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Abstract

A fundamental question in systems and control theory con-
cerns the characterization of the set of achievable closed-
loop systems for a given plant system and a controller sys-
tem to be designed. This problem, for example, shows up in
assessing the ’limits of performance’ of a controlled sys-
tem. Similar problems have been studied by researchers
in automata theory and discrete event systems replacing
the notion of closed-loop system by the composition of a
given system and its controller. In this paper this prob-
lem is addressed in a general behavioral context. Necessary
and often sufficient conditions for a behavior to be achiev-
able are given, and for any achievable behavior a canonical
controller is defined. These results generalize previously
obtained results obtained for finite-dimensional linear sys-
tems. Next these general results are applied to classes of
automata and hybrid systems.

1 Introduction

One can compactly express a plenitude of problems by con-
sidering the solution of equations of the form

�������	�

(1)

with
�

and



given, say continuous, discrete, or hybrid sys-
tems, in the unknown system

�
. This equation lies at the

heart of modularity; for analysis and design. Of course, in
order to make sense of this equation one has to make precise
the definition of system composition (

�
) and system equiva-

lence (
�	

).

Versions of this problem have been investigated (from dif-
ferent points of view) by researchers in many areas, includ-
ing automata theory, several process algebra formalisms and
control theory. For example, within systems and control
theory the fundamental question of the ’limits of perfor-
mance’ of a controlled system, and the parameterization of
H∞ controllers for a given plant system, can be regarded as
instances of this general problem, recognizing

�
as the plant

system,



as the desired (closed-loop) system behavior, and�
as the controller to be constructed.
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The general solvability of equation (1) has been addressed
and solved within a general behavioral framework in [10]
(see also [7, 4]) for finite-dimensional linear differential
systems. In this version of the general problem

���

and�

are all linear system behaviors (that is, the trajectories or
‘traces’ generated by the finite-dimensional linear system).
Furthermore, in this behavioral setting the system compo-
sition

�
denotes intersection of behaviors, while the system

equivalence
�	

is just equality of behaviors.

Very recently, the results of [10] have been extended and
generalized to general behavioral systems in [6]; obtaining
sufficient and often necessary conditions for solvability of
(1), and, in case of solvability, the construction of a con-
troller solving (1). In the current paper we will summarize
and extend the results of [6] in Section 2, and then apply
in Section 3 these results to the case when

���

and

�
are

(subclasses of) automata and hybrid systems.

2 General behavioral results

Consider a system
�

(the ‘plant’) with two types of exter-
nal variables, namely the variables z which can be inter-
connected to another system

�
(the ‘controller’) sharing the

same variables z, and remaining variables w which represent
the interaction (or communication) of the system with (the
rest of) its environment; see Figure 1.

Figure 1: Plant controller configuration

We consider
�

and
�

to be systems in a general behavioral
sense, that is, as a collection of allowable system trajecto-
ries. Formally, let W be a general set where the variables
w take value, and let Z be the set where the variables z take
value. Furthermore, let T be a general set denoting the time-
axis. (Note that although we primarily think of T as � or �
we do not impose any conditions on the set T .) The plant
system

�
is given as a collection of time-functions � w � z �



with
w : T � W

�

z : T � Z
� (2)

that is,
��� �W � Z � T . Note that we do not require the

spaces W and Z to be disjoint; indeed, some of the com-
ponents of w and z may coincide.

Similarly, the controller system
�

is given as a collection of
time-functions

z : T � Z (3)

that is,
���

ZT . The composition of
�

and
�

via the shared
variables z, denoted

� �
z
�

, is given by

� �
z
� 	��

w : T � W �	� z : T � Z such that � w � z ��
 �� z 
 ��
(4)

(Note that the shared variables z become hidden variables
in the composition.) A basic question in systems and con-
trol theory is to characterize the set of composed behaviors� �

z
�

that are achievable by selecting the controller system�
in an appropriate way. This can be regarded as a funda-

mental issue in characterizing the ‘limits of performance’ of
a given plant system

�
by considering all possible controller

systems
�

.

