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Abstract

- In this paper the state estimation problem for discrete-
time Markovian switching systems affected by additive
noise (not necessarily Gaussian) is solved following a
polynomial approach. The key point for the derivation
of the optimal polynomial filter is the possibility to rep-
resent the Markov switching systems as bilinear systems
(linear drift, multiplicative noise) by means of a suitable
state augmentation. By construction, the optimal poly-
nomial filter of a given degree v provides the minimum
error variance among all polynomial output transforma-
tions of the same degree. Obviously, for ¥ > 1 better

" performances are obtained with respect to linear filters.
Simulation results are reported as a validation of the
theory.

1. Introduction

Many authors investigated the problem of state esti-
mation for linear systems with switching coefficients
modeled by a finite-state Markov Chain {see e.g.
[1,3,6,7,8,10,12] for the discrete-time case and [11,13,14]
for the continuous-time case). The problem was first for-
. mulated in [1], where the authors pointed out the com-
plexity of the exact solution and proposed an approxi-
mate solution. In [8], assuming a partial observation of
the switching process, an almost-recursive implementa-
tion of the minimum variance state estimator is derived,
whose complexity grows geometrically with time. In [6]
a linear filter is implemented based on a clever use of
the characteristic function associated to the Markovian
jump parameter. In [7] different approximate state esti-
mators have been analyzed, without assuming observa-
tions on the switching process. All estimators proposed
in [7) are iterative algorithms over a finite observation
time, and do not allow a recursive implementation.

This paper proposes a recursive polynomial algorithm
for the state 'estimation of discrete-time Markovian
switching systems. The polynomial approach finds the
minimum variance state estimator in the closed linear
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space of all polynomial output transformations of a cho-
sen degree v. This approach has led to important results
in the field of suboptimal filtering of non Gaussian linear
(4] and bilinear [5] systems. In [9] the authors presented
the equations of the optimal linear filter for stochastic
switching systems (a filter statistically equivalent to the
one presented in [6]). The polynomial filter proposed in
this paper improves the performances of linear filters,
and this can be particularly appreciated in presence of -
highly asymmetric non-Gaussian noises. All proofs of
Lemmas and Theorems have been omitted due to the
lack of space.

2. Modeling of Switching Systems

The aim of this paper is to derive the optimal polynomial
filter of a chosen degree v for the class of systems:

kezt
(2.1)

where z(k) is a stochastic variable in JR”, u(k) is a deter-
ministic known input in IRP, y(k) is the measured out-
put in R?. All matrices in (2.1) take values on a finite
set, depending on the jump parameter u(k), which is a
scalar Markov process taking values in M = { .y m}
with known probability transition matrix IT € [0 jmxm
and initial distribution p € [0,1]™:

z(k + 1) = Ay z(k) + Bugou(k) + Fuga N (k),
(k) =Cuwyx (k) + Dpgyulk) + GuuN(k),

M), = P(uk+ 1) =du(k) =5), ijeM, (22)
= P(u(0) =1), ieM. (2.3)
The noise N{k) € R? is a sequence of zero-mean inde-

pendent random vectors with finite and available mo-
ments up to the 20 degree, named:

E[NUE)] =¢,

0<ji< 2, (24

where the superscript ¥l denotes the Kronecker power,
defined for a given matrix M by
MO =1 MU = Mp M-l

i>1, (25)
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with & the standard Kronecker product (for a quick sur-
vey on Kronecker products and their principal proper-
ties, see [5) and references therein). Note that, according
to the noise statistics: £ = 1 and £§; = 0. The initial
state x(0) is a random variable with finite and available
moments up to the 2vtP-degree, named:

Elf =g, 1<j<ow (26)
It is assumed that the sequences N(k), u(k)} and the ini-
tial state x(0) form a set of independent random vari-
able. Throughout the paper the symbol I,, denotes ihe
identity matrix in JR™*"™. In case of ambiguity, a zero
matrix in IRP*7 is denoted by Oy, otherwise, no sub-
scripts are adopted.

As a first step, it is useful to introduce a state space
realization for the Markov process. In the following,
let e; be the j-th column of I, and let £,,, denote the
natural basis in R™, i.e. &m = {€;, j=1,...,m}.

