different instances of the

uncertain parameter δ. In other cases, it more simply represents the different importance
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we place on different instances. Extracting δ samples according to a given probability

measure P is not always a simple task to accomplish, see [8] for a discussion of this topic

and polynomial-time algorithms for the sample generation in some matrix norm-bounded

sets.

In some applications (see e.g. [7]), probability P is not explicitly known and the sampled

constraints are directly made available as observations. In this connection, it is important

to note that the bound (5) is probability independent (i.e. it holds irrespective of the

underlying probability P ) and can therefore be applied even when P is unknown. �

Remark 2 (Feasibility vs. performance) Solution methodologies for the RCP prob-

lem are known only for certain simple dependencies of f on δ, such as affine, polynomial or

rational. In other cases, the randomized approach offers a practicable way of proceeding

in order to compute a solution.

Even when solving the RCP problem is possible, the randomized approach can offer

advantages that should be considered when choosing a solution methodology. In fact,

solving RPC gives 100% deterministic guarantee that the constraints are satisfied, no

matter what δ ∈ ∆ is. Solving RCPN leaves instead a chance to the occurrence of δ’s

which are violated by the solution. On the other hand, RCPN provides a solution (for

the satisfied constraints) that outperforms the solution obtained via RCP. In this context,

fixing a suitable level ε is sometimes a matter of trading probability of unfeasibility against

performance. �

Remark 3 (A-priori and a-posteriori assessments) It is worth noticing that a dis-

tinction should be made between the a-priori and a-posteriori assessments that one can

make regarding the probability of constraint violation. Indeed, before running the opti-

mization, it is guaranteed by Theorem 1 that if N ≥ n/εβ − 1 samples are drawn, the

solution of the randomized program will be ε-level robustly feasible, with probability not

smaller than 1−β. However, the a-priori parameters ε, β are generally chosen not too small,
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due to technological limitations on the number of constraints that one specific optimization

software can deal with.

On the other hand, once a solution has been computed (and hence x = x̂N is fixed), one

can make an a-posteriori assessment of the level of feasibility using Monte-Carlo techniques.

In this case, a new batch of Ñ independent random samples of δ ∈ ∆ is generated, and

the empirical probability of constraint violation, say V̂Ñ(x̂N), is computed according to the

formula V̂Ñ(x̂N ) = 1
Ñ

∑Ñ
i=1 1(f(x̂N , δ(i))) ≤ 0), where 1(·) is the indicator function. Then,

the classical Hoeffding’s inequality, [16], guarantees that

|V̂Ñ(x̂N) − V (x̂N)| ≤ ε̃

holds with confidence greater than 1 − β̃, provided that

Ñ ≥ log 2/β̃

2ε̃2
(6)

test samples are drawn. This latter a-posteriori test can be easily performed using a large

sample size Ñ because no optimization problem is involved in such an evaluation. �

3 Technical preliminaries and proof of Theorem 1

This section is technical and contains the machinery needed for the proof of Theorem 1.

The reader not interested in the details may skip this section and pass to the numerical

examples section.

3.1 Preliminaries

We start with a a technical lemma.

Lemma 1 Given a set S of p + 2 points in R
p, there exist two points among these, say

ξ1, ξ2, such that the line segment ξ1ξ2 intersects the hyperplane (or one of the hyperplanes

if indetermination occurs) generated by the remaining p points ξ3, . . . , ξp+2. �
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Proof. Choose any set S ′ composed of p − 1 points from S, and consider the bundle

of hyperplanes passing through S ′. If this bundle has more than one degree of freedom,

augment S ′ with additional arbitrary points, until the bundle has exactly one degree of

freedom. Consider now the translation which brings one point of S ′ to coincide with the

origin, and let S ′′ be the translated point set. The points in S ′′ lie now in a subspace

F of dimension p − 2, and all the hyperplanes of the (translated) bundle are of the form

vT x = 0, where v ∈ V, being V the subspace orthogonal to F , which has dimension 2.

Call x4, . . . , xp+2 the points belonging to S ′′, and x1, x2, x3 the remaining points. Con-

sider three fixed hyperplanes H1, H2, H3 belonging to the bundle generated by S ′′, which

pass through x1, x2, x3, respectively; these hyperplanes have equations vT
i x = 0, i = 1, 2, 3.

Since dimF = 2, one of the vi’s (say v3) must be a linear combination of the other two,

i.e. v3 = α1v1 + α2v2.

