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Abstract

The notion of observability and detectability for a particu-
lar class of hybrid systems, linear continuous-time switch-
ing systems, is investigated. We compare some of the def-
initions of observability previously offered and we analyze
their drawbacks. A novel definition of observability is pro-
posed corresponding to the possibility of reconstructing the
state of the system from the knowledge of the discrete and
continuous outputs and inputs. The notion of detectabil-
ity is also introduced. Sufficient and necessary conditions
for these properties to hold for switching systems are pre-
sented.

1 Introduction

An important application of hybrid system technol-
ogy is Air Traffic Management Systems where different
types of dynamics coexist and interact in non obvious
ways. For example, continuous dynamics are used to
model the aircraft motion, while the change in cruis-
ing altitude and the transition from one sector to an-
other are modeled using discrete dynamics. To compli-
cate matters further, uncertainty affects these systems
in substantial ways. Disturbances and human behav-
ior including errors are examples of uncertainty that is
important to deal with to ensure safe operation. Er-
ror detection and control must rely upon robust state
estimation techniques, thus providing a strong motiva-
tion for a rigorous approach to observability and de-
tectability based on tests of affordable computational
complexity.

Observability, a fundamental property of systems, has
been extensively studied both in the continuous ([9],
[10]) and in the discrete domains (see e.g. [13], [14]). In
particular, Sontag in [15] defined different observabil-
ity concepts and analyzed their relations for polyno-
mial systems. More recently, various researchers have
approached the study of observability for hybrid sys-
tems, but the definitions of and the testing criteria for
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it varied depending on the class of systems under con-
sideration and on the knowledge that is assumed at
the output. Vidal et al. in [17] considered autonomous
switching systems and proposed a definition of observ-
ability based on the concept of indistinguishability of
continuous initial states and discrete state evolutions
from the outputs in free evolution. Incremental observ-
ability was introduced in [3] for the class of piecewise
affine (PWA) systems. Incremental observability im-
plies that different initial states always give different
outputs independently of the applied input. In [1], a
methodology was presented for the design of dynamic
observers of hybrid systems that reconstructs the dis-
crete state and the continuous state from the knowledge
of the continuous and discrete outputs. In [8] the de-
finitions of observability of [16] and the results of [1]
on the design of an observer for deterministic hybrid
systems are extended to discrete—time stochastic lin-
ear autonomous hybrid systems. In [2], the notion of
generic final-state determinability proposed by Sontag
[15] is extended to hybrid systems and sufficient condi-
tions are given for linear hybrid systems.

In this paper, we address the issues of observability
and detectability, a property that to the best of our
knowledge has not been addressed so far, for a class
of hybrid systems, switching linear systems with min-
imum and maximum dwell time. The reason for this
choice of a subclass of hybrid systems is our interest
in observability and detectability testable conditions.
The paper is organized as follows: in Section 2, we re-
view a set of formal definitions for switching systems.
In Section 3, we show, on the basis of some examples,
that the observability notions based on state indistin-
guishability do not imply state reconstructability. We
therefore propose a new definition of observability, and
a weaker notion of detectability, based on the possibil-
ity of reconstructing the system state. We then give
some necessary and sufficient testable conditions for
observability. We also derive a Kalman-like decompo-
sition of the switching system and propose conditions
for detectability based on this decomposition. Conclu-
sions are offered in Section 4. The results are given
without proof for lack of space. A full version of this
paper is in [7].



2 Switching systems

The class of switching systems we consider in this paper
are defined as in [4], following the general model of
hybrid automata given in [11]:

Definition 1 A continuous-time linear switching sys-
tem S is a tuple (Q,P,UD, γ,Rn,Rm,Rp,Sc, S, E,R)
where Q = {qi, i ∈ J} is the finite set of discrete states,
being J = {1, 2, ..., N} , N ∈ N; P = {ph, h ∈ J} is the
set of discrete outputs; γ : Q → P is a mapping that
associates a discrete output to each discrete state; UD

is the finite set of the discrete disturbances; Rn,Rm and
Rp are respectively the continuous state, input and out-
put spaces; we denote by Uc the class of piecewise con-
tinuous functions u : R → Rm; Sc is a subclass of lin-
ear, continuous-time dynamical systems, and Si ∈ Sc
is defined by the equations ẋ(t) = Aix(t) + Biu(t),
y(t) = Cix(t), i ∈ J; S : Q→ Sc is a mapping that as-
sociates a continuous-time dynamical system to every
discrete state1 ; E ⊂ Q × UD × Q is a collection of
discrete transitions; R : E × Rn → Rn is the reset
function.

