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1 Introduction

Within the HYBRIDGE project, the objective of WPS is to develop novel meth-
ods for the decomposition of risk such that extreme low risk values can be as-
sessed through a hierarchy of conditional Monte Carlo simulations which are
scalable relative to the increasing complexity of the application considered. The
research within WPS is organized in four tasks:

8.1 - Review existing risk decomposition and assessment methods, both ana-
lytical ones, Monte Carlo simulation approaches and combinations of these two.
This review should distinguish between theory based methods and heuristic
methods.

8.2 - Develop new risk decomposition and assessment methods. One of the
key directions to be explored is the development of risk decomposition methods
that make use of the fact that for strong Markov processes the Markov property
holds true for stopping times.

8.3 - Development of Conditional Monte Carlo simulation techniques for
accident risk assessment that make use of the risk decomposition developed in
Task 8.2, and comparison of the new approach with the existing ones identified
in Task 8.1.

8.4. - Extend the risk decomposition approach with a recursive Bayesian
estimation approach which enables the updating of the accident risk assessment
while more and new information is becoming available.

The results of task 8.1 have been reported in [Krys03a]. The current report
addresses the results obtained during the performance of Task 8.2.

Accident risk assessment has been widely studied for various safety-critical
operations, such as the nuclear and chemical industries, advanced air traffic
management (ATM) and many other. All accident risk assessment approaches
can be subdivided into two groups: approaches based on statistical analysis
of collected data and those that are based on the modelling of the processes
leading to the accident. The statistical analysis of extreme values needs a long
observation time since the very low probability of the events considered. Statis-
tical approaches are based on the standard extreme value distributions as the
Gumbel, Fréchet and Weibull laws [Reiss97]. The modelling approaches firstly
consist in formalizing the system considered and secondly by using mathemati-
cal or simulation tools obtaining some estimate. The aim of work package WP8
is to study the second group of accident risk assessment methods and to develop
novel methods for the obtaining accurate estimates of rare event probabilities.

We distinguish three different types of modelling approaches: analytical, nu-
merical and simulation techniques. Analytical, numerical and standard Monte
Carlo approaches have been studied in Task 8.1 of the work package WPS8. An-
alytical and numerical approaches appeared to be useful, but can require many
simplifying assumptions (see [KrysO3a]). This finding agrees with conclusions
obtained from studies of realistic ATM example in D2.2 (see [Blom et al 03a]).
This causes Monte Carlo simulation to be a practical alternative when the
analysis calls for fewer simplifying assumptions. However, obtaining accurate
estimates of rare event probabilities, say about 107° to 107'2, is not realis-



tic using straightforward Monte Carlo simulation. Thus, the objective of Task
8.2 is to study effective Monte Carlo simulation speed-up techniques which are
complementary to speed-up by parallel or distributed Monte Carlo simulation
architectures.

Many techniques for reducing the number of trials in Monte Carlo simula-
tion have been proposed, the more promising is based on importance sampling.
Fundamentally, importance sampling is based on the notion of modifying the
underlying probability distribution in such a way that the rare events occur
much more frequently. But to use importance sampling, we need to have a deep
knowledge of the studied system and, even in such a case, importance sampling
may not provide any speed-up. An alternative way to increase the relative num-
ber of visits to the rare event is to use trajectory splitting, based on the idea
that there exist some well identifiable intermediate system states that are vis-
ited much more often than the target states themselves and behave as gateway
states to reach the target states [Town98]

The report is organized as follows: Section 2 gives a brief overview and
classification of techniques used in Monte Carlo simulations. The next sections
provide more detailed description of the most interesting rare event Monte Carlo
approaches. Section 3 presents the importance sampling and the sequential im-
portance sampling techniques in Monte Carlo simulation. The importance split-
ting techniques and the RESTART method are described in section 4. A new
method based on interacting particle systems algorithm is introduced in section
5. Finally, section 6 contains conclusions and suggestions for the further work.

2 Monte Carlo simulation techniques

The main techniques that are used by the different methods studied so far within
HYBRIDGE are: importance sampling, control variables, multi-level crossing,
conditioning, N-particles, stopping time based decomposition, resampling, split-
ting, and observation filtering. For each of these techniques a short explanation
is given below. Moreover, in Table 1 it is shown which of these are used by the
different methods studied within HYBRIDGE.

Importance sampling

Assume that we want to estimate E[f(z)] and suppose the underlying probabil-
ity density of random variable x is p(x). Then main idea of importance sampling
method is to use another probability density ¢(z). When trying to estimate the
mean value for an arbitrary function f(z), we have

Blf(2)) = [ fepla)is = [ f<x>%q<x>dx.

Hence,



where the random variable y has the probability density ¢(y). We therefore
have the method of estimating E[f(z)] by using n trials of y, y1,...,y, and by
approximating E[f(x)] by

1 i: fyi)p(yi)
ni aly)
Good choice of ¢(x) can produce an estimate with far lower variance. The
main drawback of this method is that it requires a good choice of ¢(x), and thus

a thorough analysis of the problem under consideration.

Control Variables
We write E[f(z)] in form

Blf(2)] = Blf(x) — h(z)] + E[h(2)],

where E[h(z)] can be evaluated analytically and Var[f(z) —h(z)] is appreciably
smaller than Var|[f(x)]. We then use a Monte Carlo method to evaluate B[f (z)—

h(z)].

