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Abstract

Deliverable D1.2 of WP1 of the HYBRIDGE project presents a study of a mod-
elling framework for stochastic hybrid processes which allows one to capture the
interaction of discrete dynamics, continuous dynamics and uncertainty in the con-
tinuous evolution, discrete transition times and discrete transition destinations. The
report provides a comparative study of three classes of stochastic hybrid processes
that have been proposed in the literature. This overview is followed by a discussion
of how these classes of stochastic hybrid processes can be used to model the dif-
ferent safety critical air traffic management situations identified in deliverable D1.1
of WP1 of HYBRIDGE. The possibility of using system identification methods to
tune the models developed for these safety critical situations is also discussed and
the difficulties that this approach presents are highlighted.
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1 Objectives

Task 1.2 of WP1 of the HYBRIDGE project aims to establish a framework for developing
formal mathematical models of the safety critical ATM situations identified in Task 1.1
of WP1 (documented in deliverable D1.1 [1]). We recall the statement of Task 1.2 from
the Technical Annex of the HYBRIDGE contract.

“Develop a modelling framework for stochastic hybrid systems. The frame-
work will allow one to capture the interaction of discrete and continuous dy-
namics and uncertainty, in the continuous evolution, discrete transition times
and discrete transition destinations. The model development will focus on the
distributed nature of air traffic management.”

Deliverable D1.2 aims to address these issues. The contribution of D1.2 to the HY-
BRIDGE project consists of two parts.

1. A comparative study of the classes of Stochastic Hybrid Processes (SHP) that have
been studied in the literature: Piecewise Deterministic Markov Processes (PDMP),
Switching Diffusion Processes (SDP), Stochastic Hybrid Systems (SHS) (Section 2).

2. A connection between these classes of SHP and the safety critical ATM situations
identified in deliverable D1.1 (Section 3).

The report concludes that different classes of SHP are appropriate for the different safety
critical situations. The desired properties of a more general class of SHP that would
allow one to capture all safety critical situations in a single framework is presented in
Section 2.6.

To ensure that the models developed for the different safety critical situations are realistic
one needs to tune various model parameters to match data from the real system. Sys-
tematic methods for doing this have been developed in the control literature under the
area of system identification. In Section 4 we investigate the possibility of using system
identification methods to tune our models. We conclude that this approach may not be
viable within the HYBRIDGE project due to

1. The unavailability of data.

2. The wide range of time scales involved.

An alternative approach for tuning our models based on existing studies of flight plan
deviations and simulation is proposed.



2 Classification of Stochastic Hybrid Processes

We start by providing a review of three classes of SHP that have been studied in the
literature. We also provide a comparison of their descriptive power. Two types of discrete
transitions appear throughout the discussion. The first occurs at the boundaries of the
state space, where continuous evolution becomes impossible. We refer to this class of
discrete transitions as forced transitions. The second class are transitions that can take
place in the interior of the state space and their occurrence is governed by a “rate” (as in
continuous time Markov chains for example). We refer to this class of discrete transitions
as spontaneous transitions.

Throughout this section P(Y) denotes the set of probability measures on a Polish space Y
equipped with the topology of weak convergence. In other words, a sequence p, € P(Y)
converges to € P(Y) in the weak topology if and only if 4, (f) — u(f) for all continuous
and bounded f : Y — R, where

u(f) = /Y F (@)l

B(Y') denotes the Borel o-algebra of Y.

2.1 Piecewise Deterministic Markov Processes

PDMP were introduced by M.H.A. Davis in [2, 3]. They are a class of non-linear
continuous-time SHP which covers a wide range of non-diffusion phenomena. PDMP
involve a hybrid state space, with both continuous and discrete states. The peculiarity
of this model is that randomness appears only in the discrete transitions; between two
consecutive transitions the continuous state evolves according to a nonlinear ordinary dif-
ferential equation (hence the name “piecewise deterministic”). Transitions occur either
when the state hits the state space boundary (forced transitions), or in the interior of
the state space, according to a state dependent rate (spontaneous transitions). Whenever
a transition occurs, the hybrid state is reset instantaneously according to a probability
distribution which depends on the value taken by the hybrid state before the transition.

We introduce formally PDMP following the notation of [4, 5|. Let @ be a countable set
of discrete states, and let d : @ — N and X : Q — R¥) be two maps assigning to each
discrete state ¢ € @ an open subset of R*%). We denote by D(Q,d, X) the hybrid state
space of the PDMP i.e.

D(Q, d, X) = Uscofi} x X(i)

and by a = (i,z) € D(Q, d, X) the hybrid state. The boundary of the hybrid state space
is denoted by 0D(Q, d, X).



A vector field f on the hybrid state space D(Q, d, X) is a function f : D(Q,d, X) — R
assigning to each hybrid state a = (4,7) € D(Q,d, X) a direction f(a) € R*®. The flow
of f is a function ® : D(Q,d, X) x R — D(Q, d, X) with

(o t) = { iigg } ,

Pp(a,t) € Q and Px(a,t) € X(4), such that for a = (4,2), ®(a,0) = o and for all t € R,
(e, t) = i and L&y (a,t) = f(P(a,t)). Let I'((Q,d,X), f) be the set of boundary
points which can be reached at some time ¢ > 0 by evolving according to the flow ®
starting from a hybrid state a € D(Q, d, X),

Ir'(Q,d, X), f) = {(i,x) € 9D(Q,d, X)|x = ®x(a,t) for some a € {i} xX (i) and some ¢ > 0}
and D(Q,d, X) = D(Q,d, X) UT((Q,d, X), f). Consider also a Borel o-algebra B(D) on
D(Q,d, X) defined as in [4].

Definition 1 (Piecewise Deterministic Markov Process) A Piecewise Determinis-
tic Markov Process is a collection H = ((Q,d, X), f, Init, A\, R) where
e () is a countable set of discrete variables representing the discrete state space;

e d:(Q — N is amap giving the dimension of the continuous state space within each
discrete state;

X :Q — R maps each i € Q into an open subset X (i) of R4®;

f:D(Q,d, X) — R¥) is a vector field defined on the hybrid state space D(Q, d, X ) =
UiGQ{(ivw) S X(Z)};

Init : B(D) — [0,1] is an initial probability measure on (D, B(D)), with Init(D°) —
0;

e \:D(Q,d,X) — R is a transition rate function;
e R:B(D) xD(Q,d, X) — [0,1] is a transition measure, with R(D,.) = 0.