Suppose that one of the hyperplanes, say H1, leaves the points x2, x3 on the same

open half-space vT
1 x > 0 (note that assuming vT

1 x > 0, as opposed to vT
1 x < 0 is a

matter of choice since the sign of v1 can be arbitrarily selected). Suppose that also another

hyperplane, say H2, leaves the points x1, x3 on the same open half-space vT
2 x > 0. Then,

it follows that vT
1 x3 > 0, and vT

2 x3 > 0. Since vT
3 x3 = 0, it follows also that α1α2 < 0. We

now have that

vT
3 x1 = (α1v1 + α2v2)

T x1 = α2v
T
2 x1

vT
3 x2 = (α1v1 + α2v2)

T x2 = α1v
T
1 x2,

where the first term has the same sign as α2, and the second has the same sign as α1. Thus,

vT
3 x1 and vT

3 x2 do not have the same sign. From this reasoning it follows that not all the

three hyperplanes can leave the complementary two points on the same open half-space,

and the result is proved. �

We now come to a key instrumental result. Consider the convex optimization program

P : min
x∈ n

cT x subject to x ∈ Xi, i = 1, . . . , m,
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where Xi, i = 1, . . . , m are closed convex sets. Let the convex programs Pk, k = 1, . . . , m,

be obtained from P by removing the k-th constraint:

Pk : min
x∈ n

cT x subject to x ∈ Xi, i = 1, . . . , k − 1, k + 1, . . . , m.

Let x∗ be any optimal solution of P (assuming it exists), and let x∗
k be any optimal solution

of Pk (again, assuming it exists). We have the following definition.

Definition 3 (Support constraints) The k-th constraint Xk is a support constraint for

P if problem Pk has an optimal solution x∗
k such that cT x∗

k < cT x∗. �

The following theorem holds.

Theorem 2 The number of support constraints for problem P is at most n. �

Proof. We prove the statement by contradiction. Suppose then that problem P has ns > n

support constraints and choose any (n + 1)-tuple of constraints among these.

Then, there exist n + 1 points (say, without loss of generality, the first n + 1 points)

x∗
k, k = 1, . . . , n + 1, which are optimal solutions for problems Pk, and which lie all in the

same open half-space {x : cT x < cT x∗}. We show next that, if this is the case, then x∗ is

not optimal for P, which constitutes a contradiction.

Consider the line segments connecting x∗ with each of the x∗
k, k = 1, . . . , n + 1,

and consider a hyperplane H .
= {cT x = α} with α < cT x∗, such that H intersects

all the line segments. Let x̄∗
k denote the point of intersection between H and the seg-

ment x∗x∗
k. Notice that, by convexity, the point x̄∗

k certainly satisfies the constraints

X1, . . . ,Xk−1,Xk+1, . . . ,Xn+1, but it does not necessarily satisfy the constraint Xk.

Suppose first that there exists an index k such that x̄∗
k belongs to the convex hull

co{x̄∗
1, . . . , x̄

∗
k−1, x̄∗

k+1, . . . , x̄
∗
n+1}. Then, since x̄∗

1, . . . , x̄
∗
k−1, x̄∗

k+1, . . . , x̄
∗
n+1 all satisfy the k-

th constraint, so do all points in co{x̄∗
1, . . . , x̄

∗
k−1, x̄∗

k+1, . . . , x̄
∗
n+1} and hence x̄∗

k ∈ co{x̄∗
1, . . . ,

x̄∗
k−1, x̄

∗
k+1, . . . , x̄

∗
n+1} satisfies the k-th constraint. On the other hand, as it has been men-

tioned above, x̄∗
k satisfies all other constraints X1, . . . ,Xk−1,Xk+1, . . . ,Xn+1, and therefore
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x̄∗
k satisfies all constraints. From this it follows that x̄∗

k is a feasible solution for problem P,

and has an objective value cT x∗
k = α < cT x∗, showing that x∗ is not optimal for P. Since

this is a contradiction, we are done.

Consider now the complementary case in which there does not exist a x̄∗
k ∈ co{x̄∗

1, . . . , x̄
∗
k−1,

x̄∗
k+1, . . . , x̄

∗
n+1}. Then, we can always find two points, say x̄∗

1, x̄
∗
2, such that the line seg-

ment x̄∗
1x̄

∗
2 intersects at least one hyperplane passing through the remaining n − 1 points

x̄∗
3, . . . , x̄

∗
n+1. Such couple of points always exist by virtue of Lemma 1. Denote with x̄∗

1,2

the point of intersection (or any point in the intersection, in case more than one exists).