Conditioning
Suppose that we want to estimate

Blf(w)) = [ £ 0)pay (u,0)dude,
where p, , (u,v) is the density function of the pair (z,y). If we set:

hz) = ﬁ / £, 0)pay (i, 0)do = BLf (. )],

with m(z) = [ pey(x,v)dv, it is easy to see that E[f(x,y)] = E[h(z)]. In effect,
the distribution of x is m(x)dx, and therefore,

Elh(x)] = / m(u)h(u)du = / du / £ (0, 9Py (u, v)dv = B{f ()]

One can prove that

Var(h(z)) < Var(f(z,y)).

If we can explicitly evaluate the function h(:), it is preferable to use a Monte
Carlo simulation for h(x).



Multi-Level crossing
Suppose the target rare set D is contained within a sequence of nested subsets
of the state space S, i.e.:

D:Gn+1c-"CG1:S. (1)

We denote by L; = 0G; the boundary of the set G;. If the initial state of
process starts in G1\G2, then the nesting (1) implies that the rare set can only
be reached through crossing all the boundaries (levels) L; (i =2,...,n+ 1).

Stopping time based decomposition
The original problem is decomposed into conditional problem. It is done by
introduction of a conditioning on an event and the moment that event happens

(the stopping time). For example, suppose that {x;} is a strong Markov process,
then for any stopping time 7 the following equation holds:

Blf(2rs0)] = / f@)Py..,(z € do) = / f@)p. . (2)da
/ / F@)Pars o (]9)pe, (v)ddy
/ Blf (2r10)lr = ylpe, (4)dy

here we have assumed that conditional density p,, |,, (|y) exists and is uniquely
characterized for all z and y.

N-particles

Let x; denote the state of the system. The N-particles Monte Carlo simula-

tion consists of approximating the density p,, (x) by a large set of N particles
NN ,

{xgz) } ~, where each particle has an assigned relative weight, wgl), such that all

i=1

weights sum to unity. The density p,, () can be approximated by the empirical
distribution:

N
P, ()dz = ngz)éwgn (dz),

i=1
where 6 denotes the Dirac measure, 6 ) (B) =1 if xl(ti) € B and 0 otherwise.
t

Resampling

During resampling N-particles are independently drawn from the empirical dis-
tribution generated by the original set of particles. Resampling is done to reduce
the number of particles with almost zero weight, in favour of the particles with
significant weight.



Splitting

Entering some intermediate state, which is usually characterized by crossing a
threshold (level) by a control parameter, triggers the splitting of the trajectory.
The current system state is saved and a number of independent subtrajectories
are simulated from the state. Main drawback: difficult to find the optimal
splitting parameters (splitting level and number of splits).

Observation filtering
Let x; € R™ denote the state of the observed system and y; be the observation
at time ¢, then the filtering density p,,|,, (x|y) satisfies Bayes theorem:

Pa o, () = W |

If the density function p,,,, (z|y) is approximated by the empirical density of

YN
set of N particles {xiz)} , where each particle has an assigned relative weight,
i=1
w,(f), such that all weights sum to unity, then Bayes theorem updates the weights
as follows:
wi'p,

fu,(f) _ yelz(® (ylz)

Ct

where ¢; is a normalizing constant.
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3 Importance Sampling

The Monte Carlo method of simulation is based on the famous law of large num-
bers which states that given a family of independent random variables (X;,i > 1)
with the same distribution as another random variable X such that E(|X]) < oo
is finished, then with probability one

1
B(X) = lim (X1 4+ Xy).

N —o00
So for large N, we can approximate the expectation of X by the estimate

_1

N(X1+'-'+XN).

mn
Nevertheless, the law of large number says nothing about the question: How
large N needs to be taken in order to make sure that the absolute value of the
error

EN ZE(X) —muy

is smaller than some given € > 07
The Central Limit Theorem (CLT) gives an asymptotic random value of
error €y, when E(X?) < co. Let o2 the variance of the random variable X,

then

VN

YN

o
converges in law to centered Gaussian variable with variance one, also called a
standard Gaussian variable. Let notice that if G is a standard Gaussian variable,
then
P(|G| < 1.96) ~ 0.95.

We deduce a 95%-confidence interval of the following type

N Nk

Let consider a simple example of estimation of the probability p = P(A) of
some event A. We have p = E(X), where X is a Bernoulli random variable
taken the value 1 if X € A and zero otherwise. So, to obtain an approximation
of p, we simulate N trials and count the number N4 of occurrences of the event
A, in such a way that py = N4/N gives an estimate of p. At the same time,
the CLT gives the following confident interval of level 0.95

- 1 1
0 geYPULP) g

NN S TN TN

[mN —1.96 mpy + 1.96

lp — pn| < 1.96



So, if A is a rare event 02 ~ p and the relative error

p—pn| 2
p VPN
For example, we see that if p is of order 1077, it is nearly impossible to obtain a
reliable statistical estimation. A common approach to speed-up the simulation
is to use importance sampling techniques.

The basic notion behind importance sampling can be illustrated using a
simple example. Let assume that we want to estimate E(g(X)) where X is a
random variable with a probability density f(z). Then, the quantity to estimate
is given by

E(g(X)) = / o) f(2)de.