To ensure that the execution of a PDMP is a well defined stochastic process, the following
assumption is introduced.

Assumption 1 For all i € Q, f(i,.) is globally Lipschitz continuous. X : D(Q,d, X) —
Rt is measurable. For all o € D there exists € > 0 such that the function t — \(®(a, t))
is integrable for all t € [0,¢). For all A € B(D), R(A,") is measurable.



Algorithm 1 (Generation a PDMP realization)
set 7 — 0

extract at random from D a value & for the random variable a.,
according to Init
repeat
extract at random from R* a value 7' for the random variable T
such that P(T > t) = F(a,t)
set oy — ®(&,t —7) forall t € [r,7+T)
extract at random from D a value & for the random variable v, 5
according to R(., ®(a,T))
set 7=7+7T and &= &
until true

Table 1: Generation of PDMP Executions

To define the realization of a PDMP execution we introduce the notion of exit time
t*: D — RTU{o0}
t*(a) = inf{t > 0: ®(a,t) ¢ D}

(t*(a) = oo if the set if empty) and of survivor function F': D x Rt — [0, 1]
exp (- [EA(®(a T))dT) it < t*(a)
F(a,t) = 0 ’
0 it t > t*(«).

A realization of the PDMP execution is described by the algorithm in Table 1. All random
extractions in the algorithm are assumed to be independent of one another.

To ensure that the PDMP execution «; is defined on the entire R" it is necessary to
exclude Zeno realizations (see [5]). The following assumption is introduced in [2, 3] to
exclude Zeno behavior, at least in average.

Assumption 2 Let N; be the number of jumps in (0,t]. Then E[N] < oo for all t.

Under Assumptions 1 and 2, the following fact is established in [2, 3].
Theorem 1 Algorithm 1 generates realizations of a strong Markov process.

|2, 3| then proceed to characterize the extended generator of this process and based on it
derive formulas for computing expectations, solving optimal control problems, etc. (see
Section 2.5).
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2.2 Switching Diffusion Processes

SDP are a class of non-linear continuous-time SHP that have been used to model a number
of applications such as fault tolerant control systems, multiple target tracking, flexible
manufacturing systems, etc. SDP involve a hybrid state space, with both continuous
and discrete states. The continuous state evolves according to a Stochastic Differential
Equation (SDE), while the discrete state is a Markov chain (spontaneous transitions).
Both the dynamics of the SDE and the transition matrix of the Markov chain depend on
the hybrid state. The characteristic feature of SDP is that the continuous hybrid state
evolves without jumps, i.e. the evolution of the continuous state can be assumed to be a
continuous function of time.

We formally introduce SDP following [6, 7, §].

Definition 2 (Switching Diffusion Process) A Switching Diffusion Process is a col-
lection H = (Q, X, f, Init, o, \) where

e () is a fimite set with cardinality N € N representing the discrete state space;

e X = R" is the continuous state space;

f:Q xX — R"” is a vector field;

Init : B(Q x X) — [0,1] is an initial probability measure on (Q x X, B(Q x X));

o:0Q x X — R™" 45 a state dependent matriz;
o \ii: X =R, i,j€Q are a set of x-dependent transition rates, with X\i;(.) > 0 if
i Jand Yo Nii(x) =0 foralli€ Q, x € X.

As for PDMP we will use a = (¢, ) € @ x X to denote the hybrid state of a SDP. To
ensure the SDP model is well defined [6, 7, 8] introduce the following assumption.

Assumption 3 For all i € Q the functions f(i,-), ok;(i,-) and Agi(-) are bounded and
Lipschitz continuous.

To determine a solution of an SDP one starts by extracting a random initial condition
(1,20) € Q@ xX according to Init. The evolution of the continuous state is then determined
by the SDE corresponding to discrete state ¢

dz(t) = f(i,z(t))dt + o (i, x(t))dW,,

starting at z(0) = xq, where W, is a n-dimensional standard Wiener process. The discrete
transitions are similar to those of a Markov chain and given by

Pq(t+6t) =j | q(t) = i,2(s),q(s),s < t) = lambda;;(x(t))ot + o(dt),i # j.

11



after a discrete transition occurs continuous evolution resumes, according to the SDE
corresponding to the new discrete state. Notice that only spontaneous transitions are al-
lowed and the rates depend on the continuous state. Notice also that the continuous state
remains constant during a discrete transition, therefore the evolution of the continuous
state will be continuous in time.

6, 7, 8] formalize the evolution of the discrete state by means of an auxiliary SDE driven
by the Poisson random measure. Assumption 3 then ensures that for any initial condition,
a strong solution of the SDP exists and is unique (see, for example, Theorem 6.2.2 in [9]).
This allows the authors of [6, 7, 8] to determine the generator of the resulting Markov
process and use it to solve optimal control problems (see Section 2.5).

2.3 Stochastic Hybrid Systems

SHS introduced in [10] are another class of non-linear, continuous-time SHP. SHS also in-
volve a hybrid state space, with both continuous and discrete states. The continuous state
evolves according to a SDE that depends on the discrete state. Transitions occur when
the continuous state hits the boundary of the state space (forced transitions). Whenever
a transition occurs the hybrid state is reset instantaneously to a new value. The value of
the discrete state after the transition is deterministically given by the hybrid state before
the transition. The new value of the continuous state, on the other hand, is governed by
a probability law which depends on the last hybrid state.

Definition 3 (Stochastic Hybrid System) A Stochastic Hybrid System is a collection
H = (Q, X, Dom, [, g, Init, G, R) where

e () is a countable set representing the discrete state space;

X =R" 1s the continuous state space;

Dom : Q — 2% assigns to each i € Q an open subset of X ;

frg:Q x X — R"™ are vector fields;

Init : B(Q x X) — [0,1] is an initial probability measure on (Q x X, B(Q x X))
concentrated on Useq{i} x Dom(i);

G:Q xQ — 2% assigns to each (i,5) € Q X Q a guard G(i,7) C X such that

— For each (i,j) € Q x Q, G(i,7) is a measurable subset of 0Dom(i) (possibly
emply);
— For eachi € Q, the family {G(i,7) | j € Q} is a disjoint partition of ODom(i);

12



e R:Q xQxX — P(X) assigns to each (i,7) € Q@ x Q and x € G(i,]) a reset
probability kernel on X concentrated on Dom(j).

We again use a = (¢, x) to denote the hybrid state of an SHS. To ensure that the model
is well defined the following assumption is introduced in [10].

