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1. Introduction

Many modelling and control studies for complex dynamical multi-agent systems
have in common that they make use of continuous-time strong Markov processes
the state of which is hybrid, i.e. one state component evolves in an Euclidean
space, the other state component evolves in a discrete set, and each component
may influence the evolution of the other component. Recently, Hu et al. 2000 [13]
noticed that there is a need to formally characterize hybrid state processes of which
an Euclidean valued jump may depend of the simultaneous switching. For short,
we refer to such simultaneous jumps with switching dependency as hybrid jumps.

There are two types of hybrid jumps possible: those that happen at instants of
hitting some boundary, and those that happen at a sudden instant (i.e. Poisson
type). A well-known class of semimartingale Markov processes are the Piecewise
Deterministic Markov processes (Davis 1984, 1993 [6, 7]; Vermes 1985 [17]). They
incorporate both types of hybrid jumps, however they do not include diffusion.
Moreover, their specific formulation does not allow a straightforward inclusion of
diffusion. At the other side of the spectrum there is the class of switching diffusion as
solutions of stochastic differential equations (Ghosh et al. 1993, 1997 [8, 9]). These
processes incorporate diffusions, but are lacking many interesting phenomenon of
interaction between the Euclidean and discrete valued process components. There
is a clear gap in the spectrum of stochastic hybrid processes, with PDPs on one
side and switching diffusions at the other side. Because the stochastic analysis
hurdles to be overcome are significant, few authors only have tried to help closing
this gap. Borkar et al. 1991 [5] have studied switching diffusion processes the
control strategy of which included the possibility of an instantaneous jump at some
boundary. The solution of this problem was characterized in the setting of solutions
to the Hamilton Jacobi Bellman equation. Inherent to the limitation in scope,
this study did not characterize semimartingale and strong Markov properties of
the resulting stochastic process. Bensoussan & Menaldi 2000 [1] have significantly
extended this stochastic hybrid control framework, with a similar restriction of the
scope. In order to contribute to the filling of this gap, Blom 1990 [2] (chapter IV)
started the development of an alterative approach: study a stochastic differential
equation (SDE) on a hybrid space that is driven by Brownian motion and Poisson
random measure, and characterize the class of stochastic processes that are defined
by pathwise unique solutions of such an SDE. One of the results was the explicit
characterization of hybrid jumps as a discontinuity in the Euclidean valued process
component that happens synchronous with a discontinuity in the discrete valued
process component and the size of which depends of the discrete valued process
component prior and after the jump. The paper by Hu 2001 [13] stimulated the
development of an improved version and a publication of this approach for the
first time at a conference (Blom 2003 [4]). Basically this paper places the SDE
of Lepeltier & Marchal 1976 [16] on a hybrid state space, identifies the resulting
class of stochastic hybrid processes and shows that the semimartingale and strong
Markov properties identified by Lepeltier & Marchal 1976 [16] carry over to the
resulting stochastic hybrid processes. The main limitation of this approach was
that the understanding of the stochastic technicalities involved with the pathwise
uniqueness, semimartingale and strong Markov properties remained hidden in the
technical proofs by Lepeltier & Marchal 1976 [16]. This created difficulties in the
further extension of the approach while allowing instantaneous jumps at boundaries.
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In order to improve this situation, Ghosh & Bagchi 2004 [10] have performed a study
on some of these technicalities for a more restricted class of SDE’s and relating these
to the hybrid stochastic control processes of Borkar et al. 1991 [5] and Bensoussan
& Menaldi 2000 [1]. Although this did not solve all outstanding issues, it did lead
to a better understanding of the remaining technical challenges.

The aim of the current report is to significantly further the study of SDE’s on
a hybrid space, including characterizations of its solutions in terms of pathwise
uniqueness, semimartingale and strong Markov process properties. We use Jacod
& Shyriayev 1987 [14] and Gihman & Skorohod 1982 [12] as a starting point for
characterizing jump-diffusion process solutions of SDE’s. This yields a valuable
improvement over the Lepeltier & Marchal 1976 [16] regarding the understanding
of semimartingale property and pathwise uniqueness of jump-diffusions. From this
point on we follow a similar path as taken by Blom 1990, 2003 [2, 4] in transferring
this pathwise uniqueness and semimartingale understanding to the class of stochas-
tic hybrid processes. This subsequently allows to incorporate instantaneous jumps
at a boundary within the same framework including pathwise uniqueness and semi-
martingale property. Finally we introduce a completely novel approach in showing
strong Markov property.