Now, let consider another probability density h(zx), such that h(x) > 0. Clearly,
E(g(X)) can be written

This means that

where the random variable Y has the probability density h(x). The goal of this
change of probability is to produce an estimate with lower variance. In fact,
choosing h(z) = )/([ f(z)g(x)dz) yields a zero variance estimator. In
practice, however thls is not a feasable change of measure since it requires prior
knowledge of E(g (X )). Basically, good variance reduction is achieved by making
the ratio f(x)/h(zx) very small on the rare set. Heuristically, a good choice can
consist in choosing h(z) close to |g(z) f(z)| and normalizing the result. To avoid
computing the normalizing constant, we adopt the following estimate

N
N )/h(
= ZL 1g(y1) Yi / yL Zg yz Wi, (2)
ZL 1 F(yi) /(i) i=1
where yi1,--- ,yn are i.i.d. random variables with common density h and the

importance weights are given by

__ fy)/h(y)
= — .
> i1 f(wi)/h(yi)
For N finite, this estimator is biased but asymptotically, under weak assump-
tions, the law of large numbers applies, that is gy converges to E(g(X)) as
N — oo. Under additional assumptions, a CLT can be also obtained.
Let remark, that gy in (2) is nothing but the function g(z) integrated with
respect to the empirical measure, where 6, stands for the Dirac measure at a

N
Z w;iby, (dy)
i=1




Importance sampling is a general Monte Carlo integration method. However,
it is not adequate for recursive estimation, mainly when we consider a random
trajectory xo.ny = (o, - ,xn) instead of a real value. Avoiding the computa-
tion of the importance weights each time a new data xy;1 become available, is
the goal of the sequential importance sampling method.

3.1 Importance sampling for diffusions

We consider a n-dimensional diffusion (X;,0 < ¢ < T) solution of the stochastic
differential equation

dXt = b(t, Xt)dt + O'(t, Xt)dBt

where b(t,z) € R", o(t,z) € R"*"™ and B; a n-dimensional Brownian motion
for the probability P. We assume that the drift vector b and the dispersion
matrix o satisfy the right requirements assuming the existence and uniqueness
of solutions of the stochastic differential equation [Kara00].
Given a real function f with polynomial growth, we define the following
function
u(t,x) =B(f(Xp)| Xy =2). T>t

A Monte Carlo simulation consists of approximating u(T, z) by

N
o~ (k)
ult,2) ~ - 3 FXP) 3)
k=1
where (X:(,,k),k: = 1,---,N) are independent realizations of the process X at

time 7', where Xt(k) = z. These realizations can be obtained by using the Euler
scheme

Xivtivnyn = Xegin +0(t +ihy Xewin)h + ot + ihy Xewin)(Byyn — Bin)-

Let notice that the random variables (B(;41), — Bin,k > 0) are independent
centered Gaussian random variables with covariance matrix hld (Id being the
identity matrix of R™).

Given a square integrable R™-valued process of the form h(t, X;), adapted
to the Brownian motion By, we consider the following process Q4

t 1 t
Qi = exp{/ h(s, X,).dBs + 5/ |h(s, Xs)||*ds}.
0 0

If B(Q; 1) = 1, then a new probability measure P can be defined by the density:

dP .
p = (@)
With respect to this new measure, the function w(t, z) can be written
ult, z) = B(f(X7)Qr|X; = x) (4)

10



By Girsanov’s theorem the process
~ t
Bt = Bt +/ h(S,XS)dS
0

is a standard n-dimensional Brownian motion under the probability measure
P, adapted to the filtration of the Brownian motion B. In terms of this new
Brownian motion the processes X and () can be rewritten as:

dXt = (b(t, Xt) — O'(t, Xt)h(t, Xt))dt + O'(t, Xt)d.ét
dQ: = Q:h(t, X;).dB

which will be used in the simulations for the approximation of (4) by

N
v~ AR )
k=1

We must now determine the functions A(t, z) which lead to a smaller variance for
the Monte Carlo approximation given in (5) than for the variance of (3) Firstly,
let mention that the function u(t, x) satisfies the Cauchy problem [Kara00][Th
5.7.6]
—9u =L (t,z) €[0,T) x R" ©)
uw(T,z) = f(z); zeR”
where L; is the second-order differential operator

n

1 ) du()
Luuta) = 3 33 st AT S 20,

i=1

where a;j(t, ) are the components of the diffusion matrix, defined by a = oo®

(o denotes the transpose of o). Now, using It6 formula, we obtain that

d(u(t,Xt)Qt) = U(t,Xt)ch(t,Xt) + QtO’T(t,Xt)vu(t,Xt).dBt
== Qt(O'T(t,Xt)VU(t,Xt) + uh)(t,Xt)dBt

where Vu denotes the gradient of u with respect to the variable s. Integrating
between 0 and T', we obtain

W(T, X7)Qr = F(X7)Qr = u(0, )+ /0 Qu(o (t, X,)Vul(t, X;)+uh) (¢, X¢).dB:.

Therefore the variances in the two Monte Carlo simulations are given by
T
Varg(f(X1)Qr) = E{/ Q?|lo" Vu + uh|*dt}
0

Vars(f(X1)) = E{/O o V| 2dt}.

11



If u(t, X¢) was known, the problem could be solved and the optimal choice for
h, which gives a zero variance, would be:

1
h=—-=0"Vu.
u

In the practice, we use an approximation for the unknown w in the previous
formula which gives a function A such that the Girsanov’s theorem applies and
the variance of @)y can be controlled.

The reader could refer to [Four97] where a such approximate is obtained by
large deviations techniques, and to [Fouq01] for some examples.