Lemma 2.1. Let {6(k) € En, k € Z*} be a stochastic
sequence obeying the recursive egquation:

B(0) =6y, B(k+1=V(HKOK), keZ¥, (2.7)
where 8y is a random variable in £, with
P(Go = 6,‘) =p;, te M, (28)

and V{k) is a sequence of random matrices, whose j-th
column sequence V;(k) tokes values in &, with probabil-
ities

P(v;-(k) - ei) =M, LieM (29
The matriz I1 and the vector p are the same as defined in
(2.2) and (2.3). Moreover, the columns of V(k), together
with 8y, forms a set of independent random vectors.
Then, defining the matriz A = [A; --- An) € R*™™,
the sequence Ay can be represented as

Ay = A (0(k)=I,). (2.10)

Similar representations are valid for all the system ma-
trices defined in (2.1), e.g. Cupy = C-(B(k‘)@fn) with
C= [C1 Cm] € R¥*™ ™ and s0 on.

Since 8(k) € £, we have:

89 (k) = E28(k), where Ep=[el)...eld]. (2.11)

Lemma 2.2. The random variables V(k) and 6(k) (at
a given k) are independent. Moregver, IE [V(k:)] =1
and the zero-mean random sequence V() = V(k)—~TI is
such that:

B -13,  i=j

o, g O

E[vi(k)aV;(k)] = {

with V; (k) ar.r,d II; the i-th columns of the matrices V(k)
and II, respectively. Moreover,
EVR(k)] = Vo (k)ET,
_ 2.13
where Va(k) = [IE M) - B (k)]]. 213)

Proposition 2.3.
the representation:

The swilching system (2.1) admits

(k +1)=A(8(k)R(k)) + B(k)8(k) + F(B(k)BN (k)),
B(k + 1) = T8(k) + V(k)§(k), k>0,

y(ky=C(8(k)@z(k)) + D(k)O(k) + G (6(k)RN(K)),
(2.14)
where the matrices B(k}, D(k) are given by:

B(k) = B(I.®u(k)),  D(k) = D(I.®u(k)). (2.15)

where B=[By -+ Bp) and D ={Dy -+ Dy).

3. The Polynomial Filter

It is well known that the state expectation conditioned
to all measurements up to the current time provides the
minimum error variance state estimate, and coincides
with the projection of the state onto the linear space of
all the Borel functions of the measurements:

¥(0)
2(k) = O[z(k)|B(Y)], Yi=

y(k)

In the Gaussian case the optimal estimator is a linear
transformation of the measurements, implemented by
the Kalman filter. In the non-Gaussian case the condi-
tional expectation can be extremely difficult to compute,
and it is convenient to consider suboptimal polynomial
estimates, obtained by projecting the state onto sub-
spaces of polynomial transformations of the measure-
ments {4, 5]. To this aim, consider the Hilbert space of
all polynomial transformations of the measurements of
a given chosen degree v: :

(3.1)

L(YY) =span{1,Y*(0), ---, Y"(k)} C B(¥x), (3.2)
¥“(0) A

where ¥ = , Y'(h)= ¥ :(h) , (3.3)
Yoik) y[”]‘(h) _

(the extra-assumption that E{|yld(h)|?} < oo, for i =
1,...,r is needed). Then, the optimal polynomial state
estimate of degree v is

2,(k) = T[z(R)| L(V?)]. (3.4)
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Theorem 3.1.  The optimal v-th degree polynomial
estimate of the state x(k) of the switching system (2.1)
is given by:

£,(k) = B, XV(k) = SI[X (R) L],  (35)
where
Eﬂ - [On)(m E Onxm(n=+»-»+ﬂ")]1
L= [I,---I,) € R™™"
Xo(k) (3.6)
XK= : |, Xik) =ekelk).
Xu(k)
Proof. According to the measurement equation in

(2.14), all the Kronecker powers of the output depend
on the vectors X; defined in (3.6). Moreover, consid-
ering that 8(k} € £m, then z(k) = Z(8(k)Rzx(k)) =
X1 (k) = £,X¥(k) so that the polynomial minimum
variance estimate in (3.2) is:

2, (k) = M=(k)| L(YY)] = I[Z. X" (k)| L(YY)] @
= E,JI[X"(R:ML(Y,;’)] =B X" (k},

The remaining of the paper is devoted to the computa-
tion of the projection in equation (3.7). The first step is
to show that the sequences {X”(k)} and {¥Y¥(k)} obey
_difference equations of the type