The report is organized as follows. Section 2 provides a brief introduction to
semimartingales. Section 3 presents the existence and uniqueness results for Rn-
valued jump-diffusions. Section 4 extends these results to hybrid state processes
with Poisson and hybrid Poisson jumps. In section 5 we characterize a general sto-
chastic hybrid process which includes jumps at the boundaries. Section 6 presents a
brief comparison of different stochastic models. Finally, the Markov and the Strong
Markov properties for a general stochastic hybrid process are shown in sections 7
and 8.
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2. Semimartingales and characteristics

We are interested in general semimartingale processes which are solutions of
SDEs. Semimartingales form the most general class of stochastic processes for
which a full stochastic calculus, including Itô’s lemma exists. Very large classes
of diffusions and jump-diffusions can be studied as semimartingale solutions of a
wide class of SDEs. Following Jacod & Shiryaev 1987 [14] we provide basic results
concerning semimartingales, their canonical representation and their relation with
the large class of SDEs to be studied in this report.

Throughout this report we assume that a probability space (Ω,F , P ) is equipped
with a right-continuous filtration (Ft)t≥0. The stochastic basis (Ω,F , (Ft)t≥0, P ) is
called complete if the σ-algebra F is P -complete and if every Ft contains all P -null
sets of F . Note that it is always possible to “complete” a given stochastic basis, if
it is not complete, by adding all subsets of P -null sets to F and Ft. We will always
assume that a given stochastic basis (Ω,F , (Ft)t≥0, P ) is “completed”.

The predictable σ-algebra is the σ-algebra P on Ω × R+ that is generated by
all cág (left-continuous) adapted process (considered as mappings on Ω × R+). A
process or random set that is P-measurable is called predictable.

The Rn-valued càdlàg stochastic process {Xt} defined on a probability space
(Ω,F , (Ft)t≥0, P ) is a semimartingale if Xt admits a decomposition of the form

(2.1) Xt = X0 + At + Mt, t ≥ 0,

where X0 is a finite-valued and F0-measurable, where {At} ∈ Vn (a process of
bounded variation), {Mt} ∈ Mn

loc (an n-dimensional local martingale starting at
0). Furthermore, we have that for each t ≥ 0, At and Mt are Ft-measurable.
{Mt} ∈ Mn

loc if and only if there exists a sequence of (Ft)t≥0-stopping times (τk)k≥1

such that τk ↑ ∞ (P -a.s.) for k −→∞ and for each k ≥ 1, the stopped process

(2.2) {Mτk
t } with Mτk

t = Mt∧τk
, k ≥ 1,

is a martingale:

(2.3) E|Mτk
t | < ∞, E[Mτk

t |Fs] = Mτk
s (P − a.s.), s ≤ t.

Denote by µ = µ(ω; ds, dx) the measure describing the jump structure of {Xt}:
(2.4) µ(ω; (0, t]×B) =

∑

0<s≤t

I(∆Xs(ω) ∈ B), t > 0,

where B ∈ B(Rn\{0}), ∆Xs = Xs−Xs− and I(·) stands for the indicator function.
By ν = ν(ω; ds, dx) we denote a compensator of µ, i.e. a predictable measure with
the property that µ − ν is a local martingale measure. This means that for each
B ∈ B(Rn \ {0}) :

(2.5) (µ(ω; (0, t]×B)− ν(ω; (0, t]×B))t>0

is a local martingale with value 0 for t = 0.
A semimartingale {Xt} is called special if there exists a decomposition (2.1) with

a predictable process {At}. Every semimartingale with bounded jumps (|∆Xt(ω)| ≤
b < ∞, ω ∈ Ω, t > 0) is special (see Jacod & Shiryaev 1987 [14], Chapter I, 4.24).

Let h be a truncation function, i.e. ∆Xs − h(∆Xs) 6= 0 if and only if |∆Xs| > b
for some b > 0. Hence

(2.6) X̃t =
∑

0<s≤t

(∆Xs − h(∆Xs))
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denotes the jump part of {Xt} corresponding to large jumps. The number of the
large jumps still is finite on [0, t], for all t > 0, because for all semimartingales
(Jacod & Shiryaev 1987 [14], Chapter I, 4.47)

(2.7)
∑

0<s≤t

(∆Xs)2 < ∞, P − a.s.

The process {Xt − X̃t} is a semimartingale with bounded jumps and hence it is
special:

(2.8) Xt − X̃t = X0 + B̃t + M̃t

where {B̃t} is a predictable process and {M̃t} is a local martingale. The ”tilde”
above process denotes the dependence on truncation function h.