Notice that x̄∗
1,2 certainly satisfies all constraints, except possibly the first and the second.

Now, x̄∗
1,2, x̄

∗
3, . . . , x̄

∗
n+1 are n points in a flat of dimension n − 2. Again, if one of these

points belongs to the convex hull of the others, then this point satisfies all constraints, and

we are done. Otherwise, we repeat the process, and determine a set of n − 1 points in a

flat of dimension n − 3.

Proceeding this way repeatedly, either we stop the process at a certain step (and then

we are done), or we proceed all way down until we determine a set of three points in a flat

of dimension one. In this latter case we are done all the same, since out of three points in

a flat of dimension one there is always one which lies in the convex hull of the other two.

Thus, in any case we have a contradiction and this proves that P cannot have n + 1 or

more support constraints. �

We are now ready to present a proof for Theorem 1.

3.2 Proof of Theorem 1

Consider N + 1 independent random variables z(1), . . . , z(N+1) taking value in ∆ with

probability P and consider the following N + 1 instances of RCPN :

RCPk
N : min

x∈ n
cT x subject to x ∈ X

f(x, z(i)) ≤ 0, i = 1, . . . , k − 1, k + 1, . . . , N + 1.
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For k = 1, . . . , N +1, let x̂k
N be the optimal solution of problem RCPk

N , and notice that x̂k
N

is such that f(x̂k
N , z(i)) ≤ 0, for i = 1, . . . , k−1, k+1, . . . , N +1, but it does not necessarily

hold that f(x̂k
N , z(k)) ≤ 0.

The idea of the proof is as follows: first we notice that V (x̂N) is a random variable

belonging to the interval [0, 1]. Then, we show that the expected value of V (x̂N) is close to

0, and from this we infer a lower bound on the probability of having V (x̂N ) smaller than

ε. Define

V̄N
.
= EP N [V (x̂N )], (7)

where E is the expectation operator, and, for k = 1, . . . , N + 1, let

vk
.
=

{
1, if f(x̂k

N , z(k)) > 0
0, otherwise,

i.e. the random variable vk is equal to one if x̂k
N fails to satisfy the constraint f(x̂k

N , z(k)) ≤ 0,

and it is zero otherwise. Let also

ˆ̄V N
.
=

1

N + 1

N+1∑
k=1

vk. (8)

We have that

EP N+1 [vk] = EP N

[
EP [vk|z(1), . . . , z(k−1), z(k+1), . . . , z(N+1)]

]
= EP N

[
P{z(k) ∈ ∆ : f(x̂k

N , z(k)) > 0}]
= EP N [V (x̂k

N )]

= V̄N ,

which yields

EP N+1 [ ˆ̄V N ] = V̄N . (9)

The key point is now to determine an upper bound for EP N+1[ ˆ̄V N ].

To this purpose, we proceed as follows. Fix a realization z̄(1), . . . , z̄(N+1) of variables

z(1), . . . , z(N+1). We show that, for any choice of z̄(1), . . . , z̄(N+1) it holds that

ˆ̄V N(z̄(1), . . . , z̄(N+1)) ≤ n

N + 1
. (10)
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Thus, by taking expectation we still have

EP N+1 [ ˆ̄V N ] ≤ n

N + 1
. (11)

To show (10), consider the convex problem involving all the N + 1 constraints

RCPN+1 : min
x∈ n

cT x subject to x ∈ X
f(x, z̄(i)) ≤ 0, i = 1, . . . , N + 1.

and let x̂N+1 be the corresponding optimal solution. Also consider the optimal solutions

x̂k
N , k = 1, . . . , N + 1, of programs RCPk

N , k = 1, . . . , N + 1, obtained by removing one by

one the constraints f(x, z̄(i)) ≤ 0. Now, from Theorem 2 we know that at most n of the

constraints when removed from RCPN+1 will change the optimal solution and improve the

objective. From this it follows that there exist at most n optimal points x̂k
N such that the

constraint f(x̂k
N , z(k)) ≤ 0 is violated. Hence, at most n of the vk’s can be equal to one,

and from (8) equation (10) follows.