X¥(k +1) = A (k) X"(k) + F(k),

Y (k) = C (B) X" >0 (3.8)

k) + Gk}, -
“with A¥(k) and C¥(k) suitably defined deterministic

matrices and
Fk) =
Gk)=

F(k,ulk), X" (k), N(R)),
G (k, u(k), X* (), N(K)),

with F and G suitabljr defined function where X*(k)
multiplies the noise N (k) and its powers up to order v, in
a way that F(k) and G(k) result to be white sequences.

The importance of the representation (3.8) is that, once
A¥(k) and C¥{k) are known, together with the covari-

- ance matrices of the white sequences F(k) and G(k), the
minimum variance filter for such a kind of bilinear sys-
tem (see [5]) can be used to estimate the extended state
X¥(k), from which the state z(k) is estimated.

In the sequel some Lemmas are reported showing the
construction of the matrices A”(k), C¥(k) and the com-
putations of the statistics of the noises of the extended
system (3.8). Before the statement of the Lemmas some
notations must be introduced.

Given a pair of integers (a, ), the symbol C, ; denotes A

a commautation matriz, that is a matrix in {0,1}eb%®®

such that, given any two matrices A € JR™*% and B €
R™*% (see [3])

BrA=CT

Ta’s

{(ARB)C,, ., (3.10)

The Kronecker products and powers of vectors X;, de-

" fined in (3.6), satisfy

XJ[.h] =0M Xy, Xi®X; =5 ;X Vi, g heZt,
B1)

where 637 = [1---1], and for k> 0

Ot = (B89 @I imns ) (In®CL s v }{E2®@Iin4n),
(3.12)
and Ei,j = (Im&c?;nj,ni)(EZEIﬂi"'j)‘
Note that:
e}‘ﬁ —_— Imn,, 9?1‘0 = 50,0 = Eﬂ‘ (3.13)

Recall that the stack of a matrix A € IR"*¢ is the vector
in JR™¢ that piles up all the columns of matrix A, and is
denoted st(A). The inverse operation is denoted st 2(-),
and transforms a vector of size r - ¢ in an r X ¢ matrix.
When written without any subscript, the inverse stack
operator should be intended to generate a square matrix,
so that if A is a square matrix then st~!(st(4)) = A

Lemma 3.2. The iterative equation of the component
X;(k) of the extended state X" (k) as defined in (3.6),
that is the j-th row-block of the state equation (3.8) for

i=0,1,...v, can be put in the form
j
Xilk+1)= 3 Ase, (R)Xe, (k) + F5 k),
n= (3.14)
J 3
where (k) = > 57 (k) Xy, (k),
t1=0

with Ay, (k), Si (k) sequences of deterministic and ran-

dom maltrices, respectwely The sequence of random vee-
tors F(k) = (Fo(k)T -+ Fu(k)T)7 is white, i.e. zero-

mean and such that E{F(k)F(h)"] =0, Vk # h.

The expressions of matrices Ay, (k), .S‘J (k) and of the
covariances WT (k) = E[F;(k)Fi(k)T] are guite com-
plex and are reparted in the Appendiz.

Lemma 3.3. The measurements equations for j-th
Kronecker power of the output, that is the j -th row-block
of the output equation (3 &) forj=1,2,...v, can be put
in the form

k) = 3 Cpn (6)Xer () + G5(H),
t1=0

; | (3.15)
> T (KX (K)

ty=0

with G;(k) =
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with C; 4, (K}, 7;’1 (k) sequences of deterministic and ran-
dom matrices, respectively. The sequence of random vec-
tors G(k) = (G(B)T --- Q,,(k)T)T is white, i.e. zero-
mean and such that B[G(k)G(h)T] =0, Vk # h.

The ezpressions of matrices C;4,(k), T7 (k) and of the
covariances \Il?’l-(k) = [E[G;(k)G:(k)T| are quite com-
plex and are reported in the Appendiz.