Every local martingale M̃t can be decomposed as:

(2.9) M̃t = M̃ c
t + M̃d

t

where M̃ c
t is a continuous (martingale) part and M̃d

t is a purely discontinuous
(martingale) part which satisfies:

(2.10) M̃d
t =

∫ t

0

∫
h(x)(µ(ds, dx)− ν(ds, dx)).

However the continuous martingale part M̃ c
t does not depend on h and will be

denoted by M c
t (the continuous martingale part of Xt). M̃t = M c

t + M̃d
t

By definition of µ and {X̃t} we have

(2.11) X̃t =
∫ t

0

∫
(x− h(x))µ(ds, dx).

Consequently, substitution of (2.9 - 2.11) into (2.8) yields the following canonical
representation of semimartingale {Xt}:
(2.12)

Xt = X0 + B̃t +M c
t +

∫ t

0

∫
h(x)(µ(ds, dx)− ν(ds, dx))+

∫ t

0

∫
(x−h(x))µ(ds, dx).

Next we may assume h(x) = xI(|x| < 1) and replace B̃t by Bt. Then (2.12) takes
on the form:
(2.13)

Xt = X0 + Bt + M c
t +

∫ t

0

∫

|x|<1

x(µ(ds, dx)− ν(ds, dx)) +
∫ t

0

∫

|x|≥1

xµ(ds, dx).

We denote by 〈M c
t 〉 the predictable quadratic variation of {M c

t }, hence (M c
t )2−

〈M c
t 〉 is a local martingale.
We call characteristics associated with h of the semimartingale {Xt} (if there

may be an ambiguity on h) the triplet (Bt, Ct, ν) consisting in :
1) Bt = (Bi

t)i≤n is a predictable process in Vn, namely the process Bt = B̃t

appearing in (2.8).
2) Ct = (Cij

t )i,j≤n is a continuous process in Vn×n (a process of bounded varia-
tion), namely Ct = 〈M c

t 〉.
3) ν is a predictable random measure on R+ × Rn, namely the compensator of

random measure µ associated to the jumps of X by (2.4).
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3. Semimartingale strong solution of SDE

3.1. Semimartingale solution of an SDE.

Definition 3.1. The canonical setting. Ω is the “canonical space” (also denoted by
D(Rn)) of all càdlàg functions ω : R+ → Rn; X is the “canonical process” defined
by Xt(ω) = ω(t); H = σ(X0); finally (Ft)t≥0 is generated by X and H, by which
we mean:

(i) Ft =
⋂

s>t F0
s and F0

s = H ∨ σ(Xr : r ≤ s) (in other words, (Ft)t≥0 is the
smallest filtration such that X is adapted and H ⊂ F0);

(ii) F = F∞−(=
∨

t Ft).

Throughout this section, the canonical setting 3.1 is in force.

Definition 3.2. Let P be a probability measure on (Ω,F). Then {Xt} is called
a jump diffusion on (Ω,F , (F)t≥0, P ) if it is a semimartingale with the following
characteristics:

(3.1)





Bi
t(ω) =

∫ t

0
αi(s,Xs(ω))ds (= +∞ if the integral diverges)

Cij
t (ω) =

∫ t

0
βij(s,Xs(ω))ds (= +∞ if the integral diverges)

ν(ω; dt× dx) = dt×Kt(ω,Xt(ω), dx)

where:



α : R+ × Rn −→ Rn is Borel
β : R+ × R −→ Rn × Rn is Borel, c(s, x) is symmetric nonnegative
Kt(ω, x, dy) is a Borel transition kernel from Ω× R+ × Rn into Rn,

with Kt(ω, x, {0}) = 0.
Next, we relate the above with stochastic differential equations, partially follow-

ing [14].
Let B = (Ω,F ,F, P ) be a stochastic basis endowed with:
(1) W = (W i)i≤m, an m-dimensional standard Wiener process (i.e., each W i

is a standard Wiener process, and the W i’s are independent);
(2) pi are Poisson random measures on R+ × U with intensity measure dt ·

mi(du), i = 1, 2; here, (U,U) is an arbitrary Blackwell space (one may take
U = Rd for practical applications), and mi, i = 1, 2, is a positive σ-finite
measure on U,U ; We denote the compensated Poisson random measure by
qi(dt, du) = pi(dt, du)− dt ·mi(du), i = 1, 2.