Now, given ε > 0, we can bound the expectation EP N [V (x̂N )] from below as

EP N [V (x̂N)] ≥ εP N{V (x̂N) > ε}. (12)

Letting β̄
.
= P N{V (x̂N ) > ε}, combining equations (7), (9), (11), and (12), we finally

obtain

εβ̄ ≤ n

N + 1
,

from which the statement of the theorem easily follows. �

4 Extensions

4.1 Problems with multiple optimal solutions

In this section we drop the assumption that the optimal solution of RCPN is unique.

Consider problem RCPN (4). If more than one optimal solution exists for this problem,

we assume that a solution selection procedure (tie-break rule) is applied in order to single

out a specific optimal solution x̂N . The selection rule goes as follows.

14



Rule 1 Let ti(x), i = 1, . . . , p, be given convex and continuous functions. Among the

optimal solutions for RCPN , select the one that minimizes t1(x). If indetermination still

occurs, select among the x that minimize t1(x) the solution that minimizes t2(x), and so

on with t3(x), t4(x), . . .. We assume that functions ti(x), i = 1, . . . , p, are selected so that

the tie is broken within p steps at most. As a simple example of a tie-break rule, one can

consider t1(x) = x1, t2(x) = x2, . . .. �

From now on, for any convex optimization problem considered, by optimal solution we

mean either the unique optimal solution, or the solution selected according to Rule 1, in

case the problem admits more than one optimal solution. The following theorem extends

Theorem 1 to the present setting.

Theorem 3 The result in Theorem 1 holds also in case when RCPN has multiple optimal

solutions, provided that x̂N is selected according to Rule 1. �

Proof. The proof follows the same line as the one for Theorem 1 except that Definition 3

and Theorem 2 need suitable amendments. Precisely, we now have:

Definition 4 (Support constraints) The k-th constraint Xk is a support constraint for

P if problem Pk has an optimal solution x∗
k such that x∗

k �= x∗. �

Definition 4 is a generalization of Definition 3 since, in the case of single optimal solu-

tions, x∗
k �= x∗ is equivalent to cT x∗

k < cT x∗.

The statement of Theorem 2 remains unaltered with the above definition of support

constraint (this needs a proof - see below) and then all other parts of the proof of Theorem

1 goes through to prove Theorem 3. Hereafter, we sketch a proof of Theorem 2 in the

present context.

As in the original proof of Theorem 2, suppose that there are n+1 support constraints

and let x∗
k, k = 1, . . . , n+1, be the optimal solutions for the corresponding Pk problems. We

show that x∗ /∈ co{x∗
1, . . . , x

∗
n+1}, and therefore a (n−1)-dimensional hyperplane separating
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x∗ from x∗
1, . . . , x

∗
n+1 can be constructed (this part is new and the separating hyperplane

replaces H in the original proof).

Suppose, for the purpose of contradiction, that x∗ ∈ co{x∗
1, . . . , x

∗
n+1}, and hence x∗ can

be written as x∗ =
∑

i∈I⊂{1,...,n+1} αix
∗
i , 0 < αi ≤ 1,

∑
i∈I αi = 1. Note that cT x∗

i ≤ cT x∗,

∀i ∈ I. If cT x∗
i < cT x∗, for some i ∈ I, we then have: cT x∗ = cT

∑
i∈I αix

∗
i =

∑
i∈I αic

T x∗
i <

cT x∗, which is impossible, and therefore cT x∗
i = cT x∗, ∀i ∈ I. In turn, t1(x

∗
i ) ≤ t1(x

∗),

∀i ∈ I. If t1(x
∗
i ) < t1(x

∗), for some i ∈ I, we then have: t1(x
∗) = t1(

∑
i∈I αix

∗
i ) ≤∑

i∈I αit1(x
∗
i ) < t1(x

∗), which is again impossible, and therefore t1(x
∗
i ) = t1(x

∗), ∀i ∈ I.

Proceeding in a similar way for t2(x), . . . , tp(x), we conclude that, for any i: cT x∗
i =

cT x∗, t1(x∗
i ) = t1(x

∗), . . . , tp(x∗
i ) = tp(x

∗), but this is impossible since then t1(x), . . . , tp(x)

would not give a tie-break rule. Thus, we have a contradiction and x∗ /∈ co{x∗
1, . . . , x

∗
n+1}.

Consider now a (n−1)-dimensional hyperplane H separating x∗ from x∗
1, . . . , x

∗
n+1 (and

not touching x∗) and construct x̄∗
1, . . . , x̄

∗
n+1 similarly to the original proof of Theorem 2.