Assumption 4 For all i € Q the functions f(i,-) and g(i,-) are bounded and Lipschitz
continuous. For all i,j € Q and for any measurable set A C Dom(j), R(i,j,z)(A) is a
measurable function in x.

The first part of Assumption 4 ensures that for any ¢ € @, the solution of the SDE
da(t) = f(i,x(t))dt + g(i, 2(2))dW,

where W; is a 1-dimensional standard Wiener process, exists and is unique (see Theo-
rem 6.2.2 in [9]). Moreover, the assumption on R ensures that “transition” events are
measurable with respect to the underlying o-field, hence their probabilities make sense.

Definition 4 (SHS Execution) A stochastic process oy = (q(t),z(t)) is called a SHS
execution if there exists a sequence of stopping times To = 0 < Ty < Ty < ... such that
for each j € N,

e (0) = (¢(0),z(0)) is a Q x X-valued random variable with distribution Init;

o Lorte [T;,T;11), q(t) = q(T}) is constant and x(t) is a (continuous) solution of the
SDE:
da(t) = f(q(T5), z(t))dt + g(q(T3), x(t))dW,

starting at z(T5), where Wy is a 1-dimensional standard Wiener process;

Tjpq = inf {t > Tj|z(t) £Dom(q(T}))};

limy,,, 2() € G(q(T5), ¢(T311)) € 9Dom(q(T5));

2(Tj41) is a random variable distributed according to R (¢(Ty), ¢(Tj1), limyr,,, z(t))).

In [10] it is shown that if such an execution exists, then under Assumption 4, {ar, } defines
a Markov process. Existence and uniqueness conditions for executions (in fact for a more

general class of stochastic hybrid processes) are currently under investigation within WP2
of HYBRIDGE.
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2.4 Comparison of Descriptive Power

Randomness enters in different places for the three classes of SHP discussed above. In
this section we highlight the similarities and differences between these classes. We do this
by developing subclasses of each class that can be reduced to one another (in a sense,
establishing the common elements of the classes).

It is simple to check that the only stochastic processes that can be executions of all
three models (PDMP, SDPand SHS) can be trivially represented by a family of nonlinear
Ordinary Differential Equation (ODE) on R", parametrized by a discrete state ¢ € @
and random initial conditions (both for the discrete and the continuous state). Pairwise
comparisons, however, provide some more insight into the differences in descriptive power
between the three classes of model. To formalize the pairwise comparisons we introduce
the concept of modification.

Definition 5 (Modification) Given two stochastic processes oy and &y defined on the
same underlying probability space (Q, F, P), we say that oy is a modification By if P(a; =
Gy) =1 forall t.

Our aim will be to establish subclasses of PDMP, SDP and SHS that coincide in the sense
of modification.

2.4.1 A comparison between PDMP and SDP

We first investigate the relationship between PDMP and SDP. We establish a subclass of
PDMP that are equivalent to some SDP. To do this it is necessary to impose restrictions on
the PDMP considered. First, it is necessary to assume that the number of discrete states of
the PDMP is finite, since this is the case for all SDP. Second, it is necessary to assume for
all discrete states i of the PDMP, X (i) = R™ (i.e. continuous evolution is unconstrained).
This is because SDP only allow spontaneous transitions. Finally, since the evolution of
the continuous state of an SDP can be assumed to be continuous as a function of time, it
is necessary to impose some restrictions on the PDMP transition measure (roughly, that
is leaves the continuous state unaffected). These qualitative remarks are formalized in
the following lemma.

Lemma 1 (PDMP — SDP) Consider a PDMP, HYPMP — ((Q,d, X), f, Init, \, R),
satisfying Assumptions 1 and 2. Assume further that

1. 1Q| = N e N;

2. X(1) = R Vi€ Q;

14



3. There exists finite n such that d(i) <n for alli € Q;
4. Foranyie @,z €R", R({(j,»),j € Q},(4,x)) = L.

Then there exists a SDP, H3PY | which is a modification of HPPMP

Condition 4 effectively implies that the evolution of the continuous state of HPPMF ig
continuous as a function of time. Condition 2 implies that the PDMP exhibits no forced
transitions; it can be weakened to t*(a) = oo, Va € D. 1t is easy to see that for a given
HPPMP there is in fact a whole family of SDP which are modifications of HTPMP (for

HSDP

details see [4]). The proof of Lemma 1 is constructive; the constructed in the proof

can be considered as a canonical SDP representative of HPMP,

Conversely, to establish a class of SDP which are equivalent to some PDMP, we need to
impose some restrictions on the SDP considered. First, we need to eliminate the diffusion
element of the SDP, and assume that continuous motion is deterministic (since PDMP are
deterministic processes between two consecutive jumps). Moreover, a relation between
the SDP transition matrix [A\;;] and the PDMP transition rate and transition measure has
to be established. The following lemma can be seen as a converse of Lemma, 1.

Lemma 2 (SDP — PDMP) Consider a SDP, HPY = (Q, X, f, Init, o, \;;) satisfying
Assumption 3. Suppose that o(i,z) = 0 for all (i,z) € @x X. Then, there exists a PDMP,
HPPME “which is a modification of HSPT.
Lemmas 1 and 2 together indicate that the common model for SDP and PDMP is a SHP
with deterministic continuous evolution between two consecutive jumps (as in PDMP)
and with discrete state transitions governed by a transition rate depending on the hybrid
state. Finally, the continuous state remains constant during discrete transitions (as in
SDP).

2.4.2 A comparison between SHS and SDP

To find a class of SHS that are modifications of some SDP, it is necessary to assume that
the number of discrete states of the SHS is finite, since this is the case for all SDP. It is also
necessary to assume that Dom(i) = R, since SDPdo not allow forced transitions. This
in particular implies that the guards G of the SHS have to be empty and that the reset
relation R of the SHS is never exercised. These remarks are formalized in the following
lemma.

Lemma 3 (SHS — SDP) Consider a SHS, H5%° = (Q, X, Inv, f, g, Init, G, R) satis-
fying Assumption 4. Assume that the cardinality of the set Q is finite, Dom(i) = X, for
alli € Q, and for all pairs i,j € Q, G(i,7) = 0. Then, there exists a SDP, H5PY which

is a modification of HSHS.