Given a switching system S =(Q,P,UD, γ,Rn,Rm,
Rp,Sc, S, E,R), the tuple DS=(Q,P,UD, γ, E) can be
viewed as a Finite State Machine (FSM), having state
set Q, input set UD, output set P, transition relation
E and output function γ. This FSM characterizes the
structure of the discrete transitions and without loss
of generality (w.l.o.g.) is supposed to be connected. A
strongly connected component of the FSM is a maximal
set of mutually reachable discrete states. A strongly
connected component of a FSM is said to be proper if
it contains more than one discrete state. In what fol-
lows, yi(t, 0, u) denotes the continuous output of system
S(qi) at time t, with continuous initial state x0 = 0 and
control law u|[t0,t).

Following [11], we recall that a hybrid time basis τ
is an infinite or finite sequence of sets Ij satisfying
the following conditions: Ij =

©
t ∈ R : tj ≤ t ≤ t0j

ª
; if

card(τ) = L + 1 < ∞, then IL may be of the form
IL = {t ∈ R : tL ≤ t <∞} and t0L =∞ or of the form
IL = [tL, t

0
L) with t0L < ∞; for all j, tj ≤ t0j and for

j > 0, tj = t0j−1. Denote by T the set of all hybrid
time bases. The switching system temporal evolution
is then defined as follows:

Definition 2 (Switching System Execution) An exe-
cution χ of a switching system S is a collection χ =
(bq, ξ0, τ , σ, q, p, u, ξ, η) with bq ∈ Q, ξ0 ∈ Rn, τ ∈ T ,
σ : τ → UD, q : τ → Q, p : τ → P, u ∈ Uc,
ξ : R×N→ Rn, η ∈ R×N→ Rp satisfying:

1For the sake of notational simplicity, we assume Si = S (qi).

• Discrete evolution: q (I0) = bq; q (Ij+1) is such
that ej ∈ E and ej = (q (Ij) , σ (Ij+1) , q (Ij+1));
p (Ij) = γ (q (Ij)) ;

• Continuous evolution: ∀t ∈ Ij the func-
tions ξ and η are such that ξ (t0, 0) = ξ0,
ξ (tj+1, j + 1) = R

¡
ej , ξ

¡
t0j , j

¢¢
, ξ (t, j) = x (t)

and η (t, j) = y (t), where x (t) (resp. y(t)) is
the unique solution (resp. output) at time t of
the dynamical system S (q (Ij)), with initial con-
dition x (tj) = ξ (tj , j) and input function u.

Given an execution χ = (bq, ξ0, τ , σ, q, p, u, ξ, η), we
will say that χ is an execution of S with initial stateµ

ξ0bq
¶
∈ Rn×Q and that the sequence of discrete dis-

turbances σ is admissible with respect to the discrete
initial state bq. Following [11], an execution is infinite
if card (τ) = ∞ or t0L = ∞; Zeno if card (τ) = ∞ andPcard(τ)

j=0 t0j − tj < ∞. A switching system is Zeno if
at least one execution is Zeno. We assume the exis-
tence of a minimum dwell time [12] before which no
discrete disturbance causes a discrete transition, and
of a maximum dwell time within which a discrete dis-
turbance is guaranteed to cause a transition according
to the following

Assumption 1: (Minimum and maximum dwell time)
Given the switching system S, 0 < δm ≤ t0j − tj ≤
δM , ∀j = 0, 1, ..., card(τ)− 1, for any switching system
execution. The value δM can be finite or infinite.

Assumption 1 implies that all executions of S are non-
Zeno. Then, if there is no maximum dwell time, i.e.
δM =∞, all executions may be assumed w.l.o.g. to be
infinite. If there is a maximum dwell time, i.e. δM <
∞, we assume that any execution is non-blocking as
follows:

Assumption 2: Given the switching system S, the
FSM DS is alive [13], i.e. for any q ∈ Q there exist
σ ∈ UD and q0 ∈ Q such that (q, σ, q0) ∈ E.

The switching system S is said to be alive if DS is alive.
Under Assumptions 1 and 2, any execution of S may
be assumed w.l.o.g. to be infinite.