3.2 Sequential Importance Sampling

Let consider a random trajectory zo.y = (zo,---,zn) where each z; is an
element of a some state space of the studied system. We want to compute the
expectation E(h(xo,n)) with respect to the density 7y (zo,n). The importance

sampling method gives an estimate by generating the trajectories x((f%\, with
respect a measure ¢(zo,n) and computing

P XieNhgy) e mlgy) -
m m () ’ N ™ ( (4) ) :
Disi Wy Ao, N

)

Here, each trial modifies the entire trajectory. However, we can imagine a
sequential sampling consisting in updating the trajectory without modifying

the past, i.e. (x(()zzl 1) = (x((le, xﬁﬁrl) Then, we use the the following identity

N (zo;n) = mo(zo)mi(x1|z0) - - T (N |To;N—1),

so the algorithm does the following: Pick a Xg = x¢ according the my-density
and let X, 41 = xp4+1 according to the conditional m,41-density of the value
Tp41 given xo.,,. In the practice, we change the probability and proceed by
sampling Xy according to a known qq density close of 7y and recursively, =,
is sampled according to the known conditional density gy, (2, |%0;n—1), in such a
way that the density of the trajectory xo.n is given by

an (wo;n) = qo(w0)q1(z1|z0) - - g (TN |To;N—1)-
The importance weights wg\i,) = N(x((f)N) / qN(x(()Z%V) need to be evaluated, nev-
ertheless this evaluation can be done recursively in time, since
G _ (i)Wn+1(x§f)+1|x0;n)

Wyh1 = -
" " Qn—l-l(xgzl-)&-ﬂxo;n)

Let remark that the importance weights can only be known up to a proportion-
ality constant.

12



The problem encountered in the sequential importance sampling method is
that, as n increases, the distribution of the importance weights wﬁf ) becomes
more and more skewed. Practically, after a few time steps, only one trajectory
has a non-zero importance weight. To avoid this degeneracy, one needs to
introduce and additional selection step [Douc01]. The key idea is to eliminate
trajectories having low importance weights and to multiply trajectories having
high importance weights. Formally, we replace the weighted estimator (7) by
the unweighted estimator

m

1 i i
S
i=1

where m%) is the number of offspring associated to trajectory ac((f%v, it is an inte-

ger number such that > | mg\i,) =m. The mg\i,) are chosen such that h,, is close
to hs,. There are many different way to select mg\i[), for example by sampling
according to a m-multinomial distribution of parameters w%),i =1,---,m. The
algorithm description is the following [Douc01]

1. initialization, n =0
e Fori=1,---,m, sample xéi) ~ qo(xo) and set n = 1.
2. Importance sampling set
(4)

=(6) _ (.00

e Fori=1,--- ,m,sample &y’ ~ q,L(x7l|ng2L,1) and set Z.,, = (2¢.,_1,%

e Fori=1,--- ,m evaluate the importance weights

wg) — Wn(l'(%))|1}0;n1) . (8)
Qn(xn |x0;n—1)

e Normalize the importance weights.

3. Selection step
(@) .

e Resample with replacement m trajectories (xo;n,i =1,---,m) from
the set (f(()zzl,z =1,---,m) according to the importance weights.

e Set n «+—n+ 1 and go to step 2.
(@)

Note that in equation (8), w,’,
x((f;zl_l have uniform weights after the resampling step at time n — 1.

does not appear because the trajectory

13
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4 Importance Splitting techniques

We present here another group of methods to improve the standard simulation.
The fundamental idea of trajectory splitting is based on the assumption that
there exist some well identifiable intermediate system states that are visited
much more often than the rare target event. In trajectory splitting, the step-by-
step evolution of the system follows the original probability measure. Entering
the intermediate states, which is usually characterized by crossing a threshold by
a control parameter, triggers the splitting of the trajectory. The current system
state is saved and a number of independent subtrajectories are simulated from
the state [Town98].

For example, let consider m+-1 sets B; such that the rare event A = B,,,41 C
.-+ C B; and use the formula

where each conditioning event on the right hand side of equation (9) is “not
rare”. The splitting technique proceeds as follows [Tuff00]: make a Bernoulli
trial to see if the set Bj is hit. If it is the case, we split this trial in Ry
Bernoulli trials and we look for each new trial if By is hit. This procedure
is repeated at each level, i.e. we make R; retrials each time B; is hit by a
previous trial. If a level is not hit, neither is A, so we stop the current retrial.
Using Ry independent replications of this procedure, we have then considered
RoR; - -+ R, trials, considering for example that if we have failed to reach a
level B; at the i-th step, the R; - - - R,,, possible retrials have failed. An unbiased
estimator of P(A) is

1 Ro R, N
N A
:—E E 11 el =
p RO e 'Rm io=1 i1 foTon form RO H;ll ‘Ri7

where 1;,...;; is the result of the i-th Bernoulli retrial at stage j and N4 the
total number of trajectories having reached the set A. It can be proven [Vill97]
that the optimal simulation is obtained if

m = —1/2Log(P(A)) —1, P(B;|B;_1)=¢" %, R;~1/P(B;|B;i_1) = €.

Nevertheless, in practice the trajectory splitting method may be difficult to
apply. For example, the case of the estimation of the probability of a rare event
in dynamical system is more complex, since the difficulty to find theoretically
the optimal B; and R; for each level i. Furthermore, the probability to reach
B; varies generally with the state of entrance in level B;_;.