15



HSDP HSHS

Again, in the class

of SDP.

can be considered as a canonical SDP representative of

To reduce a SDP to a SHS, we have to assume that the diffusion process for the SDP is
governed by a standard 1-dimensional Wiener process (which is the case for all SHS). We
also have to impose no jumps governed by transition rate A;; since this kind of jumps is
absent in SHS. The following lemma can be seen as a converse of Lemma 3.

Lemma 4 (SDP—SHS) Consider a SDP, H%PY = (Q, X, f, Init, o, \) satisfying As-
sumption 3. Assume that the rank of the matriz [o (i, z)] is at most 1 for all (i,x) € @ x X
and that N\ij(x) =0 for alli,5 € Q, x € X. Then, there exists a SHS, H5"5 which is a
modification of HSPP.

Lemmas 3 and 4 indicate that the common model between SHS and SDP is a finite family
of SDE (parametrized by ¢) driven by a 1-dimensional Wiener process. The particular
SDE and its initial condition are determined according to a probability distribution and
no discrete transitions are permitted from then on.

2.4.3 A comparison between SHS and PDMP

To establish equivalent subclasses of SHS and PDMP in the sense of modification, some
assumptions are needed. First, we have to eliminate the diffusion component of the SHS,
since PDMP are deterministic processes between two consecutive jumps. We have to
assume that the dimension of the continuous state space (which for PDMP is allowed to
depend on the discrete state) is bounded. We also have to eliminate jumps governed by
the transition rate A (since this kind of jumps are not allowed in the SHS) and establish
a relation between the transition measures of SHS and PDMP. These qualitative remarks
are formalized in Lemmas 5 and 6.

Lemma 5 (SHS — PDMP) Consider a SHS, H%?5 = (Q, X, Dom, f, g, Init, G, R),
satisfying Assumption 4. Assume that g(i,z) = 0, for all (i,z) € Q@ x X. Then, there
exists a PDMP HPPMP which is a modification H5H5.

Lemma 6 (PDMP—SHS] Consider a PDMP, HPPMP — ((Q,d, X), f, Init, \, R) satis-
fying Assumptions 1 and 2. Assume further that

1. There exists n € N such that d(i) <n for alli € Q;
2. XNi,xz) =0 for all (i,z) € D(Q,d, X);

3. For all i,j € Q the set G(i,7) = {x € 0X () : R({j} x X(j),(i,x)) # 0} is
measurable.

16



CHARACTERISTICS PDMP | SHS | SDP

Stochastic continuous

evolution
Forced

transitions

Spontaneous

transitions

Continuous

Vv Vv

state reset

Table 2: Overview of SHP models

Then, there exists a SHS, H5HS which is a modification of HYPMT,

Lemmas 5 and 6 suggest that the common model between SHS and PDMP is a SHP where
continuous evolution between two consecutive jumps is deterministic (as in PDMP) and
where switchings between two discrete states occur only when the continuous state hits
the hybrid state space boundary. Whenever a switching occurs, the hybrid state jumps
according to a probability law depending on the last hybrid state.

2.4.4 Summary

The comparison of the descriptive power of the three classes of SHP considered here is
summarized in Table 2. The following differences in the technical details are omitted from
the table:

e Countable vs. finite discrete states.

e Dependence of the dimension of the continuous state on the discrete state.

e One-dimensional vs. higher dimensional Weiner processes driving the diffusions..

The changes needed to extend models lacking some of these features are fairly minor.

2.5 Systems with Inputs

All the models discussed above are autonomous, i.e. have no inputs, or outputs and no
explicit dependence of the dynamics on time. To address distributed nature of Air Traffic
Management (ATM) one needs to be able to compose models of subsystems to form larger
models. Hence, input/output models are needed. The discussion in Section 3 already

17



points out some things that would be simpler to model if composition of subsystems is
possible. Composition operations are expected to become even more important when
dealing with distributed conflict detection and resolution (WP6) and with human error
evolution control (WPT).

To date there does not appear to be a general theory that allows one to compose stochastic
hybrid systems. The only results in this direction appear to come from theoretical com-
puter science and deal primarily with discrete state (often also discrete time) stochastic
systems [11, 12]. Composition operations and parallelism for stochastic systems appear
to be better studied in the framework of Petri Nets; see for example the work on Dynam-
ically Coloured Petri Nets of [13]. WP4 of HYBRIDGE will address these problems in an
automaton framework for the class of PDMP.

For two of the classes discussed above the first step towards composition, i.e. the intro-
duction of inputs has been taken. In both cases, the objective was not composition, but
optimal control. Since optimal control is likely to play a prominent role in addressing
reachability questions we will review some of the discussion here.

2.5.1 Controlled PDMP

The following overview will cover only the so called “continuous control” of PDMP, where
control acts on f, A and R. For a full treatment of the subject, as well as a discussion of
control by intervention we refer to [3] (Chapters 4 and 5 respectively) [14, 15, 16].

The state space of a controlled PDMP is D = D*U{A}, where D* = {z € R" : ¥(z) < 0}
for some W € CY(R") such that [|[V¥(z)|| > 1 on §D* = {z € R": ¥(z) = 0} and A is
the compactification point of R®. Note that D* is not necessarily bounded or connected.
We denote by D the set () x R™ and by Uy and Ur the control sets.

A controlled PDMP is a collection H = ((Q,d, X), Uy, Ur, f, Init, \, R) where Q, d, X are
defined as in Section 2.1, Uy and Ur are the control sets and

e Init: B(D) — [0,1] is an initial probability measure on (D, B(D)), with Init(D°) =
0;

e \:D* x Uy — R is a transition rate function;

A~

o R:B(D) xD* x Uy — [0,1] is a transition measure, with R(D<,.,.) = 0;

A~

e 1Ry : B(D) x dD* x Ur — [0, 1] is a transition measure, with R(D*,.,.) = 0.

To ensure the model is well defined a number of assumptions are introduced in [3].

The class of controls considered in this context is the one of feedback policies, i.e., a pair
of measurable functions vy : D* — Uy and vr : 9D* — Up. Given a control policy
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(vg, vr), one can uniquely associate a PDMP of Definition 1 with the closed loop system
(see [3]). In this context, a well-formulated optimal control can be defined by means of a
cost function:

Jo(v) =E] {/Ooo Uz, vo(xe))dt + /Ooo c(xt,vp(xt))dp*(t)}

where [ : D x Up — RT and ¢ : 9D* x Ur — R* are bounded nonnegative functions and
dp* is a counting process for the discrete transitions. The optimal policy v is the one that
minimizes J,(v) for all z € D* over all admissible policies v.