The following theorem has been recently derived in [6],
generalizing a result obtained for linear finite-dimensional
systems in [10]. Denote by πw � � � � W T the plant behavior
projected on W T , that is

πw � � � 	�� w : T � W ��� z : T � Z such that � w � z ��
 ���
(5)

Theorem 1 Let
��� �W � Z � T be a given plant system, and

let
���

ZT be a controller system to be designed. Let

��

W T be a desired behavior. Then there exists
�

such that� �
z
� 	 


if

(i)

��

πw � � �
(ii) The following implication holds: for any

� w � z � � � w̃ � z ��
 � whenever w̃ 
 
 then also w 
 
 .

Proof Define the controller system
�

can (called the canoni-
cal controller) in the following implicit way; see Figure 2.

Figure 2: Canonical controller
�

can

�
can :

	��
z : T � Z ��� w̃ : T � W such that � w̃ � z ��
 � and w̃ 
 
��

(6)

We prove that
� �

z
�

can
	 


; see Figure 3.� : Let w 
 
 . Because of � i ��� z : T � Z such that � w � z ��
 � .
Hence also z 
 � can (take w̃

	
w), and thus w 
 P

�
z
�

.�
: Let w 
 � � z � can. Thus � z : T � Z

�
w̃ : T � W such that

� w � z ��
 �� � w̃ � z ��
 � and w̃ 
 
 . By � ii � this implies that
w 
 
 . �

Figure 3: Composed behavior

Remark 2 Note that although the results of Theorem 1 are
formulated in terms of the behaviors

��� �W � Z � T � ���
ZT ��
�� W T , we did not really use the time-function struc-
ture of these sets. Indeed, all statements remain equally
valid if we replace �W � Z � T 	 W T � ZT � ZT � W T by general
sets ��� � � � � � , and consider

��� ��� � � � � � ��
�� � .

Remark 3 In some sense the action of the canonical con-
troller

�
can can be seen as ‘inverting’ the plant

�
and sub-

stituting the desired behavior



. Note however that we have
not split the variables z and w into input and output com-
ponents. Furthermore,

�
can is defined in an implicit way

(using the auxiliary variables w̃), and elimination of the
variables w̃ from

�
can will result in a controller of quite a

different form.

Remark 4 It immediately follows from the proof of Theo-
rem 1 that if



only satisfies condition � i � then still


�� � �
z�

can, while if



only satisfies condition � ii � then
� �

z
�

can
�



. The first case guarantees a kind of liveness property (the

composed system contains a desired behavior



), while in
the second case the composed system

� �
z
�

can satisfies at
least the ‘specifications’ given by



(see also [8]).

Remark 5 In [6] it has been shown how Theorem 1 gener-
alizes the result obtained for finite-dimensional linear sys-
tems in [10].

As discussed in [6] the conditions of Theorem 1 are often
close to be necessary as well. Indeed, let

� �
z
� 	 


for
some controller

�
. Then it immediately follows that for ev-

ery w 
 
 	 � � z � there exists z 
 � such that � w � z ��
 � ,
and hence w 
 πw � � � . Thus condition � i � is a necessary
condition as well.

Necessity of condition � ii � is more subtle. Let
� �

z
� 	 


.
Then for every w̃ 
 
 	 ��� z � there exists z !"
 � such that



� w̃ � z ! ��
 � . Let now � w � z ! ��
 � . Then also w 
 ��� z � 	 
 .
Hence condition � ii � is necessary for a non-empty subset of
z ! 
 ZT such that � w � z ! � � � w̃ � z ! ��
 � .

Complete necessity of condition � ii � is ensured if the plant�
satisfies the following additional ‘homogeneity’ property

HW (see [6]):

�
satisfies Property HW if: Let � w̃ � z � � � w � z ��
 � . Then if

� w̃ � z ! ��
 � also � w � z ! ��
 � .

Remark 6 A simple example where condition � ii � is not
necessary is given as follows. We consider the set-theoretic
setting of Remark 2, with � 	��

w1
�
w2
�

(two elements), and
� 	 � z1

�
z2
�

(again two elements). Let the plant system be
given as

� 	 � � w1
�
z1 � � � w2

�
z1 � � � w2

�
z2 � � and the desired

behavior as

 	 �

w2
�
. Then clearly condition � ii � is not

satisfied (since � w1
�
z1 � � � w2

�
z1 � 
 �� w2 
 
 does not im-

ply w1 
 
 ). However, the controller
�

:
	��

z2
�

is such that� �
z
� 	 


. Note that
�

does not satisfy Property HW .