In the original proof of Theorem 2, we have proven that a point, say x̄∗, exists in H that

satisfies all constraints. A bit of inspection of that proof reveals that x̄∗ is in fact in the

convex hull of x̄∗
1, . . . , x̄

∗
n+1: x̄∗ ∈ co{x̄∗

1, . . . , x̄
∗
n+1}. We conclude the proof by showing

that such x̄∗ would outperform x∗ in the P problem so that x∗ would not be the optimal

solution of P. Since this is a contradiction, we then have that no n+1 support constraints

can exist.

Let x̄∗ =
∑

j∈J⊂{1,...,n+1} βj x̄
∗
j , 0 < βj ≤ 1,

∑
j∈J βj = 1. Begin by observing that

cT x̄∗
j ≤ cT x∗, ∀j ∈ J . Indeed, x̄∗

j = αx∗
j + (1 − α)x∗ with 0 < α ≤ 1, so that cT x̄∗

j =

cT (αx∗
j +(1−α)x∗) = αcTx∗

j +(1−α)cTx∗ ≤ cT x∗. If cT x̄∗
j < cT x∗ for some j ∈ J , we then

have: cT x̄∗ = cT
∑

j∈J βjx̄
∗
j =

∑
j∈J βjc

T x̄∗
j < cT x∗ and x̄∗ outperforms x∗. If cT x̄∗

j = cT x∗,

∀j ∈ J , one proceeds to consider t1(x), t2(x), . . .. Following a similar rationale, one then

concludes that x̄∗ outperforms x∗ at some step for, otherwise, the tie between x∗ and the

x∗
j ’s would not be broken by t1(x), . . . , tp(x). This concludes the proof. �
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4.2 Problems with no solution

Notice that even if problem RCP attains an optimal solution, a further technical diffi-

culty may arise when a randomized problem instance RCPN has no solution. This may

happen when the set ∩i=1,...,N

{
x : f(x, δ(i)) ≤ 0

} ∩ X is unbounded in such a way that

the optimal solution ‘escapes’ to infinity, while the original problem is constrained to a

set ∩δ∈∆ {x : f(x, δ) ≤ 0} ∩ X such that the optimal solution is attained. In this case,

Theorem 3 still holds with a little modification, as explained below.

Suppose that a random extraction of a multisample δ(1), . . . δ(N) is rejected when no

optimal solution exists, and another extraction is performed in this case. Then, the prob-

ability of ending up with a multisample such that V (x̂N ) ≤ ε is not smaller than 1 − β.

In formal terms, this probability is a conditional probability to the event where a solution

exists.

Theorem 4 Let ∆N
E ⊆ ∆N be the set where a solution of RCPN exists. If P N(∆N

E ) > 0,

the result in Theorem 3 holds, provided that 1 − β is intended as a lower bound on the

conditional probability P N({V (x̂N) ≤ ε} ∩ ∆N
E )/P N(∆N

E ). (the measurability of ∆N
E is

taken as an assumption). �

Proof. We sketch here how the proof of Theorem 3 can be amended to cope with the

present setting. Let ∆N+1
E ⊆ ∆N+1 be the set where a solution of the problem with N + 1

constraints exists, and note that ∆N
E × ∆ ⊆ ∆N+1

E for, if N constraints avoid escape to

infinity of the solution, this is still true after adding one more constraint. Next, with the

symbols having the same meaning as in the proof of Theorem 1, let

v′
k

.
=

{
1, if f(x̂k

N , z(k)) > 0 or x̂k
N does not exist

0, otherwise,

and let vk
.
= v′

k ·1(∆N+1
E ), 1(·) being the indicator function. It is then not difficult to adapt

the proof of Theorem 1 to conclude that

n

N + 1
P N+1(∆N+1

E ) ≥ EP N+1

[
1

N + 1

N+1∑
k=1

vk

]
= EP N+1 [vN+1] = P N+1(∆N+1

E ∩ (A ∪ B)),
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with A
.
= {f(x̂k

N , z(k)) > 0}, B
.
= {x̂k

N does not exist}. Since ∆N+1
E ∩ (A ∪ B) = ((∆N

E ×
∆) ∩ A) ∪ (∆N+1

E − (∆N
E × ∆)), we then have

n

N + 1
P N+1(∆N+1

E ) ≥ P N+1((∆N
E × ∆) ∩ A) + P N+1(∆N+1

E − (∆N
E × ∆)). (13)