Formulation above has to take into account that the trajectory x;, between two consecutive
jumps, is governed by the following nonlinear ODE

d

%wt = f(xe, vo(wy))

In order to guarantee existence and uniqueness of the solution, the function x — f(x¢, vo(xt))
must to be at least locally Lipschitz continuous and some further assumption have to be
introduced on the control policies. To solve this problems Vermes [14] introduced the
class of piecewise open-loop controls. For a complete treatment we refer to [3].

2.5.2 Controlled SDP

The following overview is based on [8]. The definition of controlled SDP can be given, by
generalizing Definition 2. For completeness we give in the following the controlled SDP
definition.

A controlled SDP is a collection H = (Q, X, U, f, Init, o, \) where Q, X, Init, o are defined
as in Section 2.2, U is the control set and

o [:QxX xU— TX is a vector field;

o N\ij i X XU =R, Nj() > 0ifi# jand Y. o Ai;(.) =0 for any i € Q.

A number of assumptions are again needed to ensure that the model is well defined
(see [6, 7]).

Let be YV =P(U) and let us define f: Q@ x X xV —=TX and \;; : X xU = R

Fow) — /Uf(.,.,u)v(du)
)\ij(.,?)) - /[])\U(,U)U(du)
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Let us also define a function h: R* x @ x V xR — R

L Al i
h(ac,i,v,z)*{] i if 2 € A4, §,z,v)

0 otherwise.

where, for any i,j € Q,xz € X,v € V, A(i, j, z,v) denotes the consecutive, with respect to
the lexicographic ordering on ) x @, left closed, right open intervals of the real line, each
having length A;;(z,v) (for details see [6]). We can now give the definition of controlled
SDP execution.

Definition 6 (Controlled SDP execution) A stochastic process (x(t),q(t)) € X X
Q s called a controlled SDP execution if it is the solution of the following stochastic
differential equations:

da(t) = Flat),o(t), o(®)dt 1 olq(t),z(t))dW,
dg(t) = / B (), (), 0(t), 2)p(dt, d2)

for t > 0 with z(0) = xo, ¢(0) = qo where

e g is a prescribed R™-valued random variable;
® (o is a prescribed Q)-valued random variable;
e W, is a n-dimensional standard Wiener process;

o o(dt,dz)isan M(R*T xR)-valued Poisson random measure with intensity dtxm(dz),
m being the Lebesgue measure on R (see [17]);

e o(.,.), Wi, zo and g are independent;

e v(.) is a V-valued process with measurable sample paths satisfying the nonanticipa~
tivity property (see [7]).

A process v(.) satisfying last condition is said admissible control policy. An admissible
control policy is said feedback if v(.) is progressively measurable with respect to the natural
filtration F; = {x(s),q(s), s < t}. A feedback control policy is said homogeneous Markov
policy if v(t) = ©(x(t), ¢(t)) for a given measurable map ¢ : R” x @ — V. It is shown in
[7] that under a Markov policy v, the above SDE admits an almost sure unique strong
solution.

In this context optimal control problems can be formulated by defining a cost function:

J(x,i,v)*/[]c(x,i,u)v(du)
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where ¢ : R" x Q x U — R* such that ¢(.,4,.) is continuous for any i € Q. Let v(.) be
an admissible policy and (z(.),q(.)) the corresponding process. The pathwise long-run
average cost incurred under v(.) is

lim supTHoo% /0 c(z(t), q(t),v(t))dt.

|7] show how to minimize this cost over all admissible policies establishing the existence
of a stable Markov policy which was a.s. optimal.

2.6 A General Class of Stochastic Hybrid Processes

From a theoretical point of view it is possible to define a general class of SHP which
includes all the models considered so far as special cases. General Stochastic Hybrid
Processes (GSHP) are a class of non-linear stochastic continuous-time hybrid dynamical
systems. GSHPare characterized by an hybrid state defined by two components: a con-
tinuous state and the discrete state. The continuous state evolves in according to a SDE
which depends on the hybrid state, both continuous and discrete. Switchings between two
discrete states are either spontaneous or forced. Whenever a switching occurs, the hybrid
state is instantaneously reset to a new value according to a probability measure which
depends itself on the past hybrid state. In the following we use the notation developed
for PDMP.

Definition 7 (General Stochastic Hybrid Processes) A General Stochastic Hybrid
Process is a collection H = ((Q,d, X), [, 0, Init, \, R) where

e () is a countable set of discrete variables;
e d:() — Nis amap giving the dimensions of the continuous state spaces;

X : Q — R*) maps each ¢ € @ into an open subset X (g) of R¥%):

f:D(Q,d, X) — R¥) is a vector field;

0:D(Q,d, X) — R¥I*™ ig 5 X(.)-valued matrix with m € N;

Init : B(D) — [0,1] is an initial probability measure on (D, B(D)), with Init(D¢) =
0;

A:D(Q,d, X) — RT is a transition rate function;

R : B(D) x (D(Q,d, X)UTI'((Q,d,X), f)) — [0,1] is a transition measure, with
R(De,.) =0.
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One can informally define solutions for this class of systems. Evolution starts by select-
ing an initial condition for the hybrid state, o € @ and zg € X(go) according to the
probability measure Init. Continuous evolution is then governed by the SDE

dz(t) = f(qo,z(t))dt + o (qgo, =(t))dW, (1)

starting at x(0) = xo, where W; is a m-dimensional standard Wiener process. ¢(t) = qo
remains constant along continuous evolution.

Evolution along the solution of (1) can continue as long as x(t) € X (q(t)). As soon as
this condition is violated a forced transition will take place. During continuous evolution,
spontaneous transitions can also take place; for small 6t the probability that a spontaneous
transition will take place in the interval [¢, ¢ + dt] is

Ng(t), z(£))5t + o(6t).

If either a spontaneous or a forced transition takes place at time 7" a new hybrid state,
(q(T),2(T)) is selected according to the probability measure R(-, limy7(g(t), z(¢)) and the
process is repeated.