Assumption 3: The reset function is linear, i.e.
R(e, x) =Mex, e ∈ E.

Remark: Suppose that linear state space transforma-
tions for the systems Si and Sj are applied, represented
by the nonsingular matrices Ti and Tj , respectively.
Then, for any transition e = (qi, σ, qj), the matrix Me

representing the reset function is transformed into the
matrix TjMeT

−1
i .



Assumptions 1, 2 and 3 hold throughout the paper. By
abuse of notation, the symbol T will denote the set of
all hybrid time bases that satisfy Assumption 1. The
symbolR (.) will denote the range space and f−1 (.) the
inverse image operator of f (.). Given a switching sys-
tem S and an execution χ, consider the functions yc :
R→ Rpand yd : R→P, where yc (t) = η (t, j), yd (t) =
p(Ij), t ∈

£
tj , t

0
j

¢
, j = 0, 1, ..., card(τ) − 1. Let Yc and

Yd be the classes of piecewise continuous functions yc
and yd, respectively. The pair

³
yc|[t0,t] , yd|[t0,t]

´
is said

to be the observed output at time t of the switching sys-
tem S. Time t0j is said to be a switching time.

3 Observability and detectability of switching
systems

In this section, we show that, for the class of switching
systems, some existing definitions of observability that
have been proposed for hybrid systems and reviewed in
[6] do not allow the reconstruction of the state of the
system.

Vidal et al. considered in [17] ”jump linear systems”,
that are autonomous switching systems (i.e. Bi = 0,
∀i ∈ J) having a minimum dwell time δm > 0, and pro-
posed a notion of observability based on the concept of
indistinguishability of continuous initial states and dis-
crete state evolutions. This notion of observability is
rather strong since it considers only the free response to
reconstruct the state. In fact, consider a switching sys-
tem S =(Q,P,UD, γ,Rn,Rm,Rp,Sc, S, E,R) and let
X0 be a set of initial states such that, for any x0 ∈ X0,
the systems in Sc have the same free continuous out-
put. However, assume that all the systems in Sc are
observable and that there exists an input u ∈ Uc and

∆ ∈ (0, δm) such that
∆R
0

kyi(s)− yj(s)k ds > 0,∀i, j ∈

J , where yi(t) and yj(t) are the outputs at time t of
systems Si and Sj, respectively, starting from initial
states in X0, under the same input function u. Then,
even though S is not observable in the sense of [17],
at time tj + ∆ the discrete state q (Ij) can be deter-
mined, ∀j = 0, 1, ..., card(τ) − 1, and the continuous
state ξ (t, j) can be reconstructed ∀t ∈

¡
tj +∆, t

0
j

¤
,

∀j = 0, 1, ..., card(τ)− 1, for a suitable input function.

The forced response of the system is used in [3] where,
for the class of piecewise affine (PWA) systems, a no-
tion of observability, called incremental observability,
is introduced. Informally, a PWA system is said to
be incrementally observable if for any pair of con-
tinuous initial states in a given state set and for
any input sequence in a given input set, the out-
put trajectories are ”sufficiently” different. In other
words, incremental observability implies that differ-

ent initial states always give different outputs inde-
pendently of the applied input. The definition of
incremental observability of [3] can be trivially ex-
tended to the class of continuous-time switching sys-
tems that we are considering. To better analyze the
consequences of such a definition, consider a switching
system S =(Q,P,UD, γ,Rn,Rm,Rp,Sc, S, E,R) with
minimum dwell time δm > 0. Assume that all dynamic
systems in Sc are controllable, Rp = Rn, and sup-
pose that the matrices Ci are nonsingular and are such
that ρ (Ci − Cj) = n, ∀i, j ∈ J , i 6= j. In that case,
∀x ∈ Rn − {0}, Cix 6= Cjx. Therefore, for any pair of

initial states
µ

ξ
qi

¶
and

µ
ξ
qj

¶
∈ X0 ⊂ Rn−{0}×Q,

i 6= j, and for any input function, the output functions
of the switching system S do not coincide, for any ex-
ecution of S. Hence, S is incrementally observable for
any set of initial states X0 ⊂ Rn − {0} ×Q. However,
there exist input functions such that the discrete state
evolution of S cannot be reconstructed. In fact, since
the systems in Sc are controllable, for all x belonging
to any subset of Rn − {0} and for any bt ∈ (t0, t0 + δm)
there exists an input function such that ξ (t, 0) = 0,
∀t ≥ bt. As a consequence, it is not always possible
to reconstruct the discrete state evolution, even if the
state q (I0) were known. This shows that, for switching
systems, incremental observability, based on a distin-
guishability property that holds for any input, does not
guarantee state reconstruction.