Finally, with the notation β̄
.
= P N({V (x̂N ) > ε} ∩ ∆N

E ), we have:

εβ̄ ≤ EP N [{V (x̂N ) > ε} ∩∆N
E ]

= P N+1((∆N
E × ∆) ∩ A)

≤ n

N + 1
P N+1(∆N+1

E ) − P N+1(∆N+1
E − (∆N

E × ∆)) (using (13))

≤ n

N + 1
P N+1(∆N

E × ∆)

=
n

N + 1
P N(∆N

E ),

from which the statement follows. �

4.3 Problems with a convex cost

Consider the robust convex program

min
x∈ n

s(x) subject to x ∈ X
f(x, δ) ≤ 0, δ ∈ ∆,

where s(x) is a convex and continuous function. As it is well known, this problem is

equivalent to the following program in epigraphic form, having linear cost

min
x,γ

γ subject to x ∈ X
f(x, δ) ≤ 0, δ ∈ ∆

s(x) − γ ≤ 0.

Theorem 1 can be applied to this latter program to conclude that N ≥ n+1
εβ

−1 constraints

suffice to obtain an ε-level solution with probability 1 − β (note that we have n + 1 since

the problem now has n + 1 variables: [γ xT ]T ∈ R
n+1).
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However, we observe that this epigraphic reformulation is not necessary for the appli-

cation of Theorem 1. As a matter of fact, the same reasoning as in the proof given in

Section 4.1 can be directly applied to the initial program with convex cost, to conclude

that N ≥ n
εβ

− 1 constraints are still sufficient in this case.

5 Applications and Numerical Examples

5.1 Robust linear programs

To illustrate the theory, we consider first a very specialized family of robust convex pro-

grams, namely robust linear programs of the form

min
x∈ n

cT x subject to A(δ)x ≤ b, ∀δ ∈ ∆, (14)

with A(δ) ∈ R
p,n and X = R

n. For particular uncertainty structures (for instance, when

A(δ) is affine in δ, and the set ∆ is the direct product of ellipsoids) the above problem

can be recast exactly as a convex program with a finite number of constraints and decision

variables, and therefore efficiently solved by standard numerical techniques, see [5]. How-

ever, if the dependence of A on δ is not affine, and the uncertainty set ∆ has a generic

structure, only approximated (conservative) solutions can be obtained through relaxation.

For comparison purposes, we discuss here an example for which an exact solution can

be computed via standard methods. In particular, we assume that each row aT
i (δ) of A(δ)

belongs to an ellipsoid, i.e.

ai(δ) = âi + Eiδi, ‖δi‖ ≤ 1, i = 1, . . . , m,

where âi ∈ R
n is the center of the ellipsoid, Ei = ET

i ∈ R
n,n is the ‘shape’ matrix, and

δ = [δT
1 · · · δT

m]T ∈ R
mn. Then, we notice that the constraint aT

i (δ)x ≤ bi holds for all

δ ∈ ∆ if and only if

max
‖δi‖≤1

âT
i x + δT

i Eix ≤ bi,
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which in turn holds if and only if âT
i x + ‖Eix‖ ≤ bi. Therefore, the robust linear program

(14) has in this case an exact reformulation as the following second order cone program

min
x∈ n

cT x subject to âT
i x + ‖Eix‖ ≤ bi, i = 1, . . . , m. (15)

On the other hand, to pursue the randomized approach, we assume that each vector δi is

uniformly distributed over the ball ‖δi‖ ≤ 1, and, for fixed ε, β, we determine N according

to (5) and draw N samples δ(i), . . . , δ(N) of δ. The randomized counterpart of (14) is

therefore given by the linear program

min
x∈ n

cT x subject to A(δ(i))x ≤ b, i = 1, . . . , N.

To make a simple example, let us consider the following numerical data

A(δ) =




−1 0
0 −1
1 0
0 1


 + 0.2




δT
1

δT
2

δT
3

δT
4


 , ‖δi‖ ≤ 1, i = 1, . . . , 4,

and b =
[

0 0 1 1
]T

, c =
[ −1 −1

]
. For this data, the exact robust solution com-

puted according to (15), is x∗ = [0.7795 0.7795]T , with corresponding optimal objec-

tive cT x∗ = −1.5590. For the randomized counterpart, we selected probabilistic levels

ε = β = 0.01, which requires N = 19.999 randomized constraints. The resulting lin-

ear program was readily solved on a PC using Matlab LP routine, yielding the solution

x̂N = [0.7798 0.7795]T , resulting in the objective value cT x̂N = −1.5594.

