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Abstract: The navigation function methodology, established in 
previous work for centralized multiple robot navigation, is 
extended for decentralized navigation with input constraints. In 
contrast to the centralized case, each agent plans its actions 
without knowing the destinations of the other agents. Asymptotic 
stability is guaranteed by the existence of a global Lyapunov 
function for the whole system, which is actually the sum of the 
separate navigation functions. The collision avoidance and global 
convergence properties as well as input requirements are verified 
through simulations. 
 

1. INTRODUCTION 
    Navigation of mobile agents has been an area of significant 
interest in robotics. Most efforts have focused at the case of 
single agent navigating in an environment with obstacles [1]. 
Recently, navigation for multiple agents has gained 
increasing attention. The basic motivation for this work 
comes from two application domains: (i) decentralized 
conflict resolution in air traffic management and (ii) the field 
of micro robotics, where a team of autonomous micro robots 
must cooperate to achieve manipulation precision in the sub 
micron level. In both cases, velocity constraints could be a 
crucial issue that should be dealt with directly.  
    Whenever multiple mobile agents share the same 
workspace, the potential for collisions among them must be 
taken into account. This can be done by either using a 
centralized approach to plan collision free trajectories for all 
[2] or by independently planning trajectories, in a 
decentralized manner. Lately, several ways for decentralized 
motion planning of multiple agents have been proposed. The 
hybrid control architecture in combination with parallel 
problem solving proposed in [3], guarantees collision 
avoidance, while in [4], the authors use decentralized 
optimization techniques to obtain optimal conflict-free paths 
in a multiple aircraft system. The authors in [5], use the sense 
of  “Formations of Robots” where each robot has its own 
coordinate system to control its relative positions. Asymptotic 
stability is guaranteed based on Lyapunov’s second method.  
  While centralized approaches have the disadvantage of 
being computationally demanding, inflexible and 
presupposing the existence of a global communication 
network, decentralized approaches presuppose inter-agent 
communication and sensory information that could be very   
demanding for the agent’s onboard equipment. For example, 
in micro robotics, because of size constraints, such demands 
could possibly prove infeasible.  The problem of input 
bounds is another important matter that should be taken into 
account, especially in the air traffic management application, 

where issues such as passenger comfort and fuel consumption 
are of major importance. 
   Taking those aspects into consideration, the multi agent 
navigation problem treated in this paper can be stated as 
follows: “Derive a set of control laws (one for each agent) 
that drives a team of agents from any initial configuration to 
a desired goal configuration avoiding, at the same time, 
collisions and fulfilling pre-specified input constraints. The 
environment is assumed perfectly known and stationary, 
while each agent has global knowledge of it and the team 
configuration”. Our basic idea is to use the gradient of a 
potential function for each agent to navigate the whole team, 
while each agent acts as a potential obstacle to the others. We 
use stability results from the hybrid systems domain to 
guarantee fulfillment of the input constraints. 
   The rest of the paper is organized as follows: Section 2 
outlines the concept of navigation functions and describes the 
idea of decentralized motion planning. Section 3 introduces 
the terminology and mathematical tools required for the 
analysis. Section 4 deals with the constrained input problem. 
Section 5 describes a method to overcome the difficulties 
arising when an agent is very close to its desired destination. 
Section 6 presents simulation results for a number of non-
trivial multi agent navigational tasks. Finally, section 7 
summarizes the conclusions and indicates our current 
research. 
 

2. DECENTRALIZED NAVIGATION FUNCTIONS 
   Navigation functions are real valued maps realized through 
cost functions, whose negated gradient field is attractive 
towards the goal configuration and repulsive wrt obstacles. It 
has been shown by Koditscheck and Rimon that “almost” 
global navigation is possible since a smooth vector field on 
any sphere world with a unique attractor, must have at least 
as many saddles as obstacles [6,7]. Our assumption about 
spherical agents and obstacles does not constrain the 
generality of this work since it has been proven that 
navigation properties are invariant under diffeomorphisms. 
   Consider a system of n agents operating in the same 
workspace 2W R⊂ . Each agent i occupies a disk: 
{ 2 : i i}R q R q q r= ∈ − ≤  in the workspace where 2

iq R∈  is 

the center of the disk and 
ir  is the radius of the agent. The 

configuration space is spanned by 1,...,
T

nq q q =   . A 
navigation function can be defined as follows: 



Definition 1: Let nRF ⊂  be a compact connected analytic 
manifold with boundary. A map [ ]: 0F → ,1ϕ  is a navigation 
function if: (1) It is analytic on F, (2) It has only one 
minimum at 

o

d F∈q , (3) Its Hessian at all critical points (zero 
gradient vector field) is full rank, and (4) ( )lim 1

q F
qϕ

→∂
= . 