Consider now a definition of observability based on dis-
tinguishability of initial states from the observed out-
put, for a suitable input function. The following exam-
ple shows that this notion has problems too for state
reconstruction. Suppose that the matrices describing
the dynamic systems Si in Sc are in the observability
canonical form, i.e.

Ai =

µ
Ai11 0
Ai21 Ai22

¶
, Bi =

µ
Bi1

Bi2

¶
, Ci =

¡
Ci1 0

¢
(1)

where Ai22 ∈ Rdi×di and di is the dimen-
sion of the unobservable subspace Oi of sys-
tem Si, i ∈ J . Consider the switching
system S =(Q,P,UD, γ,Rn,Rm,Rp,Sc, S, E,R) with
δm > 0 and δM < ∞, where Q= {q1, q2, q3, q4},
P= {p1, p2, p3}, UD = {σ}, γ (q1) = p1, γ (q2) = p2,
γ (q3) = γ (q4) = p3, E = {(q3, σ, q1) , (q4, σ, q1) ,
(q1, σ, q2) , (q2, σ, q1)}, the systems S1 and S2 are ob-
servable, the dynamical matrices describing systems
S3 and S4 are such that A3,22 = A4,22 ∈ Rd3×d3 ,
B3 = B4 = 0 in the observability canonical form,
and the reset function is the identity. Any pair of ini-

tial states
µ

ξ0
q3

¶
and

µ
ξ0
q4

¶
, with ξ0 =

µ
0
ξ00

¶
,

ξ00 ∈ Rd3 , is indistinguishable, since for any input func-
tion u ∈ Uc, the same output functions are observed.
However, after the first switching, the discrete state



evolution can be uniquely determined from the discrete
output and the continuous state evolution can be re-
constructed for any continuous input function, since S1
and S2 are observable.

Consequently, observability notions based on state in-
distinguishability do not imply state reconstructability.
One of the concepts introduced in [15] based on state
reconstruction is the so-called generic finite-state de-
terminability. Generic finite-state determinability im-
plies that any input/output experiment allows the de-
termination of the state. In [2], this property was ex-
tended to hybrid systems and testable sufficient condi-
tions were given. In this paper, we modify the notion
of observability given in [15] for switching systems by
focusing on state reconstruction. We therefore propose
the following new definition.

Definition 3 A switching system S = (Q,P,UD, γ,
Rn,Rm,Rp,Sc, S, E,R) is observable if there exist
a function ϕ : Yc × Yd×Uc → Rn × Q, an in-
teger j ≥ 0 and a real ∆ ∈ (0, δm) such that

∀
µ

ξ0bq
¶
∈ Rn × Q, ∀τ ∈ T , ∀σ admissible w.r.t.bq there exists an execution χ=(bq, ξ0, τ , σ, q, p, u, ξ, η)

such that ϕ
³
yc|[t0,t] , yd|[t0,t] , u|[t0,t)

´
=

µ
ξ (t, j)
q (Ij)

¶
,

∀t ∈
¡
tj +∆, t

0
j

¤
,∀j = j, ..., card(τ)− 1.

Definition 4 A switching system S =(Q,P,UD, γ,
Rn,Rm,Rp,Sc, S, E,R) is detectable if there exist a
function ϕ : Yc × Yd×Uc → Rn ×Q, an integer j ≥ 0
and a real ∆ ∈ (0, δm) such that, by setting ϕ (.) =µ

ϕRn (.) ∈ Rn
ϕQ (.) ∈ Q

¶
, ∀

µ
ξ0bq
¶
∈ Rn × Q,∀τ ∈ T , ∀σ

admissible w.r.t. bq, ∀ε > 0, there exist an execution
χ=(bq, ξ0, τ , σ, q, p, u, ξ, η) and t > t0 such that

(i) ϕQ

³
yc|[t0,t] , yd|[t0,t] , u|[t0,t)

´
= q (Ij) ,

∀j = j,..., card(τ)− 1
(ii)

°°°ϕRn ³yc|[t0,t] , yd|[t0,t] , u|[t0,t)´− ξ (t, j)
°°° ≤ ε;

∀t ∈ [t,∞) ∩
¡
tj +∆, t

0
j

¤
,∀j = j,..., card(τ)− 1.