Lemma 3.4. The sequences F(k) and G(k) are such

that:
(eT (] — .
EF@GTM] =0 kéh 0<i<u oo
E[‘FZ‘ (k)ng(k)] = @Q,;:(k), 0<i<w,
i {3.16)
with

Q3 i = Z Z StvfrmJ q’( 1,t1 (k)"‘rl;tl [Xf’ﬁ-i: (k)])

t1=0ry=0
(3.17)
where Q¥7, (k) =

¥ () = E[T, (s, (k).
Now, having shown that the extended polynomial state
and output of system (2.1), and of its bilinear represen-
tation (2.14), obeys the equations (3.8), following The-
orem 3.1, the polynomial filtering algorithm can be con-
structed as follows:

Proposition 3.56. The v-th degree polynomial filtering
algorithm is the following:

Xtk +1k) = AY (k)XY (kjk - 1) (3.182)
+H(ER) (Y (k) ~ C* ()X (klk 1)),
Xv(k) = X¥(klk-1) (3.18b)
+ K (k) (Y"(k) — CY ()R (k|k ~ 1)),
£,(k) = S XY (K), ' (3.18¢)

where the gain matrices K(k), H(k) and Z(k) are re-
cursively computed through the following Riccati equa-
tions:

Z(k) = Q(k)(c”(k)?P(k)C"T (k) + ‘Ilg(k))' (3.192)

Pplk+1) = AY(k)P(k)A*T (k) + T7 (k)

+ Z(k)QT (k) - H(K)QT (k) — Q(k)HT (k) (3.19b)
P(k) = Pp(k) — K(k)C*(k)Pp(k) (3.19¢)
K(k) = Pp(k)C*T (k)

: (C"(k)'Pp(k)C"T(k) + qﬁ(k))T (3.19d)
H(k) = A (R)K(K) + Z(k) (3.19¢)

(in (3.19a and (3.19d) the Moore- Penrose pseudoinverse
has been used). Matrices ¥ (k), U9 (k) are the extended
state and measurements noise covariance matrices and
are reported in Appendiz. Q(k) is the covariance matrix

between F(k) and G(k) sequences at the same instants,
given by equation (3.17) of lemma 3.4.

Proof. The filter equations are those of the classical
Kalman filter [2] for the case of correlated state and out-
put noises, applied to the system (3.8), that has a mul-
tiplicative noise structure (see equations {3.15), (3.14),
describing the components of F and of G). The use of
the Kalman algorithm on an extended system to achieve
optimal polynomial filtering of systemn with multiplica-
tive noise has been demonstrated in [5]. m

Note that the Riccati equations {3.19) employ the co-
variance matrices U7 (k), ¥9(k), whose expressions-are
reported in the Appendix, and the (mutual) covariance
Q(k), given by (3.17). The computation of these matri-
ces requires the sequence JE[X?* (k)| of the moments of
the state up to order 2r. Such sequence can be obtained
computing the evolution of the following (deterministic)
system:

E[X¥*(k+1)] = A¥(k)E[X*(K)], (3.20)
suitably initialized (note that IE[X;(0})]
p®R(;)-

Remark 3.6. The covariance of the estimation error
z(k) — &, (k) can be extracted from P(k), the error co-
variance of the extended state used in the algorithm of
Proposition 3.5, as follows

B(2(t)-2,(k)) (a(k) -2, ()] = Z.PH)ZT (3.21)

a
4. Numerical simulations
This section reports simulation results referred to a sys-

tem of the type (2.1), characterized by the following
data:

z(k) € R?, u(k),yk)e R, M={1,2,3};
AR I

o 4
s

Cl=[1 1], CQ=[10], C3=[2 1];
D1 - 1, D2 =0.5, D3 =0;

_fo1 0 0 _[o o1 0
Fl‘[m 0 0]’ Fz_[o 0 0]’

5o o]

Gi=[0001], [0002], G3=1[000.04];
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The deterministic input used in the simulation is u(k) =
1, k > 0. The noise N(k) = (Ni(k), Na(k), Ns(k))”
has independent components, following discrete asym-
metric distributions:

P(Ni(k)=-1/2) =08, P(Na(k)=-1/3) =09,
P(Na(k) = 3) = 0.1,

(4.1)
(the distribution of V3 is identical to the one of Ny;
The transition probability matrix of the Markovian pa-
rameter is )
. 03 06 0.2
=102 03 05

05 01 03

Figures 4.1 and 4.2 display the state estimates obtained
with a first order filter (¥ = 1) and a second order filter
(v = 2). The sampling error variances (over a simulation
of 1000 steps) for the linear and quadratic filters are

o2l,-1 = 0.0622,
03] =1 = 0.3554,

03],—2 = 0.0468,
02],—2 = 0.2676.