5.2 Robust least-squares problems

We next consider a problem of robust polynomial interpolation borrowed from [12]. For

given integer n ≥ 1, we seek a polynomial of degree n − 1, p(t) = x1 + x2t + · · · + xntn−1,

that interpolates m given points (ai, yi), i = 1, . . . , m, with minimal squared interpolation

error, that is it minimizes ‖Ax − y‖2, where

A =




1 a1 · · · an−1
1

...
...

...
1 am · · · an−1

m


 , x =




x1
...

xn


 , y =




y1
...

ym


 .
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If the data values (ai, yi) are known exactly, this problem is a standard least-squares prob-

lem. Now, assume that the interpolation points are not known exactly. For instance, we

assume that the yi’s are known exactly, while there is interval uncertainty on the abscissae

ai(δ) = ai + δi, i = 1, . . . , m,

where δi are assumed to be uniformly distributed in the intervals [−ρ, ρ], i.e.

∆ = {δ = [δ1 · · · δm]T : ‖δ‖∞ ≤ ρ}.

We then seek an interpolant that minimizes the worst-case squared interpolation error, i.e.

x∗ = arg min
x∈ n

max
δ∈∆

‖A(δ)x − y‖2, (16)

where

A(δ) =




1 a1(δ) · · · an−1
1 (δ)

...
...

...
1 am(δ) · · · an−1

m (δ)


 .

Clearly, the min-max problem (16) can be cast in standard robust convex programming

format as

min
x,γ

γ subject to ‖A(δ)x − y‖2 ≤ γ, ∀δ ∈ ∆. (17)

Due to the non-linear nature of the uncertainty entering the data matrix, it is not known

how to solve problem (17) exactly in polynomial time, but it is possible to efficiently

minimize an upper bound on the optimal worst-case residual via semidefinite programming,

as it is shown in [12].

Considering the numerical data

(a1, y1) = (1, 1), (a2, y2) = (2,−0.5), (a3, y3) = (4, 2),

with uncertainty level ρ = 0.2 and n = 3, the semidefinite relaxation approach of [12]

yielded a sub-optimal solution with worst-case (guaranteed) residual error equal to 1.1573.

To apply our randomized approach, we assumed uniform distribution for the uncertain

parameters, and selected probabilistic levels ε = β = 0.1, which requires N = 399 random
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samples of δ. The randomized counterpart of (17) can then be expressed as the following

semidefinite program

min
x,γ

γ subject to

[
γ (A(δ(i))x − y)T

(A(δ(i))x − y) I

]
� 0, i = 1, . . . , N. (18)

Problem (18) was easily solved on a PC using standard software, and yielded the solution

x̂N = [3.7539 −3.5736 0.7821]T , with corresponding residual equal to 0.6993. This residual

makes a ∼ 40% improvement over the one resulting from the deterministic semidefinite

relaxation approach. Of course, this improvement comes at some cost: the computed

residual is not guaranteed against all possible uncertainties, but only for most of them.

Since we used a relatively small number of samples to determine the randomized so-

lution, we proceed with an a-posteriori Monte-Carlo test in order to determine a more

precise estimate of the violation probability for the computed solution. Running this

a-posteriori test with Ñ = 106 on the solution x̂N resulted in an estimated violation prob-

ability V̂Ñ(x̂N ) = 0.0042. Moreover, by the Hoeffding bound (6), we are 99.99% confident

that the actual violation probability is close to the estimated one, up to ε̃ = 0.002. To

summarize the results, the randomized program (18) yielded a solution which provides

a ∼ 40% performance improvement in the residual error with respect to the semidefinite

robust relaxation method, at the expense of a maximum ∼ 0.6% risk of constraint violation.

5.3 Solving semidefinite programs using linear programming

In this latter example, we show an application of the randomized methodology to a problem

where the semi-infinite constraints do not arise in consequence of actual uncertainty in the

problem data, but are ‘artificially’ introduced by a suitable reformulation of the problem.

Consider a standard formulation of a semidefinite program

SDP: min
x∈ n

cT x subject to F (x) 	 0,
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where F (x) = F0 +
∑n

i=1 xiFi, Fi = F T
i . Clearly, the linear matrix inequality constraint

F (x) 	 0 can be reformulated as a semi-infinite (or robust) constraint of the form

zT F (x)z ≤ 0, ∀z : ‖z‖ = 1.