Furthermore, it is clear that the canonical controller
�

can

does not do the required job, since it is given as
�

can
	

�
z1
�
z2
�
.1

In general, if there exists a controller system
�

such that
� �

z� 	 

then there can be many different controller systems

� !
also yielding

� �
z
� ! 	 
 . Among all these controllers the

canonical controller
�

can has the property of being the least
restrictive controller (see [6]):

Proposition 7 Consider the controller system
�

can such
that

� � �
can
	 


. Let
�

be another controller such that� �
z
� 	 


. Then for every z 
 � with � w � z � 
 � , also
z 
 � can.

The canonical controllers
�

can :
	 � �

w



, with



any system,
are ‘universal’ in the following sense. Let

�
be any con-

troller, and denote



:
	 � �

z
�

. Then define
�

can :
	 � �

w



.
If
�

satisfies the ’dual’ homogeneity Property HZ :

�
satisfies Property HZ if: Let � w � z̃ � � � w � z ��
 � . Then if

� w ! � z̃ ��
 � also � w ! � z ��
 � ,

then it follows that

� �
z
�

can
	 


Indeed, let w 
 
 . Then � z 
 � can with � w � z � 
 � . Therefore
w 
 ��� z � can (see Figure 4). Conversely, let w 
 � � z � can.
Then there exist z

�
w̃ and z̃ such that � w � z � 
 �� � w̃ � z � 
�� � w̃ � z̃ � 
 �� z̃ 
 � ; see Figure 5. Since

�
satisfies Property

HZ , it follows that also � w � z̃ � 
 � , and hence w 
 � � z � 	 
 .

1We thank Jan C. Willems for a useful discussion on this issue.

Figure 4:
���

z
�

can
� 


Figure 5:
���

z
�

can
� 


For more properties of the canonical controller
�

can we refer
to [6].

¿From an implementation point of view a basic problem that
remains in the construction of the canonical controllers con-
cerns the presence of the auxiliary variables w̃. Indeed, we
would like to have an algorithmic procedure for eliminat-
ing these latent variables, and so to obtain an equivalent ex-
plicit controller. For the linear time-invariant case this can
be easily done (see [6]), and extensions of this procedure to
nonlinear systems are sketched in [6].

We conclude this section by giving the following extension
of Theorem 1 where the controller system

�
is allowed to

have additional external variables v : T � V .

Figure 6: Plant-controller interconnection described in Theorem
8

Theorem 8 Let
��� �W � Z � T be a given plant system, and

let
� � � Z � V � T be a controller system to be designed, with

additional external variables v 
 V, see Figure 6. Let

��

�W � V � T be a desired behavior. Then there exists
�

such
that

� �
z
� 	 


if

(i) πw

��

πw � � �
(ii) The following implication holds: for any

� w � z � � � w̃ � z � 
 � whenever � w̃ � v ��
 
 then also
� w � v ��
 
 .

Proof Define the canonical controller system
�

can as



�
can :

	��
z : T � Z

�
v : T � V ��� w̃ : T � W

such that � w̃ � z ��
 � and � w̃ � v ��
 
�� (7)

In the same way as in the proof of Theorem 1 it is shown
that

���
z
�

can
	 


. �

3 Discrete-event and hybrid systems

In this section we provide a preliminary discussion of ap-
plications of the general results described in Section 2 to
automata and hybrid systems.

Most straightforward application of the results of Section
2 are to discrete-event systems or automata represented in
a purely “behavioral” form, that is as languages. Indeed,
let us define an event set E :

	
W � Z, and consider plant

systems
�

to be given as a language over E, that is

���
E
�

(8)

with E
�

denoting as usual the set of all finite strings of el-
ements of E. Similarly, we consider the desired behavior


to be a language over W , that is

��

W
�
, and the to be

constructed controller
�

to be a language over Z, that is,� �
Z
�
. Then we immediately obtain the following version

of Theorem 1:

Proposition 9 Let
��� �W � Z � � be a given plant system,

and let
� �

Z
�

be a controller system to be designed. Let
 �
W
�

be a desired behavior. Then there exists
�

such that� �
z
� 	 


if

(i)

��

πw � � �
(ii) The following implication holds: for any

� w � z � � � w̃ � z ��
 � whenever w̃ 
 
 then also w 
 
 .