   In the centralized setup of [2], a central authority has 
knowledge of the current positions and desired destinations of 
all agents and the sought control law is of the form: 

( )u K qi ϕ=− ∇  where K is a gain. In the decentralized case 
encountered in this work, each agent has knowledge only of 
the current positions of the others, and not of their desired 
destinations. Hence each agent has a different navigation law.  
   We consider the following class of decentralized navigation 

functions: 
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γϕ = , where 1(0)iγ
−  denotes the desirable set (i.e. the goal 

configuration) and 1
i
− (0)G , the set that we want to avoid (i.e. 

collisions with the other agents). A suitable choice 
is: ( )ki

i dγ γ= , where: 2
d i diq q−iγ = , is the squared metric of 

the current agent’s configuration iq  from its destination diq . 

Function  has as arguments the coordinates of all agents, 
i.e.

iG

( )i q= iG G , in order to express all possible collisions of 
agent i with the others. The proposed navigation function for 
agent i, wrt that proposed in [2] is 
( ) 1/ ki i

iϕ γ +( )k
dγ )G/ (i dq = and the corresponding agent 

control law is  i
i

iq
ϕ∂− ⋅

∂i

•
=q K . The following theorem will 

help us on deriving results for the function iϕ  by examining 

the simpler function 
^

iϕ : 

Theorem 1 [7]: Let RII ⊆21,  be intervals, 
^

1: F I→ϕ  and 

1: 2I Iσ →  be analytic. Define the composition 
2: F I→ϕ  to 

be 
^
ϕ= Dϕ σ . If σ  is monotonically increasing on 1I , then the 

set of critical points of 
^
ϕ  and ϕ  coincide and the (Morse) 

index of each critical point is identical. 
   The first step is to prove the existence of an energy function 
that asymptotically stabilizes the system to 1,...,

T
d dnq q q= 

1
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i
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ϕ
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The obvious choice is to choose the sum of the separate 

decentralized navigation functions, i.e. to choose ϕ . 

Proposition 1: The derivative of ϕ  assumes negative values 

up to a set of measure zero if the exponent k assumes values 
bigger than a finite lower bound. 
The whole proof of this statement, as well as the proofs of 
propositions 2-5, is provided in [8].  This set of measure zero 
corresponds to the points / 0i iqϕ∂ ∂ = ∀ .i  We use the 
result of theorem 1, to show that in such a situation, unless an 
agent has reached its destination point, there is always a 
direction of movement decreasing its potential function. 
Similar to the results in [2], we make use of the following 
propositions: 
Proposition 2: If the workspace is valid, the destination point 

diq  is a non–degenerate local minimum of 
iϕ . 

Proposition 3: If the workspace is valid, all critical points of 
iϕ  are in the interior of the free space. 

Proposition 4: For every ε>0, there exists a positive integer 
N(ε) such that if k>N(ε) then there are no critical points of 

^

iϕ   in ( )1F ε , where ( )1 εF  denotes the set away from the 
obstacles. 
Proposition 5: For any valid workspace, there exists an 

0 0ε >  such that 
^

iϕ  has no local minimum in ( )0 εF , as long 
as 

0ε<ε , where ( )0F ε  denotes the set near the obstacles. 
In the decentralized setup, the sense of the term “critical 
point” is slightly different than that of the centralized case 
[2]. The set of critical points of 

iϕ  is defined as 

. A critical point is non-degenerate 

if i  has full rank at that point. 