4.1 Splitting for Markovian models

Now, we assume that the dynamic of the studied system is Markovian and that
the initial state O of the system is recurrent, i.e. almost surely the system
returns to O in a finite time, (so the system returns to O infinitely often).

14



Figure 1: Example with R; = 2 at each level

We want to estimate, using splitting method, the probability p of reaching
a rare event A before returning to O. For example, if T4 denotes the first
hitting time to A and R the first return time to O, then p = P(T4 < R) and
E(T4) = B(min(R,T4))/p. So, we proceed as illustrated in Figure 1: if By is
hit before going back to O, we split the path in R; trials, otherwise, if we are
back to O first, we stop the simulation. For each path starting from the point of
entrance in By, if we hit By before returning to O, then we split this path in Rs
trials, otherwise we stop this path. We do the same thing at each level By, and
finally, a path from level By which hits A before returning to O is considered
as a success, so we stop also this path. An implicit assumption is that the level
1+ 1 cannot be reached from level ¢ — 1 without entering level 1.

In practice [Tuff00], the simulation time is limited to a value T, so that we
estimate P(T4 < min(R,T')). Moreover, going back from B; to O may take a
long time, so we can also gain in simulation time by stopping the simulation of
the retrial splitted at level ¢ when it is back d levels down. By then, we assume
that it will not hit B;;1, nevertheless this induces a bias which is difficult to
estimate.

4.2 RESTART method

We briefly describe in this Section the RESTART method developed by Manuel
& José Villén-Altamirano [Vill91], based on the same idea as splitting. RESTART
can be used to estimate rare transient events, or the probability P(A) of every

15



X(0)

Figure 2: Crude simulation

kind of rare event in steady state, not only the probability of reaching A before
coming back to O.

Suppose a given rare event A whose probability is to be estimated. For
clarity, we assume that event A can only occur when a system state parameter
X (t) up-crosses a threshold L. In Figure 2 an example of system evolution in a
crude simulation is given.

Now, let introduce M events C; (satisfying A C Cpy C -+ C C7) with associ-
ated thresholds 17, - - ,Th;. We define the additional events B; as the transition
from C;_1 to C; (upcrossing of the threshold T;) and D; as the transition from
C; to C;—1 (downcrossing of the threshold T5).

The RESTART method illustrated in Figure 3 involves the following proce-
dure [Vill00]:

e A simulation path, called main trial, is performed in the same way as if it
were a crude simulation (thick path in Figure 3). It lasts until it reaches
a predefined “end of simulation” condition (e.g. a predefined value of the
simulated time).

e BFach time an event B; occurs in the main trial, the system state Xp,
is saved, the main trial is interrupted and R; — 1 retrials at level 1 are
performed. FEach retrial is a simulation path that starts from the state
Xp, and finishes when an event D; occurs.

o After the Ry — 1 retrials of level 1 have been performed, the main trial
continues from the state Xp,. Note that the total number of simulated
paths [By,D1) is Ry (including the main trial). The main trial which
continues after D; leads to new sets of retrials of level 1.
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X

Figure 3: Simulation with RESTART

e If an event B occurs during any trial [Bi, D1), an analogous process
is done: Ry — 1 retrials of level 2 starting in B and finishing in Dy
are performed, leading to Ry trials [Bg, D). The trial [By, D7) which
continues after Do may lead to new sets of retrial of level 2 if new events
Bs occur.

e In general R; trials [B;, D;) (1 < i < M) are performed each time an
event B; occurs in a trial [B;—1, D;—1). The number R; is constant for
each value 17

“

e A retrial of level 7 also finishes if it reaches the “end of simulation
condition before the occurrence of event D;.

The differences with respect to the 4.1 splitting lie in the fact that we consider
the path as finished if it leaves the level i towards level ¢ — 1 (it is the case where
we diminish the computation time with d = 1 in the previous section), except
for the last retrial at level i. As a matter of fact, the last is authorized to go
under level ¢ and to continue until it reaches again level ¢ and is split again.
Nevertheless the weight of the last path is multiplied by R; if it reaches a lower
level before going to an upper one, by then we do as if all the retrials were
grouped again together in a single one.

Let N4 be the total number of events A that occurs in the simulation (in the
main trial and any retrial) and N be the number of reference events simulated
in the main retrial, then the unbiasedness of the estimator of P(A)

Na

p— A
NHiAilRi
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is proved in [Vill00]. The method used is based on the following recurrent
property: Consider a simulation with M thresholds. If the retrials of level 1
(and their corresponding upper-level retrials) are not taken into account, we
obtain a simulation with M — 1 thresholds (T3 to Ths).

In [Vill0O], optimal values for thresholds and the number of retrials that
maximize the gain obtained with RESTART are also derived (the gain is defined
as the ratio of the product of the simulation cost by the variance of the estimator
for a crude simulation by the same product but computing for a RESTART
simulation). Nevertheless, it seems that some assumptions used in this paper
should be clarified.

5 Interacting Particle Systems Algorithm

We present now a genetic type interacting particle systems algorithm and a
genealogical model for estimating a class of rare events, following [Cérou02].
We consider a continuous-time strong Markov process which is assumed to start
in some Borel set O with a given initial probability distribution 7,. For a given
target Borel set A, we define the first time the process X hits A, namely

Ta=inf{t >0 : X; € A}, T = oo if the set is empty.
We would like to estimate the quantities
P(T4 <T) and Law(X:0<t<Ty|Ta<T), (10)

where T is either a deterministic finite time or the almost surely finite entrance
time into a recurrent Borel set R if RN O = () or the first return time to O if
R = O, namely

T =inf{t >0 : X; € R}.