This definition of a GSHPis indeed a natural generalization of PDMP, SDP and SHS.
However a number of technical difficulties need to be resolved before it can be used in
practice. For example, assumptions need to be imposed to ensure that solutions exist,

are unique, have the Markov property, etc. An investigation along these lines is currently
underway WP2 of HYBRIDGE.
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3 Relevance to Safety Critical ATM Situations

In deliverable D1.1 of WP1 of HYBRIDGE we identified the following safety critical
ATM situations, intended to be used as benchmark problems for the Conflict Detection
and Resolution (CDR) studies:

1. Vertical crossings.
2. Overtake manoeuvres in unmanaged airspace.

3. ATC sector transitions, especially at Terminal Maneuvering Area (TMA) entry and
exit points.

4. Missed approaches.

In D1.1 we also identified the most prominent types of discrete, continuous and stochastic
dynamics for each one of these situations. In this section we juxtapose the discussion in
D1.1 with the description of the hybrid stochastic processes in Section 2 in an attempt to
determine which class of processes would be most suitable for each of the safety critical
situations.

3.1 Vertical Crossings

Continuous Dynamics. Continuous dynamics are dominant in vertical crossing sit-
uations. In this case the continuous dynamics are primarily restricted to the vertical
plane. They can be adequately modelled by a point mass model and energy balance
equations [18, 19].

During climb an aircraft will keep its thrust constant at climb thrust and will control its
speed by adjusting the flight path angle. In each phase of the climb the aircraft tries to
maintain a certain speed, which depends on its altitude. This speed profile is piecewise
constant as a function of altitude [18, 19]. Fixing thrust and speed (hence flight path
angle) implicitly determines a certain rate of climb; the aircraft accept whatever rate of
climb results from this process. Notice that in addition to the aircraft parameters (mass,
climb thrust, etc.) the rate of climb also depends on altitude through the speed profile.

Discrete Dynamics. In addition to the discrete dynamics due to standard Air Traffic
Control /Controller (ATC) practice (the use of way points, vectoring, altitude dependent,
speed profiles, etc.) vertical crossings involve other type of discrete dynamics if they are
the result of a take-off, or an impending landing. Discrete changes occur at the time of
the take off and landing themselves, when the aircraft joins or leaves the ATC system.
Another type of discrete change relevant to landing aircraft occurs at the “top of descent”,
the point where the ATC commands the pilot to begin the final approach.
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Another type of discrete dynamics relevant to vertical crossings involves the flight levels.
The motion of an aircraft will change dramatically when it levels off at the desired flight
level. Crossing of flight levels where other aircraft may be moving is another discrete
phenomenon that may be important for CDR purposes.

Stochastic Phenomena. For climbing aircraft the primary source of uncertainty seems
to be the continuous motion. Climbing rates depend on the aircraft weight, which may
vary widely with aircraft type, route (and hence fuel), number of passengers, type of cargo,
etc. Additional uncertainty comes from the settings of the Flight Management System
(FMS)(e.g. the climb thrust). All this information is (at best) only partially known to
ATC. Wind is another important source of uncertainty. The paths of climbing aircraft
tend to be steeper in the presence of strong head winds.

Uncertainty in the continuous motion also induces uncertainty in the discrete transitions.
The time at which the aircraft will reach a particular flight level and its horizontal position
at that time may be difficult to predict with accuracy. This is important if conflicts are
to be avoided with other aircraft moving at that flight level.

Uncertainty in the discrete transitions becomes more prominent in the case of descending
aircraft. A major source of uncertainty in this case is the location of the top of descent.
It appears that ATC has a lot of freedom in deciding when the descent maneuver should
commence. This uncertainty can have important consequences for CDR and the efficiency
of the system.

Connection with SHP. The above discussion suggests that SDP may be the most
appropriate framework for modelling climbing aircraft. This is because of

1. the uncertainty in the continuous dynamics due to wind and
2. the spontaneous transitions that occur when, for example,

e an aircraft levels off at its desired altitude,
e moves from one flight level to the next,

e changes its speed due to a change in altitude.

Uncertainty in parameter values (e.g. mass and climb thrust) can easily be modelled by
introducing auxiliary variables (e.g. m and T') for these quantities governed by trivial
differential equations (e.g. 7 = 7' = 0). Uncertainty in the parameter values will be
reflected by uncertainty in the initial conditions. The continuous state will not change

during discrete transitions.

Among the modelling frameworks in the literature, SHS appears to be the most appro-
priate for descending aircraft. The situation is complicated in this case, however, due
to the uncertainty about the top of descend. This uncertainty seems to be naturally

24



modelled by a spontaneous transition. Unfortunately, the modelling frameworks available
for modelling spontaneous transitions seem to miss other important phenomena: PDMP
makes it difficult to capture the effect of wind, while SDP makes it difficult to capture
forced transitions due to levelling off, landing, etc. It appears that the ideal model for
descending aircraft would take the form of a GSHP.

3.2 Overtake

Continuous Dynamics. Continuous dynamics are also important for overtake ma-
noeuvres. Overtake manoeuvres in unmanaged airspace take place primarily at cruising
altitudes.

Discrete Dynamics. The discrete dynamics in overtake situations are also limited.
Initiation and termination of the manoeuvre are the two more prominent discrete phe-
nomena. Depending on how the manoeuvre is executed, a distinction may also have to be
drawn between the different phases of the manoeuvre. Figure 1 indicates how an overtake
manoeuver may be executed using lateral motion or altitude changes.

Stochastic Phenomena. The main source of uncertainty here seems to be the weather
and in particular wind. This again affects primarily the continuous motion of the aircraft.

Connection with SHP. Since the main source of uncertainty is the wind, a PDMP will
not be sufficient for modelling overtakes because it only allows deterministic continuous
motion. This leaves SDP and SHS. The overtake maneuver can be represented by a series
of waypoints for the overtaking aircraft. These may, for example, take the overtaking
aircraft to one side and past the slower aircraft and then return the aircraft to its original
course. The flight plan can be naturally split into different segments, each representing
the course from one way point to the next. The current segment is a discrete variable.
The aircraft position and heading are continuous variables and do not change when the
discrete state representing the current segment changes. The current segment will change
when the aircraft reaches the next way point. There will be some uncertainty in when
this occurs due to uncertainties in the tracking and navigation system. This suggests that
SDP will be the most appropriate framework for modelling overtakes.

3.3 Sector Transitions

Continuous Dynamics. Accurate models of continuous dynamics seem to be less im-
portant for sector transitions. In certain cases it may also be possible to separate the
vertical and horizontal components of the continuous model. For transitions at the TMA
gates the horizontal and vertical may interact, since aircraft may be climbing when leaving
the TMA, or descending when entering it.
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Figure 1: Phases of an overtake maneuver.