{ : / 0}i iiC q qϕ ϕ= ∂ ∂ =
2 2/i qϕ∂ ∂

   An important feature that should be noticed is the fact that 
once an agent is very close to its destination, its cost function 
assumes very small values, and hence there is a small 
potential of leaving in a case of a possible collision. Hence, 
the overall scheme becomes less robust in such a situation. 
To avoid such a situation we make the following assumption:  
Assumption 1:  Each agent disappears as a state of the 
system once it is sufficiently close to its destination, i.e. once 

i
dγ ≤ δ , where δ a sufficiently small positive parameter. 

 
3. THE DECENTRALIZED CONTROL METHODOLOGY 
3.1. “G” function 
   Unlike the centralized case, in the proposed decentralized 
control law, each agent has a different G  which represents 
its relations with all the other agents. To simplify notation we 
denote by q instead of 

i

iq  the current agent configuration, by 

dq  instead of 
diq  its goal configuration, by G instead of  

its “G” function and by 
iG

iq  the configurations of the other 
agents. Actually, each agent treats the remaining n-1 agents 
as n-1 moving obstacles. We use this terminology in the 
following paragraphs. The mathematical tools of the 
following paragraphs are a simple extension of the notions 
introduced in [2] to the decentralized setup. 



   A “Robot Proximity Function”, a measure of the distance 
between the agent and the j-th moving obstacle in the 
workspace, is defined by: 2 2|| || ( )j jq q r rβ = − − + j

, where r 
is the radius of the agent and 

jr  the radius of the j-th moving 
obstacle.  
   We will use the term “relation” to describe the possible 
collision schemes that can be defined in a single agent – 
multiple moving obstacles scene. A binary relation is a 
relation between the agent and a single obstacle. We will call 
the number of binary relations in a relation, the “relation 
level”. With this terminology in hand, the relation of figure 
(1a) is a level-1 relation (one binary relation) and that of 
figure (1b) is a level-3 relation  (three binary relations), where 
with R is denoted the agent and the obstacles with 

jO   . 
 
 
 
 
 
 
Considering n objects operating in the same workspace (one 
agent and n–1 obstacles), the agent, in order to reach its goal 
configuration, has to avoid collision with the other n–1 
obstacles. The number of all the possible level-1 relations that 
could occur is the combination of the n–1obstacles by 1, i.e. 
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maximum number of levels that we could have for n objects 
operating in the workspace is n–1. 
   We define the (always nonempty) set of integers lS  
including all possible relations in level-l, by: 

{ : 0lS j Z j s= ∈ < ≤ }l
. Obviously, the set of all possible 

relations of all possible levels is: { : 0Z j s= ∈ < ≤ }S j . We 
define by: ( )j lR  the j relation of level-l, where lSj ∈  as 
defined above. For example, in figure (1b): 

1 3 1 2 3( ) {{ , },{ , },{ , }}R R O R O R O= , where we have set 
arbitrarily j=1. In the same way, we define its complementary 
set by: ( ) .  { , :{( ) }C

j l l i lR i S i j R= ∈ ≠ }
   A “Relation Proximity Function”(RPF) provides a measure 
of the distance between the agent and the obstacles involved 
in a relation. Each relation has its own RPF. An RPF assumes 
the value of zero whenever the agent – obstacles involved in 
the relation collide and increases wrt the distance of the 
related objects: 

( )
lj

j l

mR
m R

b β
∈

= ∑( ) , where the index j denotes 

the j-th relation of level–l. To simplify notation, the relation 

proximity function can be rewritten as: 
i j

lj R
β

∈
=∑b , where 

lR  indicates level–l relations and the index i belongs to the 
set S as it has been defined above. Obviously, i indicates a 
relation of level–l.  
   A “Relation Verification Function” (RVF) is defined by: 

1/

( )
( ) ( ) ,  for 2,(( ) ( ) )

l
hl l
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j
j j Cj j

R
R R

R R

b
g b l nb B

λ
= + ≤ −+

( ) ( )
j jR l R lg b=

 and 

 for l=n-1 where λ, h are positive constants, n 

is the total number of agent – obstacles in the workspace, 
and: i

( )