5.1 Multi-level Feynman-Kac formulae

As previously, the process X, before visiting R or entering into A, passes through
a decreasing sequence of Borel level sets

A:Bm+1C"'CBl,

with ON By = 0 and RN B; = (). To capture the behavior of X between the
different levels, we introduce the discrete stochastic sequence X, representing
the paths of X between the successive levels, these paths having various length
(see Figure 4),

Xn:(Xt;,—Tnfl/\TgtgiTn/\T)y Xo = Xo,

where a Ab = min(a, b) and each T;, represents the first time X reaches B,,, that
is
T,=inf{t >0 : X, € B}, 1<n<m+1, Ty =0.

18



Figure 4: Embedded Markov Chain

IfT < T,_1, then X, = Xp and X a7 = X1 ¢ By, whereas if T,,_; < T <
Ty, then X, = (X3, Th—1 <t <T) and Xy, rr = X7 ¢ B,. Finally, if T,, < T,
then &, = (X3, T,—1 <t <T,) represents the path of X between the successive
levels B,,_1 and B,, and X7 ,r = X1, € B,,. We also observe that

(Ta<T)=(Tn1 <T)=(T1 <T,- ,Tny1 <T).

By the strong Markov property, we can check that the stochastic sequence
(X,) forms a Markov chain with value in the path-space of X, denoted by E.
To check wether the path has succeeded to reach the level B,,, we introduce the
functions g,, defined for each path 4 1= (z4)s<u<t, With s < ¢ by

gn(xs;t) = l{thBn}-
With this notation, we have for each n

Then, the following Feynman-Kac representation of the quantities (10) has been
proved in [Cérou02]

E(f(X,) HZ:O 9p(Xp))

AN =1 = R @) .
BT, < 7) = B[] 0,(%,) (12)
p=0

where f in any bounded function defined on the path-space E of X. In addition,
for any n 4 1-valued bounded function f, we have that

E(f(Xo, -+, &) H;L:O 9p(Xp))
E(szo 9p(Xp))

B(f(Xo, -, X)| T <T) =
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5.2 Genetic approximating models

Based on the Feynman-Kac representation formulae, we can introduce a ge-
netic particle algorithm to approximate the desired quantities (10). These in-
teracting particle systems approximating models for solving a general class of
Feynman-Kac models have been studied in [Del Moral 00], [Del Moral 01a] and
[Del Moral 01b].

To describe this particle approximating model, let introduce the probability
distribution 7,, € P(F) on the space E, defined for each bounded function f on
E by

1lf) _
’Yn(l) ) with ’Yn(f) - E(f(Xn) pl;[)gp(Xp))'

(f) = /E f (@), (dz) =

Thus, the right-hand term of (11) is nothing else that the ratio n,,(fg,)/7,,(gn)-
We used this notation, since the evolution of n,, is driven by a non-linear
dynamical system

NMn41 = (I)n-‘rl(nn)v (13)

where the mappings ®,,1 from the set of measures
Pu(E) = {n € P(E);n(gn) > 0}
into P(E) are defined by
B (0)(@0) = [ W) ()R ),

where

W, (n)(f) = ’777({9 i’;) ,

and K, (u, dv) represents the Markov transition kernel of the Markov chain X,
i.e.

K (u, dv) = P(X, € dv|X,—1 = u).

Thus, the recursion (13) involves two separate updating/prediction transi-
tions

prediction
—_—

updating .
n, € P(E) 229, 5 — W,(n,) € P(E) M1 € P(E).  (14)

Let notice that the measures v, on E can be expressed in terms of the
sequence (1,,;p < n), using the easily checked formula

n—1

p=0

In these notations, we observe that

7n(9n) = P(Tn < T);
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and
f?n(f) = E(f(xn)|Tn < T)'

The genetic type N-particle system associated with an abstract measure
valued process of the form (13) is based on the natural idea to approximate 7,
for n > 1 by a sequence of empirical measures

LN
N = N;éi%"“ (15)
1=
associated with a system of N interacting particles §,, = ( 5}), Sy §fV )) moving

in the set E. In other words, we approximate the two-step transitions of the
system (14) by a two-step Markov chain

N updating . 1 prediction N
M Nn = N E 55(‘) Mn+1s

where the éf: ) are N independent random variables with common distribution

5 gn (&) 5.
E 51) ZZJ 19n( (J))

i=1

Using the approximating measures 7)Y, we associate with +,, the approxi-
mating measure 7.\ defined by

n—1

’yn nn H 77p gp (16)

Consequently, an estimate of P(T4 < T) is nothing else that v +1(gm+1)-
More precisely, the N-particle system associated with the dynamical system

(13) is the Markov chain &, = (¢, ..., &™) taking value in the product

spaces BV U {A}, where A stands for a cemetery point Its transitions are

defined as follows. The initial system of particles £, = ( , i ,EO ) consists
in N independent random variables with common law 7, the law of Xy. Then,
for any configuration z = (z(), ..., z(™) € EN (a collection of N trajectories),
such that the corresponding empirical measure N ! Zl 1 5(1) belongs to P, (F)

the probability that &, ,; € dy™® x -« x dy®™) given &, = x is the product

N N
] @urn (N1 D80 (™)
p=1 i=1

The rationale behind this is that the N particles £ @) evolve independently with
the law @, 1(n).
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When the system arrives in some configuration ¢,, =  such that N1 Zf\;l o e ¢
P, (E) (i.e. all particles hit R), the algorithm is stopped and we set &, ; = A.