Discrete Dynamics. Sector transitions are intrinsically discrete phenomena. The state
of the system undergoes a transition when an aircraft changes sector and is handed of
from one ATC to another. One needs to ensure that the aircraft will find itself in a safe
configuration in the new sector before the transition is allowed to go ahead. If not (for
example, if the traffic density in the new sector is already too high) the transition should
be delayed. In this case, one has to ensure that it is safe for the aircraft to remain in its
current sector.

Currently all these tasks are performed by ATC based on established procedures. Some
flexibility is allowed depending on traffic conditions; for example an air traffic controller
may delay accepting a flight coming into a sector if there are more urgent problems to
deal with. Introducing automation safely requires full understanding of these procedures.
One would have to ensure, for example, that the system does not give rise to situations
where an aircraft can neither be handed on nor remain in the current sector safely.

Stochastic Phenomena. There is some uncertainty in the time at which a hand-off from
one sector to the other will take place. The exact timing of the transition may depend on
the traffic in both sectors. Hand-off may take place earlier if traffic in the current sector
is heavy, or may be delayed if traffic in the receiving sector is heavy. The effect of this
uncertainty tends to be small in current conditions, but may become more pronounced as
traffic densities increase.

Connection with SHP. Piecewise deterministic Markov processes can be used to cap-
ture the ATC sector transition process. The above characteristics suggest that it is pos-
sible to model sector transitions using a PDMP. Let X(g) with ¢ € @ denote the area
covered by each ATC sector, where @ is the total number of the ATC sectors. Since
precise information about continuous motion of the aircraft is not crucial, we can assume

26



that the continuous motion of the aircraft in each sector is deterministic, governed by a
given vector field f. The transition rate function A will have support in a neighbourhood
of the sector boundary. The magnitude of A will depend on the traffic density in the cur-
rent sector, p., and the traffic density in the new sector, p,; more specifically A increases
as p. increases or p, decreases. Since the continuous state does not change during a sector
transition and the next sector is known, R can be modelled by a simple function.

3.4 Missed Approaches

Continuous Dynamics. Missed approaches involve the closest coupling of the horizontal
and vertical components. Whether an approach is aborted or not may depend on the
combination of horizontal and vertical positions, in addition to external factors such as a
runway incursion, or wind shear.

Discrete Dynamics. Missed approaches also contain an intrinsically discrete compo-
nent: whether the approach is aborted or not. The “go around” manoeuvre may require
additional discrete choices, such as vectoring commands and additional way points to slot
the aircraft executing the go-around maneuver among the rest of the incoming traffic.

Stochastic Phenomena. The cause of the missed approach may be modelled as prob-
abilistic. It may involve either the continuous motion (e.g. deviation from the approach
pattern due to wind) or a discrete occurrence (e.g. a runway incursion). There is also
uncertainty in whether the aircraft goes ahead with the current approach or whether it
decides to goes around. In the latter case, the timing of the decision is another source of
uncertainty.

Connection with SHP. Uncertainty in this case comes from both the continuous and
the discrete dynamics. Therefore, PDMP and SHS are insufficient for modelling missed
approaches. This leaves SDP.

SDPappear to be suitable for modelling situations when approaches are aborted as a result
to deviations due to wind. The aircraft position and heading, which are the continuous
variables of the model, do not change when the discrete state changes; this is required for
an SDP model. SDP can also model changes in the flight plan segment when the aircraft
reaches a way point (by introducing rate functions with support in a neighbourhood of
the way point).

Missed approaches due to runway incursions are more difficult to capture in the SDP
framework. While a runway incursion is often the result of human decision making in
responce to some event, it may be easier to capture as an abrupt change in response to
an external event, which would be more accurately modeled by a forced transition. This
suggests that a GSHP model may be needed to accurately model this case.
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3.5 Summary

The discussion in this section is summarized in Table 3. The conclusions seem to make
a case for the need to develop further a more general class of stochastic hybrid processes
than those found in the literature. This is because

1. Different types of models seem to be needed to capture the different situations.
This implies that a number of different techniques and tools must be mastered to
be able to deal with all the cases of interest. If a GSHP framework was available the
process would be more efficient, since a single set of results, simulation procedures,
etc. could be used in all cases.

2. Certain situations, such as vertical crossings during descent and missed approaches
due to runway incursions, would be more accurately modelled by a GSHP.

In the examples considered npo explicit mention was made of situations that require
resetting the continuous state of the system during discrete transitions. The main reason
is that this often depends on the controlled variables and coordinate frames used in the
definition of the continuous state soace. For example, if the positions of all aircraft
are given in a global coordinate frame, then the continuous state will remain constant
during discrete transitions. If on, the other hand, the positions of aircraft are given
in coordinates relative to their flight plan or to one another, then the continuous state
may experience discrete transitions whenever aircraft reach way points, execute turns,
etc. Both these types of relative coordinates are common in CDR, studies. Moreover, in
both cases there are savings to be had by modelling the system in relative coordinates;
typically the dimension of the continuous state space is smaller. Experience suggests that
if resetting of continuous states is allowed, similar savings may also be possible in terms
of the number of discrete states.
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Table 3: Overview of modelling needs of safety critical ATM situations
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4 Notes on System Identification

4.1 The need for identification

The stochastic models developed to capture the safety critical situations will invariably
contain a number of “free” parameters whose values one has to select to ensure that the
behaviour of the model is realistic. Examples of parameters include

e Aircraft masses, acrodynamic coefficients, etc.
e Details of flight plans (way points, speeds, altitudes).

e I'MS gains.

e Wind variance and correlation structure.

Accurate values for some of these parameters are available. For example, many aircraft
parameters are available through the Base of Aircraft Data (BADA) database (access to
which has kindly been granted by Eurocontrol Experimental Center). Likewise, details of
flight plans have been made available to us by Eurocontrol’s Central Flow Management
Unit (CEMU).

Values for other parameters are less readily available, however. For example, the parame-
ters of the simplified FMS models one needs to capture the safety critical situations may
not correspond directly to parameters of a real FMS. Even if they did, the values of such
parameters are typically proprietary. Likewise, setting of climb thrust, speed, etc. used
by aircraft during vertical manoeuvres are typically not available to ATC. Finally, pre-
cise information about wind statistics (variances, spatio-temporal correlation, etc.) seems
very difficult to obtain.