Remark 10 The only technical difference with Theorem 1
is that the time axis T is not the same for all strings (al-
though we could fix this by letting T

	��
and by adding an

extra “sink” state). In view of Remark 2 this however does
not pose a problem.

Remark 11 The conditions of Proposition 9 can be com-
pared to the solution of the supervisory control problem
in the case of partial event observation, as derived in the
framework developed by Wonham and Ramadge; see e.g.
the exposition of the Controllability and Observability The-
orem in [1]. In order to do so one may associate with the
shared variables z the events that are both controllable and
observable. Then condition � i � can be interpreted as a con-
trollability condition on the required language



, and con-

dition � ii � as an observability condition.

1 2 3 N. . .
1

2

3

. . .

M
up

down

rightleft

Figure 7: The lattice in Example 12. Remarks : black circle =
car, white circle = road sign.

Example 12 Consider the following situation. A dot is
moving on a lattice of N by M points, as illustrated in Fig-
ure 7. We can think of the nodes of the lattice as the states
of an automaton, with the initial state at, say, the lower
left corner. Each state can be naturally named as a pair
� i � j � , with 1 � i � N,1 � j � M. Let the set W consist
of 2 � � N � 1 � � � M � 1 � transitions associated with move-
ment on the � N � 1 � � � M � 1 � vertices in the lattice, and let
Z
	 �

up
�
down

�
le f t

�
right

���
It is obvious that every transi-

tion in this automaton can be naturally described as a pair
� w � z � 
 W � Z

�
Imagine the lattice as, for example a street

map of a city and the dot as a car. The vertices are then
streets. The events in Z are the transitions at the disposal of
the car driver.

Referring to Proposition 9, we associate πw � � � with the
language generated by the automaton. Using the car navi-
gation interpretation, we can say that πw � � � represents all
continuous trajectory originating from the initial state. We
also observe that each w 
 πw � � � is paired with exactly one
z 
 Z

�
such that � w � z � 
 ��� Hence, the second condition

given in the proposition is always satisfied. The proposition
then implies that if a specification



consists of elements

of the language generated by the automaton (or continuous
car trajectories), we can find a controller (or a driver)

�
that realizes it. This implication is trivial.

The most important limitation of Proposition 9 is that the
events in W and Z are assumed to be synchronized; indeed
they appear in pairs � w � z ��
 E.

Consider on the other hand an automaton A, whose set of
events E

	
W � Z

�
One somewhat artificial way of treating

this case is to force W and Z to synchronize in the following
way. Introduce the extended sets of events

Ez :
	

Z � � τ � �
Ew :

	
W � � τ � �



and the mappings Fz : E � Ez and Fw : E � Ew

Fz � a � 	�� a
�

a 
 Z
τ
�

otherwise
�

Fw � a � 	�� a
�

a 
 W
τ
�

otherwise
�

The symbol τ denotes the silent event.

Let � be the language generated by the automaton A. De-
note each element of � as � a1

�
a2
�
a3
������� ��
 E

�
. We now

define the behavior of the synchronized plant system
�

as
the collection of all traces � � w1

�
z1 � � � w2

�
z2 � ������� �


 � Ew � Ez � � such that � wi
�
zi � 	 � Fw � ai � � Fz � ai � � � i 
�� for

some � a1
�
a2
������� ��
�� .

Notice that we need to introduce the silent action τ in order
to have the forced synchronization between W and Z

�

The case where W and Z are not synchronized is somehow
analogous to the case where not all variables are observ-
able from the variables used for interconnection in linear
behaviors. For example, in the case of full synchronization
between W and Z, it is possible to achieve the null behav-
ior (the one that contains no traces at all) as a specification
by interconnecting the plant with a null behavior as a con-
troller. In the non-synchronized case, this is not necessarily
true. For linear behaviors, the null behavior is achieved by
using the null controller (the one that contains only the zero
trajectory), if and only if all variables are observable from
the interconnection variables.