Furthermore, let introduce IV n1 the set of the labels of the particles having
succeeded to reach the (n + 1)-th level

n+1 - {1 < i < N: €n+1( nil) € BnJrl}'

So IN., is empty if and only if each N~ Ly ¢ Pn+1(E), and in this

i=1 g( 2
situation the algorithm is stopped.
This algorithm can be splitted in two separate transitions; the mutation/prediction

transition £, — ¢, 41 and the selection/updating transition &, ,; — &, where

the éffil are IV independent random variables with common distribution

s >
U S )= n e b0 (17)
E”“ i=1 Zévzlgnﬂ(fsg}rl) h |I”+1| ierN, S

where |IY, | is the cardinal of the set 2, ;.
The genetlc algorithm is the following:

1. initialization, n =0
.. () 20 )
e Fori=1,---, N, sample £’ ~ ny and set &, = ¢
2. Mutation/Prediction E — §7H_1

o If £, = A, then &np1 = A (i.e. the algorithm is stopped),

e otherwise, for i = 1,--- | N, generate independently a new excursion
from X to the n+41-th level or the set R, according to the Markov
tran81t10n of the Markov chain &), at time n + 1,

e fori=1,---, N, evaluate the number of excursions having succeeded
to reach the n + 1-th level.

3. Selection/Updating ESZ_)H — EEZ_)H
e Resample the N particles 55311 according to the empirical measure
(17),
e set n < n+ 1 and go to step 2.
During the mutation/prediction, each particle evolves randomly according
to a given transition probability kernel. During the selection/updating transi-
tion the particles are selected for reproduction, the most fit individuals being

more likely to be selected. Thus this transition allows heavy particles to give
birth to some particles at the expense of light particles, which die. To avoid to
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Figure 5: Differences between the two selection/updating models

give greater place to the heavy particles, an alternative scheme can be proposed
[Cérou02] by modifying the Selection/Updating transition. Instead of resam-
pling with the empirical measure (17), we use another selection distribution
which consists in the following. At step n + 1, if the particle has succeeded to

reach the n + 1-th level, we keep it, so £n+1 = €n+1 In the opposite, the ter-
minal point X ¢ Bj11 of the path/particle €n+1 does not belong to Byy1.
n+1

In this case, éﬁf)ﬂ is chosen randomly and uniformly in the set of the particle
having succeeded to reach the level B, 11, that mean the particles whose the
labels are in the set 12 ;. In other world each particle which does not enter
into the (n + 1)-th level is killed and instantly a different particle in the Bjp41
level splits into two offsprings (see Figure 5 for the differences between the two
models)

Let denote by 7V the life-time of the N-genetic model

N
. 1
=inf{n>0: = Zléﬁw ¢ Po(E)}.
For each time n < 7V, we consider the approximating measure v (16), and we
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obtain

n |IIJJV|
Tn (gn) = T
p=1
and !
~N
M = |IN| Z 65(1)
n eIy

The particle estimates vY (g,,) are unbiased

E(’y'fy(g7l)1{TN>n}) = ]P)(Tn < T)

The asymptotic behavior as N — oo of the interacting particle model is de-
scribed in [Cérou02].
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6 Concluding Remarks

Many techniques for estimating rare event probabilities have been reviewed on
their applicability to ATM. Two main streams of development have been identi-
fied: approximate numerical solution of the integro-partial differential equations
and Monte Carlo simulation based approaches. The approximate numerical
approaches have been studied in details in task 1 of the work package WPS8
[Krys03a]. The most promising rare event Monte Carlo approaches such as im-
portance sampling, importance splitting and interacting particle system meth-
ods have been considered in the present report. Importance sampling and impor-
tance splitting methods are known to be of great use for the practice. However,
these two methods may not be satisfactory when applied to high dimensional
complex dynamic problems such as in ATM.

The importance sampling techniques, based on changing probability distrib-
utions to make rare events less rare, has been used to obtain dramatic improve-
ments in efficiency in estimating small probabilities in queueing and reliability
systems. But the effectiveness of such methods depends critically on the ability
to find the right change of measure. If it is done improperly, the importance
sampling may produce worse results than straightforward simulation. Finding
the right change of measure generally requires identifying at least the rough
asymptotics of a rare event probability. This type of analysis can be formidable
in complex dynamic models.

The importance splitting methods are quite powerful if one can find the
optimal splitting parameters: number and position of thresholds (levels), and
the number of splitting’s at each level. This can be difficult when the scale of
complexity increases.

The interacting particle system algorithm is a new type of splitting tech-
nique. It combines the multilevel splitting techniques with the branching and in-
teracting particle systems approximations of Feynman-Kac distributions. There
are many interesting questions left, such as the optimal selection of the splitting
levels, and how the number of levels, the number of particles and the number
of independent simulations influence the accuracy. For accident risk assessment
the level of accuracy should be predictable.

Further studies will concentrate on making the accuracy predictable, and on
extending the rare event Monte Carlo approaches also to hybrid state Markov
process situations. One of the starting points for the latter is the hybrid state
particle filtering method that has successfully been developed within WP8.2 for
multi-target tracking applications [Blom&Bloem03]. A complementary issue to
be studied is to combine complementary methods, e.g. importance sampling
and sequential level crossing based splitting, in an effective way.