Educated guesses about bounds on the values of some these parameters can be made
indirectly in some cases. For example, bounds on aircraft mass are available from BADA.
One may also assume that the FMS will stabilize the aircraft trajectory about the flight
plan. The requirement for stability will impose bounds on some of the FMS (and possibly
wind) parameters. To make the system realistic, however, the parameter values should
be chosen to match the observed behavior of real aircraft. This can be done through
a process of system identification. System identification methods provide algorithms for
systematically tuning the values of the parameters to get a better fit between the behavior
predicted by the model and experimentally observed data.
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4.2 System Identification Limitations

When we try to pose the problem of selecting values for the FMS gains in a system
identification framework we immediately run against the problem of time scales. FMS
control takes place at fairly high frequency (of the order of one sample every second, i.e.
1Hz). Ideally the data used for identification should be sampled at the same frequency.
Unfortunately, because the available data is obtained through radar, it is likely to be
much more infrequent: less than 0.1Hz if we assume a radar sampling time of 12 seconds.
In the data collection experiments, the data may be even more sparse, e.g. 1 sample every
minute, or 0.017Hz.

Is system identification possible when the data is so sparse? This question is difficult
to answer before data is made available and experiments are conducted. Some obvious
solutions immediately prove to be problematic. For example, slowing the FMS model
down to the sampling rate of the data is unlikely to work. Basic stability arguments
suggest that even though with high frequency FMS sampling (1Hz) the system is stable,
low frequency sampling (e.g. 0.1Hz) requires very high gains and makes the system
much harder to stabilize. Our initial simulations indicate that in the presence of noise
models where the FMS operates at low frequency (say 0.1Hz) go unstable, even though
the corresponding high frequency models (say 1Hz) work fine.

Another idea is to use system identification methods designed specifically to deal with
missing data [20, 21, 22|. Roughly speaking, the idea behind these methods is to use
Kalman filtering to fill in the missing data. This approach works when there is an occa-
sional missing sample (e.g. every third sample is missing). It is unlikely to work in this
case, however, since most of the samples (possibly 59 out of 60!) are missing.

We have tried to identify a number of solutions (listed below) that seem viable for this
problem. The relative merits of each will have to be investigated in numerical experiments,
once data becomes available.

Identify low frequency model Develop a low frequency (e.g. 0.017Hz) model of the
entire system (not just the F'MS). This approach has two advantages.

1. Identification can be carried our using standard methods.

2. The resulting model will be more efficient: simulations, detection algorithms,
etc. will run much faster. For model sampling rates up to the radar sampling
frequency (roughly 0.1Hz) the performance of conflict detection algorithms will
be completely unaffected. Even for lower model sampling rates (e.g. low as
0.05Hz) the effect is likely to be small.

The main disadvantage of this approach is that much of the intuitive structure of the
model will be lost. The parameters identified will no longer correspond to particular
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FMS gains, or any other physically meaningful quantity. More importantly, the
explicit dependence of the dynamics on things such as the nominal wind will be lost.
If sets of data for constant values of the nominal wind are available, one can run a
series of identification experiments and identify a different model for each value of
the nominal wind. One can then use interpolation to capture other wind conditions.
This approach is somewhat unsatisfactory. It is labor intensive, it requires a lot of
very carefully selected data, and, in the end, the resulting model is still likely to be
inaccurate.

Modify system identification methods Even though general purpose identification
techniques would be difficult or impossible to derive for systems sampled so in-
frequently, we hope that we may be able to take advantage of the structure and
physical intuition behind the model to develop custom made methods. One idea is
to determine (by hand or using computer algebra packages such as Maple) how the
parameters of a high frequency (e.g. 1Hz) model enter a low frequency (e.g. 0.1Hz)
model. We can then identify the low frequency model and solve a set of nonlinear
equations to obtain values for the high frequency system parameters. Even though
this approach is likely to be intractable for data sampled every minute, because the
model is low dimensional and the number of parameters small it may work for data
sampled every 10-12 seconds.

Sample the data faster Any increase in the data sampling rate would make the iden-
tification problem simpler. Intuition suggests that shorter “chunks” (e.g. a few
minutes) of frequently sampled data are likely to be more effective than longer
chunks (e.g. an hour) at a low sampling rate. An other advantage of shorter chunks
of data is that the nominal wind is more likely to be constant, which would also
simplify the identification problem.

4.3 Data Availability

Formal system identification is impossible without access to data. To identify parameters
for aircraft models from the point of view of ATC one needs access to the following pieces
of data.

e The flight plans the aircraft were meant to follow.
e Their actual radar tracks.

e The weather conditions (ATC weather charts) when the flight took place.

Additional pieces of information (such as radar noise statistics) may improve the perfor-
mance of the identification algorithms.
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Besides the difficulties listed above, the main difficulty with the system identification
approach seems to be that data is not available. Some is proprietary, some seems not to
exist (e.g. wind correlation data). To circumvent this problem, we intend to make progress
in two different directions. The first is through expert advice. In the HY BRIDGE project
we are blessed with experts in a number of areas, including FMS design and air traffic
control. Once models have been developed and simulated, we can get a rough idea of how
realistic they are by talking to experts. To this end we intend to:

1. Interact with experts on flight management systems, to verify that the proposed
structure of the model is reasonable from an FMS point of view. Among other
things we would like to clarify:

e the control objectives and control strategies of the FMS;

e whether the FMS controller parameters are “gain scheduled” depending on the
air speed and/or the wind speed;

e when turns between flight plan segments are initiated;

e how these turns are executed.
2. Interact with experts in meteorology and ATC to get a better idea of

e the type of nominal wind information made available to the air traffic control
system;

e the properties of the stochastic deviation from this nominal data (primarily
the covariance functions).

3. Interact with experts in ATC to get feedback on whether the trajectories produced
by our models are reasonable.

The second approach to tuning the models is to use existing studies based on real data
available in the literature, e.g. [23, 24, 25, 26, 27]. We can compare the output of simula-
tions of our model with the statistics predicted by these studies and tune the parameters
of our model until the macroscopic statistics agree. The point is of course that our model
will not only be able to match the predictions of the models used to tune it, but also
includes other phenomena (such as wind correlation) not present in earlier models. The
disadvantage is that it is unlikely values for all parameters would be obtainable this way.
For example, an implicit trade off exists between controller gains and wind variance; it
is possible to get the same macroscopic statistics if we increase both the gains (making
the system more stable) and the wind perturbation. A similar trade off makes it difficult
to distinguish between the effect of the thrust setting during climb and that of the mass
of the aircraft; similar climbing rates are possible if both parameters increase. Accurate
knowledge of on be of the two parameters is needed to decouple the two phenomena in
such cases.
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