( ) , or ( ) l
C C
j l j

C
j l m i m

m R m R
R b b bB

∈ ∈
= =∏ ∏ for simplicity 

where in the simplified equation, C
lR  indicates a 

complementary set of relations of level–l. Using the 
simplified notation introduced above, the relation verification 
function can be rewritten as: i

i1/
i

h

i i

b
b b+

( , )i i i ig b b b= +

( , )i i i i

λ , for 

 and 2l n≤ − g b b b=� for l=n-1 where n is the total 
number of agents in the workspace, as defined previously. 
The basic property that we demand from RVF is that it 
assumes the value of zero if a relation holds, while no other 
relations of the same or other levels hold. In other words it 
should indicate which of all possible relations holds. In 
RVF’s definition we distinguish two situations (i.e. 

and l=n-1) since for l=n-1, 2l n≤ −
1nj S −∈ {1}=  and so the 

set 1 1( )C
nR −  is an empty set. Thus we can’t define 

1
1

)nCRB −( . 

We could compute the following limits of RVF (using the 
simplified notation): when 0→ib  and 0~

≠ib , obviously: 

0→ig . When: 0→ib  and 0~
→ib , because of the power 1/h 

on ib~ , it tends to zero faster than ib  does, and so we conclude 
that: λ→ig . When: 0≠ib , independently of how ib~  
behaves: 0≠ig . These limits guarantee that RVF will behave 
in the way we want it to, as an indicator of a specific 

collision. We can now define: 
1 1

,

l j

R lL nn

= =
∏∏(

jR )lgG , where = Ln  is 

the number of levels and ,R ln  the number of relations in level-
l. This equation indicates that G is practically the product of a 
certain number of sig . 

R R
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3.2. Proof of Correctness 
   For a detailed proof of Propositions 1-5, the reader is 
referred to [8]. We first proceed with the proof of Proposition 
1 and then move on with the proofs of Propositions 2-5, 
which are simple extensions of the proofs in [2]. For the latter 
we make use of the following geometry: let 0>ε . 
Define . We can then 

discriminate the following topologies: 
, ( ) { : 0 ( ) }

jj l R lB q gε ≡ < < ε



1. The destination point: dq  
2. The free space boundary: 1( ) (0)F q G−=∂  

3. The set near the obstacles: 
0

1 1

,

( ) ( ) { }l
j d

l j

R lL nn
F B qε ε

= =

= −∪∪  

4. The set away from the obstacles: 
1 0( ) ({ } ( ))dF F q F Fε ε= − ∂∪ ∪  

Proposition 1 guarantees asymptotic stability to the 
destination point, while 2-5 guarantee that there will always 
be a direction of decrease of the potential function inside the 
free space. 
 

4. VELOCITY BOUNDS 
   Let us now return to the decentralized motion control 
problem. The following control law has been derived: 

1
1 1

1

          n
n n

n

q K q Kq q
ϕϕ ∂∂=− ⋅ =− ⋅∂ ∂

� �…  

where  is a navigation function for each subsystem. 
Suppose that each agent must satisfy a velocity constraint: 

iϕ

i
i i

i

K Uϕ∂ ≤q∂ . It would be preferable not to change the 

navigation function ϕ  to meet the input constraints so that 
the powerful convergence properties established earlier are 
fulfilled. Thus, the idea is to change the gain of each agent 
whenever its input constraints threaten to be violated. We 
consider multiple discrete states for each agent, to which the 
agent dynamics are switched whenever the previous 
constraints tend to be violated. The switching is state 
dependent and the dynamics of agent i are given by 

i

/j

i i i iq K ϕ=− ∂ ∂� q , if /j
i i i j itqK ϕ ≤∂ ∂

iq

U , for  and 

 , if 

jt t≥

1 /j

i i iq K ϕ+−= ∂� ∂
1

q
+

≤/j
i i i jtK ϕ∂ ∂

1+j
iK

1

iU  where 

,  denotes a “beginning” gain of agent i (the initial 

gain can be taken arbitrarily) and  its new gain when the 
input constraints become violated for the (j+1)-th time. 
Obviously .  Continuity of the state is assumed 
whenever a switching occurs. 

j N∈ j
iK

>j
i KK +j

i

   In order to investigate the properties of this control law we 
apply existing stability analysis results for Hybrid Systems to 
the problem of existence of input constraints in the navigation 
function methodology. Specifically, we make use of the 
stability results in [9], [10] in order to guarantee that our 
proposed hybrid model will maintain the convergence 
properties of the decentralized algorithm. Consider the 
following hybrid system model [9]: ( ) ( ( ), ( ))x t f x t i t=� where 

nx R∈  is the state space and  is the switching signal 
taking values in a finite set of indices {1,…,M}. We assume 
that there are only a finite number of switches per unit time. 