The above definitions reduce to the standard concepts
of observability and detectability for classical dynami-
cal linear systems.

3.1 Switching systems with δm > 0 and δM ≤ ∞
In this subsection, we give conditions that are sufficient
and in some cases necessary for observability and de-
tectability of switching systems. In the case δM = ∞,
no switching might occur. Hence, the switching system
is observable in the sense of Definition 3 if and only if
it is possible to reconstruct any hybrid initial state and
the first switching time from the input function and the

observed output. Such condition becomes sufficient if
δM <∞.

We need the following definition:

Definition 5 Given a switching system, the hybrid
initial state is reconstructable if there exist a functioneϕ : Yc ×Yd×Uc → Rn ×Q and a real ∆ > 0 such that

∀
µ

ξ0bq
¶
∈ Rn × Q, ∀τ ∈ T , ∀σ admissible w.r.t.bq there exists an execution χ=(bq, ξ0, τ , σ, q, p, u, ξ, η)

such that eϕ³yc|[t0,t0+∆] , yd|[t0,t0+∆] , u|[t0,t0+∆)´ =µ
ξ0bq
¶
. The first switching time is reconstructable

if there exist a function bϕ : Yc × Yd×Uc → R and

a nonnegative real ∆ < δm such that ∀
µ

ξ0bq
¶
∈

Rn × Q, ∀τ ∈ T , ∀σ admissible w.r.t. bq there ex-
ists an execution χ=(bq, ξ0, τ , σ, q, p, u, ξ, η) such thatbϕ³yc|[t0,t0+∆] , yd|[t0,t0+∆] , u|[t0,t0+∆)´ = t00.

Our first result completely characterizes the hybrid ini-
tial state reconstruction.

Proposition 6 Given a switching system S = (Q,P,
UD, γ,Rn,Rm,Rp,Sc, S, E,R), the hybrid initial state
is reconstructable if and only if S(qi) is observable for
any qi ∈ Q and

∀p ∈ R(γ),∃u∗ : ∀qi, qj ∈ γ−1(p)
yi(t, 0, u

∗) 6= yj(t, 0, u
∗), a.e. t ≥ 0 (2)

or, equivalently,

∀p ∈ R(γ),∀qi, qj ∈ γ−1(p),∃k ∈ N ∪ {0} :
CiA

k
iBi 6= CjA

k
jBj

(3)

The following result characterizes the first switching
time reconstruction.

Proposition 7 Given a switching system S = (Q,P,
UD, γ,Rn,Rm,Rp,Sc, S, E,R), the first switching time
is reconstructable if

∀qi ∈ Q,∀qj ∈ Ji,∃k ∈ N ∪ {0} :
CiA

k
iBi 6= CjA

k
jBj

(4)

where Ji = {q ∈ Q : (qi, σ, q) ∈ E for some σ ∈ UD and
γ(qi) = γ(q)}.

By combining Propositions 6 and 7, we obtain the fol-
lowing result.



Theorem 8 A switching system S = (Q,P,UD, γ,
Rn,Rm,Rp,Sc, S, E,R) is observable if the following
conditions are satisfied:

(i) S(qi) is observable for any qi ∈ Q;

(ii) ∀p ∈ R(γ), ∀qi, qj ∈ γ−1(p), ∃k ∈ N ∪ {0} :
CiA

k
iBi 6= CjA

k
jBj;

Moreover, if δM =∞, then conditions (i) and (ii) are
necessary.

We now state conditions for detectability of a switching
system.

As in the case of a linear dynamic system, the switching
system can be decomposed into two subsystems. Given
S = (Q,P,UD, γ,Rn,Rm,Rp, Sc, S, E,R), where it is
assumed w.l.o.g. that the dynamical systems are in
observability canonical form (1), define the switching
system eS = (Q,P,UD, γ,Rn,Rm, Rp, eSc, eS,E, eR) witheS (qi) ∈ eSc described by