Example 13 (continued) Refer to our car navigation ex-
ample. If we assume that instead of driving the car, we
control its trajectory by using several traffic lights/road
signs on the lattice, a different approach should be taken.
Suppose that on every state � i � j � where i and j are both
even, there is a road sign we can control. We refer to
these states as the even-even states. Hence, the command�

up
�
down

�
le f t

�
right

�
can only be given if the car is in an

even-even state, and Z is the set of transitions originating
from the even-even states. It is clear that we do not have
full synchronization between W and Z anymore. It is fairly
easy to see that it is not possible to reject the trajectory go-
ing straight from � 1 � 1 � to � N � 1 � , even if the most restrictive
controller (the null behavior) is used.

Indeed, we can easily observe that any z 
 E
�
z can be paired

with more than one w 
 E
�
w. We can associate this situation

with non-observability of the whole behavior from Z.

The notion of observability for linear behaviors has been
treated, for example in [3, 9]. However, the extension of
this notion to behaviors related to discrete automata is not
trivial. Recall that in linear behaviors, partitioning of in-
formation flow (i.e. the information that can be extracted
from or fed to a behavior) is done based on partitioning of

variables. This is not the case in discrete automata, where
partitioning of events is done instead. We argue that flow
of information is intimately related to the concept of con-
trollability and observability, as controlling a behavior can
be associated with feeding information to it and observing
with extracting information from it. We suggest developing
more general notions of controllability and observability in
the behavioral framework as a potentially fruitful course for
further research.

Another venue to the extension of Proposition 9 to the
non-synchronized case is to replace the equality sign in� �

z
� 	 


by an equivalence relation such as (weak) bisim-
ulation ([2]). This will necessitate to extend the behavioral
approach taken in this paper to non-deterministic automata,
which are not completely specified by their generated lan-
guages. We leave this as a topic for future research.

The extension of Proposition 9 to hybrid behaviors, as de-
fined in [5], is again straightforward. In this context the time
axis T is taken to be � (for the continuous-time behavior),
punctuated by a discrete set � of times at which the events
take place. (For simplicity of exposition we assume that
there are no multiple events; see otherwise [5].) Let us now
define signal spaces Wc and Zc for the continuous variables
wc and zc, and signal spaces Wd and Zd for the discrete vari-
ables wd and zd . The behavior of a plant system

�
is then

defined by a quadruple � wc
�
wd
�
zc
�
zd � with

wc : � � Wczc : � � Zcwd : ��� Wdzd : � � Zd
�

(Again this implies that the events in Wd and Zd are syn-
chronized.)

Similarly, the desired behavior



is defined by pairs � wc
�
wd �

and the controller system
�

by pairs � zc
�
zd � . The analogon

of Proposition 9 reads (in self-explanatory notation) as

Proposition 14 Let
�

be a given plant system, and let
�

be a controller system to be designed. Let



be a desired
behavior. Then there exists

�
such that

� �
z
� 	 


if

(i)

 �

π 	 wc 
wd � � � �
(ii) The following implication holds: for any

� wc
�
wd
�
zc
�
zd � � � w̃c

�
w̃d
�
zc
�
zd � 
 �

whenever
� w̃c
�
w̃d ��
 
 then also � wc

�
wd ��
 
 .

4 Open problems

This paper exhibits some results in the application and ex-
tension of the general behavioral results, as discussed in
Section 2, to discrete-event and hybrid systems. However,
there are still some issues left untreated, which are them-
selves challenging.

From the implementation point of view, we identify two
issues to be treated further. First, we recognize that not



every controller behavior, which is created as a collection
of trajectories, is suited for implementation. Some struc-
tures need to be imposed, for example linearity and time-
invariance if we are interested in realization by differential
systems. Second, even if we obtain an implementable con-
troller, there is no guarantee that the interconnection can be
done properly. Other authors have addressed this issue, for
example Willems in [9] introduced the notion of regularity
of interconnections of linear behaviors.

From the general behavior theoretical point of view, there
are also things to be done. Many of the concepts and the-
ory in the arsenal of tools of behavior theory were devel-
oped for linear behaviors. We may need to generalize and
extend the existing tools to be able to handle general behav-
iors. General behavioral approach undoubtedly will overlap
with the existing bodies of theory concerning the systems
in consideration. To find and expose the relation between
these more classical theories and the behavioral approach,
as it has been done in linear systems, is an appealing re-
search problem. In particular, we consider translating the
conditions of Theorem 1 to a process-algebraic setting as
one topic that matches this idea.
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