We also assume continuity of the state at each switching 
instant. The hybrid dynamics define the switching sequence: 

(ti )

0 0 0 1 1; ( , ), ( , ),...S x i t i t=
)

 where  is the initial condition and 
the notation ( ,

0x

j ji t
( , )

 means that the state evolves according to 

jx f x i=�  for 1+<≤ jttjt

: n
iV R R→

0

. A Lyapunov-like function 

 for the system  with equilibrium ( ixf ,= )x�
=eqx  is a positive definite function with negative semi-

definite derivative whenever system i is active. The theorem 
from [9] provides sufficient conditions for stability of the 
overall hybrid system. Assuming the existence of a 
Lyapunov-like function for each system, the theorem simply 
indicates that stability in the sense of Lyapunov is guaranteed 
provided that the energy of each system does not increase 
between consecutive active intervals for any switching 
sequence. In fact, as remarked in [10], the origin is 
asymptotically stable provided that there are infinite switches 
and the Lyapunov-like functions are strictly decreasing 
between consecutive time intervals. Asymptotic stability is 
also guaranteed when the Lyapunov-like function of each 
system is strictly decreasing whenever it is activated. In the 
case that all the systems admit a common Lyapunov-like 
function the following corollary is straightforward: 
Corollary 1: Assume that for the hybrid system under 
consideration there is a common Lyapunov-like function for 
each of the subsystems, which is strictly decreasing for every 
switching sequence S. Then the origin is asymptotically 
stable. 
   Lets return now to our problem and see whether the control 
law satisfies Corollary 1. We also assume that, whenever an 
agent switches to another gain’s discrete state, it does not 
return to the previous state even if the condition: 

/j
i i i j itqK ϕ ≤∂ ∂ U , generally, holds for , where j 

denotes the last switching that took place. Hence, for two 
agents, the hybrid dynamics between two discrete states are 
described by the following figure: 

jtt >

 
 
 
 
 
 
 
 
 
 
where  and  denote the violation of the input 
constraints on agents 1 and 2 for the n-th and m-th time 
respectively. Of course, the former scheme can be 
generalized for n>2 agents. It is obvious that the prescribed 
hybrid system satisfies Corollary 1, with common Lyapunov 
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Function . Hence, the convergence properties of 

the navigation functions are not violated. 
1

n

i
i

ϕ
=

=∑

ji
j

i NU=

ϕ

   What remains now is to propose a method of computing a 
sequence of gains for agent i. The proposed choice for the j-th 
gain is: K where /

j
j i i tN ϕ= ∂ ∂q  is the norm 

taken at the time when the j-th switching occurs. Obviously, 
this switching is a direct consequence of the violation of the 
constraint: 1 /j

j
i i i t iK q ≤∂ ∂

j
iK…

U



ϕ−

0 1
i i iK K K

. Hence, for each agent we 

can compute in real time a gain vector 

. With such a choice of 

the gain, the input constraints would always be fulfilled.  

T
= …

 
5. THE “f ” FUNCTION 

  The prescribed method does not apply to the case when the 
initial conditions of some of the agents coincide with their 
desired destinations and lacks in robustness in the case 
discussed at the end of section 2. This is because in these 
cases the numerator of ϕ  is very small (zero when an agent 
has reached its destination) so the potential for an agent to 
move is negligible in a possible collision scheme (see 
Assumption 1). A way to overcome this is to add a function f 
so that the cost function ϕ  attains bigger positive values in 
proximity situations even when i has reached 

i

i

diq . The 
navigation function in this case becomes 
( ) ( 1/

( ( ) ( ))
kk

i d i d i iq f G f G Gϕ γ= + + +
3

1

( )

)) / (i i

0

γ . A suitable 

function is j

jf G a G
=

∑
( ) 0f G =

'(0) , (0) 0, 0f Y f= = <
' ''( ) 0, ( ) 0, 0f X f X= = >

, 0X Y > ia

i

j

''

( )X

a= +

(0)f

f

 for  and 

 for G>X. This function satisfies 

 (local maximum at G=0) and  

 (local maximum at G=X), 
where . The coefficients  are evaluated in order 
to fulfill these properties. This choice of f  has been proven to 
be very satisfying in simulation. The problem is that in this 
way the function ϕ  is no longer analytic so it does not fulfill 
definition 1. It is our current goal to extend the theory 
established in [7] from analytic to merely differentiable 
functions. 