The above constraint actually represents an infinite set of linear constraints on the problem

variable x:

[zT F1z · · · zT Fnz]




x1
...

xn


 ≤ −zT F0z, ∀z : ‖z‖ = 1,

and therefore SDP can be represented as a robust linear program. This type of repre-

sentation and its consequences in relation to bundle solution methods have been recently

studied in [17].

Now, assuming that the z’s are sampled according to some probability distribution (for

instance, uniform over the surface of the unit hyper-sphere), we can state the randomized

counterpart of SDP as

SDPN : min
x∈ n

cT x subject to [z(i)T F1z
(i) · · · z(i)T Fnz(i)]x ≤ −z(i)T F0z

(i), i = 1, . . . , N,

which is indeed a linear program in n variables and N constraints.

As a simple example, let us consider the problem of minimizing the largest eigenvalue

of a symmetric matrix A(x) of the form

A(x) = A0 + x1A1 + · · ·+ xpAp, Ai = AT
i ∈ R

m,m,

which corresponds to the SDP

min
x∈ p,λ

λ subject to A(x) 	 λI. (19)

For the following numerical data

A0 =




18 −1 4 −3 −2

−1 −2 −5 14 −5

4 −5 16 12 −1

−3 14 12 −4 −3

−2 −5 −1 −3 −16




, A1 =




−12 −17 0 1 −7

−17 8 4 −2 3

0 4 0 −3 1

1 −2 −3 −6 2

−7 3 1 2 −14




,
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A2 =




−14 6 −5 3 −3

6 −6 14 3 −3

−5 14 12 −3 12

3 3 −3 −8 1

−3 −3 12 1 −6




, A3 =




8 5 7 −5 5

5 18 −5 −3 −12

7 −5 −10 14 3

−5 −3 14 −14 −14

5 −12 3 −14 18




,

the solution of (19) using a standard SDP solver yielded an optimal objective λ∗ = 20.8026

with corresponding x∗ = [0.5765 0.0037 − 0.2673]T .

For the randomized problem, we assumed uniform distribution for z, and selected prob-

abilistic levels ε = β = 0.01, which (since n = p + 1 = 4) requires N = 39, 999 sampled

constraints. Notice that the uniform samples on the surface of the unit hypersphere can

be easily generated as z = ξ/‖ξ‖, where ξ is normal with zero mean. Solving the linear

program SDPN yielded the optimal objective λ̂∗ = 20.7269, which is indeed a lower bound

on λ∗, with corresponding x̂N = [0.5424 −0.0124 −0.3050]T . The resulting matrix A(x̂N )

has a maximum eigenvalue λmax = 20.8455.

Remark 4 Let us take a closer look at the above numerical example. The randomized

approach yields a solution (x̂N , λ̂∗) that does not satisfy the constraint A(x̂N ) − λ̂∗I 	 0,

since it is only probabilistically guaranteed in the linear program reformulation. Thus,

λ̂∗ is a lower bound for the optimal value of the original problem. Then, the largest

eigenvalue λmax of A(x̂N ) has been determined and, by construction, λmax does satisfy

relation A(x̂N ) − λmaxI 	 0. So, the final result is that by the randomized approach we

have determined a sub-optimal – but close to optimal – solution to the original problem.

This randomized approach seems particularly effective for determining approximate

solutions in problems with relatively small number of variables n and size of the matrices

Fi so large to be intractable by means of current SDP solvers. In fact, one may observe

that the bound (5) depends only on n, and that (5.3) are scalar constraints, no matter how

large the size of the Fi’s is. �
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6 Conclusions

In this paper, the concept of ε-level solution for an uncertain convex problem has been

introduced. This concept is based on the assumption that the ‘instance parameter’ δ that

parameterizes the constraint family is a random variable. In this case, we have proven that

a randomized version RCPN of the problem returns a solution which is feasible for ‘most’

of the constraints in the family (i.e. an ε-level solution) with high probability, provided

that a sufficient number N of samples is drawn. Moreover, an efficient bound for N which

scales linearly with the problem dimension n and is inversely proportional to the product

of the probability levels εβ, is derived.

In contrast to the NP-hardness of many robust convex programs, this paper shows that,

if a small risk of failure is accepted, the uncertain convex problem can be solved efficiently

in the ε-level sense by a randomized algorithm, no matter the way in which the uncertainty

enters the data, and irrespective of the structure of the uncertainty set ∆.
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