Acknowledgement: We would like to thank Fabien Campillo (IRISA, Rennes)
for suggesting a number of improvements.

25



References

[Aldo89]

Aldous, D. Probability Approximations via the Poisson Clump-
ing Heuristic, volume 77 of Applied Mathematical Sciences.
Springer Verlag, 1989.

[Blom et al 03a] Blom, H.A.P., Bakker, G.J., Everdij M.H.C., M.N.J. van der

Park, Stochastic analysis background of accident risk assess-
ment for Air Traffic Management, Report Hybridge WP2.2,
January 21st 2003.

[Blom&Bloem03] H.A.P. Blom, E.A. Bloem, Joint IMMPDA particle filter,

[Cérou02]

[Del Moral 00]

[Del Moral 01a]

[Del Moral 01b]

[Douc01]

[Glass99]

[Fouq01]

Proc. 6th Int. Conf on Information Fusion, Cairns, Queens-
land, Australia, 8-11 July 2003, pp. 785-792.

Cérou, F. & Del Moral, P. & LeGland, F. & Lezaud, P. Genetic
Genealogical Models in Rare Events Analysis. Preprint, 2002.

Del Moral, P. and Miclo, L. Branching and interacting par-
ticle systems approximations of Feynman-Kac formulae with
applications to non-linear filtering. Séminaire de Probabilités
XXXIV. Lecture Notes in Mathematics No. 1729, J. Azma, M
Emery, M. Ledoux, M. Yor (Eds.), pp. 1-145, 2000.

Del Moral, P. and Miclo, L. Genealogies and increasing propa-
gations of chaos for Feynman-Kac and genetic models. Annals
of Applied Probability, vol. 11, No. 4, pp. 1166-1198, 2001.

Del Moral, P. and Jacod, J. Interacting Particle Filtering
With Discrete Observations Sequential Monte Carlo Meth-
ods in Practice. Springer Verlag, Doucet, A. , de Freitas, N. ,
Gordon, N. (Eds), 2001.

Doucet, A. and de Freitas, N. and Gordon, N. An Introduction
to Sequential Monte Carlo Methods. Sequential Monte Carlo
Methods in Practice. Springer Verlag, Doucet, A. , de Freitas,
N., Gordon, N. (Eds), 2001.

Glasserman P., Heidelberger P., Shahabuddin P., Zajic T.,
Multilevel splitting for estimating rare event probabilities, Op-
erations Research, vol.47, issue 4 (Jul.-Aug., 1999), pp. 585-
600.

Fouque, J. P. and Tullie, T. A. Variance Reduction for Monte
Carlo Simulation in a Stochastic Volatility Environment AMS
SMF Congress, Special Session on Mathematical Methods in
Financial Modeling, Avellaneda, M. , Cont, R. (Eds), 2001.

26



[Four97]

[Kara00]

[Krys03a]

[Krys03b]

[Lape03]

[Reiss97]

[Town98]

[Tuff00]

[Vill91]

[Vill97]

[Vill0O]

Fournie, E. and Lebuchoux, J. and Touzi,N. Small Noise

Expansion and Importance Sampling Asymptotics Analysis,
14(4), 1997, pp. 361-376.

Karatzas, 1. and Shreve, S. Brownian Motion and Stochastic
Calculus. Springer, 2000.

J. Krystul, A. Bagchi, H. Blom, Risk decomposition and as-
sessment methods, Report Hybridge WP8.1, May 2003.

J. Krystul, Weak approximation of first exit time, draft work
paper, 2003.

Lapeyre B., Pardoux E. and Sentis R., Introduction to Monte-
Carlo Methods for Transport and Diffusion Equations, Oxford
University Press, 2003.

Reiss, R. D. & Thomas, M. Statistical Analysis of Extreme
Values. Birkh&user, 1997.

Townsend, J. D. & Haraszti, Z. & Freebersyser, J. A. & De-
vetsikiotis, M. Simulation of Rare Events in Communications
Networks. in IEEE Communications Magazine, August 1998

Tuffin, B. & Trivedi, K. S.  Implementation of Impor-
tance Splitting Techniques in Stochastic Petri Net Package.
Computer Performance Evaluation Modelling Techniques and
Tools. Springer Verlag, Lecture Notes in Computer Science,
No 1786, B.R. Haverkort, H.C. Bohnenkamp, C.U. Smith, pp
216-229, 2000.

Villén-Altamirano, M. and Villén-Altamirano, J. RESTART:
A method for accelerating rare event simulations. In 13th
Int. Teletraffic Congress,ITC 13 (Queueing, Performance and
Control in ATM), Copenhagen, Denmark, 1991, pp. 71-76.

Villén-Altamirano, M. and Villén-Altamirano, J. RESTART:
An Efficient and General Method for Fast Simulation of Rare
Event. Technical Report 7, Departamento de Maetmatica Apli-
cada, E.U. Inform’atica, Universidad Politécnica de Madrid,
1997.

Villén-Altamirano, M. and Villén-Altamirano, J. (2000).
Analysis of RESTART Simulation: Theoretical Basis and Sen-
sitivity Study In 3th Workshop on Rare Event Simulation,
RESIM 2000, October 5-6, Pisa, Italy.

27