0 G X≤ ≤

0.

 
6. SIMULATION RESULTS 

   To demonstrate the navigation properties of our 
decentralized approach, we present a simulation of four 
holonomic agents that have to navigate from an initial to a 
final configuration, avoiding collision with each other and 
satisfying velocity bounds. The chosen configurations 
constitute non-trivial setups since the straight-line paths 

connecting initial and final positions of each agent are 
obstructed by other agents.  
Initial Configurations: q1 = [.1732, -.1] T, q2 = [-.1732, -.1]T 
,q3 = [0, .2]T ,q4 = [0, 0]T. 
Goal Configurations: qd1 = [-.1732, .1] T, qd2 = [.1732, .1]T 
,qd3 = [0, -.2]T ,qd4 = [0, 0]T. 
Parameters: X1 = .2308, X2 = . 2308, X3 = . 2308, X4 =.0024, Y 
= .1, k=100. 
Velocity Bounds: U1=U2=2e-4, U3=3e-4, U4=1e-4 

In the following sequence of figures one can see the paths 
followed under the proposed decentralized scheme during 
20000 time units (t.u.). Fig. B shows the agent motion 
between 1 and 1000 t.u., fig. C between 1000 and 8000 t.u., 
fig. D between 8000 and 12000 t.u. and fig. E between 12000 
and 20000 t.u. A-i and T-i denote agent i and its desired 
destination respectively.   
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Furthermore, the following diagrams represent agent 
velocities throughout the encounter. Fig. F shows the 
velocities between 1 and 4000 t.u. and fig. G between 4000 
and 20000 t.u.  
The following remarks are in order:  the input constraints of 
all agents and the navigation properties are fulfilled 



throughout the encounter. The first is clarified in figures A 
through E and the latter in the velocity-time diagrams. The 
initial velocity (time=0) of agents 1,2 and 3 is their maximum 
allowed velocity, since the method forbids higher ones. In 
figure F, the velocities of agents 1 and 2 (blue and red lines) 
coincide due to their symmetrical initial positions and the fact 
that they have the same maximum speed. When the velocity 
of agent 4 (green line) tends to reach its upper bound 
(time=500÷1000) -which occurs when the faster agent 3 
captures agent 4 from behind-, the proposed methodology 
successfully prevents a violation of the constraints. At time 
12000 (beginning of motion at fig. E) all agents apart from  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
agent 4 reach a local maximum of their velocities (c.f. figure 
G). That is when the first three agents have a ‘clear’ path 
towards their destinations. Agent 4 has to wait until agent 1 
provides it a ‘clear’ path to its destination and that happens 
approximately at time 1350 (c.f. figure G). The velocities of 
each agent decrease as they approach their destinations 
without obstacles.   
 

7. CONCLUSIONS-ISSUES FOR FURTHER RESEARCH 
   In this paper, a methodology for multiple mobile agent 
navigation is presented. The methodology extends the 
centralized agent navigation established in [2] to a 
decentralized approach to the problem under input 
constraints. As in [2], the agent – obstacle potentials are 
formed by appropriately constructed agent proximity 
potentials, which capture all the possible multi agent 
proximity situations. The great advantage of the method is its 
relatively low complexity wrt the number n of agents, 
compared to centralized approaches to the problem and the 
application of velocity bounds. The number M of RVF’s for a 

group of n agents is given by: ∑
−

=







 −
⋅=

1

1

1n

i i
n

nM . Thus, for 

n=5 agents we would have to compute: M=75 RVF’s, for 
n=6: M=186, for n=7: M=441 etc. The effectiveness of the 
methodology is verified through computer simulations. 
Current research directions are towards applying the 
methodology to the cases where each agent has knowledge of 
the velocities of the others and where there is some form of 
uncertainty in the agent movement. 
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