"The improvement of the quadratic filter over the hnear
one is evident.

Appendix

This Appendix is aimed to give the expression of some
matrices appearing in the paper, whose structure is
quite complex. In this Appendix the symbol ¢ denotes
a multi-index ¢ = (t1,%2,3) € Z+%. The modulus of
a multiindex, denoted |t} is the sum of its entries, i.e.
[t| = t1 + ¢ + ta}. The symbol M} denotes the matrix
coeflicients of the following polynomial Kronecker power
expansion

(a1 +az+ag)! = M’( “'laa[‘*lml‘sl) (A.3)
[tl=4 .

¢l

where a; € R® and Mj € R*"'*s

The expressions of the matrices A;;, (k), Sf | (k) appear-
ing in Theorem 3.2 are the following:

Az (k) = (@, (k) S0, (Ada)
81, (k) = (TeLd, (k) + V() (k)
+VRBL, () S0, (Adb)
in which V
tER; )
T ) = Y L(8) (T @6, ), (A50)

(4.2)

— Tﬁlestﬂe
F i — = Caadistic estimate
6.4 -A.MV»A.ME.MM,,“U.E.um.,m,..i, """" Linear i

; ; i i ; ;
3007 S0 S0 53¢ B0 350 60 S0 38D

Fig. 4.1 True and estimated states: the first compo-
nent.

— — Owadrat

e I Lt estinate

i H ; i H
i 20 20 S0 540 30 A6 % 80

Fig. 4.2 True and estimated states: the second compo-
nent.

tER;

£,(5) = Y LK) (L @(NTI(k)-&,,)), (A5D)

ta,ls
Li(k) = MD ( Alg Bl (k) j:"'_[ta]) K,
K] = (640} '=6;")
' (Imn’l RE & 1yrs ) (Etl,oﬂfbts).

(A.5c)

(A.5d)

The expression of the (mutual) covariance matrices
0T (k) = E[F;(k)Fi(k)T] of the random sequences ap-
pearing in {3.14) is:

i
=33
F1=04=0

tf_niﬂl ,mnil ( fxtti (k) :fl,tnE[Xrnﬂx(k)]):
(A.6)
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where ®55 (k) = E[Si (k)®S], (k)] is given by:

745 (k) = (In®C,; o) (M2 @05 % (k)
+ (V(k)ET) @ J} (k)R J? (k)
+ (Va(k) B ) @B L2 (k)

(Im ®Cm7'n‘1 ,mantl ) (Eﬂ,rl ®EO,t1 ) ’

(A7)

with

L (k)

t1,71

= B} (k)L (k)]
tER; reR;

Z Z Lj(k ®L1 k))( mnt1 & mn."lb"S,b‘a)

12,3 r2,73

(Imzntﬁrz (Ergts — §ra®§ts))

: (Imn‘l ®Cmn'1,1)‘
(A.8)

The expressions of the matrices Cjy, (k), 7 (k) appear-
ing in Theorem 3.3 are the following

teER;

Ciut) = Y. T (K) (Imu ®és,), (4.92)
ta,ta
. tERj .
() = Y T (L @(N)(k) - &) ), (490)
ta,t3
T (k) = MY (éi*d@D!tﬂ(k)@é“sl)Kg', (4.9¢)

where matrices K are defined in {A.5d).

The expression of the (mutual) covariance matrices
'Ilg‘(k) = IE[G;(k)G:(k)T] of the random sequences ap-
pearing in (3.15) is:

fH=3 > s

t1=0+1=0
(A.10)
with :
oL (k) = BT, (e T ()]
reR; tER;

-3 ( () &TJ ( k)) (Zmnrs ®CT s o5 475 )

r2,r3 t2,t3

. (Imzﬂr1+t1 @(fta+fs — &y ﬁg"*’))

) (Imn"‘l ®C’rrz,n‘l ,1) .
(A.11)

( &7 (k) 1, | "‘1+h(k)])v
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