ẋ(t) =

µ
0 0
0 Ai22

¶
x(t) +

µ
0
Bi2

¶
u(t),

y(t) =
¡
0 0

¢
x(t), i ∈ J,

and eR(e, x) = fMex, e = (qi, σ, qj), fMe =µ
0 0
0 Idj×dj

¶
Me ∈ Rn×n and Idj×dj ∈ Rdj×dj is

the identity matrix. Define now the switching sys-

tem So =
³
Q,P,UD, γ,Rn,Rm,Rp, bSc, bS,E, bR´ withbS (qi) ∈ bSc described by

ẋ(t) =

µ
Ai11 0
0 0

¶
x(t) +

µ
Bi1

0

¶
u(t),

y(t) =
¡
Ci1 0

¢
x(t), i ∈ J,

and bR(e, x) = cMex, e = (qi, σ, qj), cMe =µ
I(n−dj)×(n−dj) 0

0 0

¶
Me ∈ Rn×n. The decomposi-

tion above can be seen as an extension of the classical
Kalman decomposition for linear dynamical system to
switching systems. The following result, based on this
decomposition, characterizes detectability of a switch-
ing system in terms of properties related to the observ-
ability of So and to the asymptotic stability of eS.
Theorem 9 A switching system S = {Q,P,UD, γ,
Rn,Rm,Rp,Sc, S,E,R} is detectable if the following
conditions hold:

(i) ∀p ∈ R(γ), ∀qi, qj ∈ γ−1(p), ∃k ∈ N ∪ {0} :
Ci1A

k
i11Bi1 6= Cj1A

k
j11Bj1;

(ii) for any initial state
µ

ξ0
qi

¶
∈ Oi ×Q, i ∈ J, and

for any ε > 0 there exists t >t0 such that kξ (t, j)k ≤ ε,

for any t ≥ t, for any execution of eS with u(t) = 0, for
any t ≥ t0.

As it is for stabilizability and safety properties (see [5]),
observability and detectability of a switching system
may be assessed on its strongly connected components.
More precisely,

Proposition 10 A switching system S with δm > 0
and δM =∞ is observable (resp. detectable) if and only
if each strongly connected component of S is observable
(resp. detectable) .

3.2 Switching systems with δm > 0 and δM <∞
In this subsection we characterize observability of
switching systems with minimum dwell time and fi-
nite maximum dwell time. In this case, under the live-
ness assumption, each infinite execution is such that
card (τ) = ∞. Moreover, the observability (resp. de-
tectability) of the switching system S with δm > 0 and
δM < ∞ does not imply the observability (resp. de-
tectability) of the systems Si, ∀i ∈ J . Observability
and detectability of a switching system with δm > 0
and δM < ∞ may be assessed on its proper strongly
connected components. More precisely, Proposition 10
becomes :

Proposition 11 A switching system S with δm > 0
and δM < ∞ is observable (resp. detectable) if and
only if each proper strongly connected component is ob-
servable (resp. detectable).

We first recall from [1] that an alive finite state ma-
chine is current-state observable if there exists a
positive integer K such that, for every h ≥ K and for
any unknown initial state q(I0), the state q(Ih) can be
determined from the output sequence p(Ii), i = 0 . . .K,
for every possible sequence σ(Ii), i = 0 . . .K − 1. It is
important to highlight that current state observability
of DS does not imply in general discrete state observ-
ability of the switching system S, since the switching
times cannot always be determined from the observed
discrete output yd. This is why, in the following the-
orem, we need to assume that the switching times tj
can be determined from yd.

Theorem 12 Given a switching system S with δm > 0
and δM < ∞, assume S(qi) observable, ∀i ∈ J 0 where
J 0 denote the set of all indices associated with discrete
states belonging to proper strongly connected compo-
nents of the FSM DS . S is observable if DS is current-
state observable. Moreover S is detectable if DS is

current-state observable and ∀
µ

ξ0
qi

¶
∈ Oi×Q, i ∈ J,



∀ε > 0 there exists t >t0 such that kξ (t, j)k ≤ ε, for
any t ≥ t, for any free execution of eS.

4 Conclusions

We addressed observability and detectability for linear
continuous-time switching systems. We compared ex-
isting definitions, presented some of their drawbacks
and proposed a new definition of observability, and a
weaker notion of detectability, related to the possibil-
ity of reconstructing the system state. To the best of
our knowledge, detectability has not been addressed as
yet in the literature on hybrid systems. We gave some
sufficient and necessary testable conditions for observ-
ability. We also derived a Kalman-like decomposition
of the switching system and we proposed conditions for
detectability based on this decomposition.
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