Let us also be given the coefficients:

(3.2)





a = (ai)i≤n, a Borel function: R+ × Rn −→ Rn

b = (bij)i≤n,j≤m, a Borel function: R+ × Rn −→ Rn × Rm

f1 = (f i
1)i≤n a Borel function: R+ × Rn × U −→ Rn,

f2 = (f i
2)i≤n a Borel function: R+ × Rn × U −→ Rn.

Let the initial variable be an F0-measurable Rn-valued random variable X0. The
stochastic differential equation is as follows:

(3.3) dXt = a(t,Xt)dt + b(t,Xt)dWt +
∫

U

f1(t, Xt−, u)q1(dt, du)

+
∫

U

f2(t,Xt−, u)p2(dt, du),
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Define two stochastic sets:

D1 = {(ω, t) : p1(ω; {t} × U) = 1},
D2 = {(ω, t) : p2(ω; {t} × U) = 1}.

If at least one of the Poisson random measures, p1 or p2, has a “jump” at point
(t, u), then ∆Xt(ω) = 1D1(ω, t) · f1(t,Xt−(ω), u) + 1D2(ω, t) · f2(t,Xt−(ω), u).

Next, let us assume that the following integrals make sense.
∫ t

0

|a(s,Xs)|ds < ∞, P -a.s.(3.4)
∫ t

0

∫

U

|f1(s,Xs−, u)|2dsm1(du) < ∞, P -a.s.,(3.5)
∫ t

0

∫

U

|f2(s,Xs−, u)|p2(ds, du) < ∞, P -a.s.,(3.6)
∫ t

0

|bij(s, Xs)|2ds < ∞, P -a.s. for any i, j ∈ {1, . . . , n}(3.7)

for every t ∈ R+. By a solution to the SDE (3.3) we mean a càdlàg Ft-adapted
process {Xt} such that the following equation is satisfied with probability one for
every t ∈ R+

(3.8) Xt = X0 +
∫ t

0

a(s,Xs)ds +
∫ t

0

b(s,Xs)dWs +
∫ t

0

∫

U

f1(s,Xs−, u)q1(ds, du)

+
∫ t

0

∫

U

f2(s,Xs−, u)p2(ds, du).

If such process {Xt} exists and conditions (3.4)-(3.7) are satisfied then it is a
semimartingale with the characteristics (associated with truncation function h =
xI(|x| < 1)) given by (3.1), where

α(t, Xt(ω)) =
[
a(t,Xt(ω))−

∫

|f1|≥1

f1(t,Xt−(ω), u)m1(du)

+
∫

|f2|<1

f2(t,Xt−(ω), u)m2(du)
]
,

β(t, Xt(ω)) = b(t,Xt(ω))bT (t,Xt(ω)),

Kt(ω, Xt(ω), A) = 1D1(ω, t) ·
∫

U

1A\{0}(f1(t,Xt−(ω), u))m1(du)

+ 1D2(ω, t) ·
∫

U

1A\{0}(f2(t,Xt−(ω), u))m2(du).

3.2. Existence and uniqueness concepts. There are two important notions of
the sense in which a solution to stochastic differential equation can be said to exist
and also two senses in which uniqueness is said to hold.

Definition 3.3. Strong Existence. We say that strong existence holds if given a
probability space (Ω,F , P ), a filtration Ft, an Ft-Wiener process W , an Ft-Poisson
random measures p1, p2, and an F0-measurable initial condition X0, then an Ft-
adapted process {Xt} exists satisfying (3.8) for all t ≥ 0.
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Definition 3.4. Weak Existence. We say that weak existence holds if given any
probability measure η on Rn there exists a probability space (Ω,F , P ), a filtration
Ft, an Ft-Wiener process W , an Ft-Poisson random measures p1, p2, and an Ft-
adapted process {Xt} satisfying (3.8) for all t ≥ 0 as well as P (X0 ∈ B) = η(B).

Strong existence of a solution requires that the probability space, filtration, and
driving terms (W,p1, p2) be given first and that the solution {Xt} then be found
for the given data. Weak sense existence allows these objects to be constructed
together with the process {Xt}. Clearly, strong existence implies weak existence.

Definition 3.5. Strong Uniqueness. Suppose that a fixed probability (Ω,F , P ),
a filtration (Ft)t≥0, an Ft-Wiener process W , and an Ft-Poisson random measures
p1 and p2 are given. Let {Xt} and {X ′

t} be two solutions of (3.3) for the given
driving terms (W,p1, p2). We say that strong uniqueness holds true if

(3.9) P (X0 = X ′
0) = 1 =⇒ P (Xt = X ′

t for all t ≥ 0) = 1,

i.e. {Xt} and {X ′
t} are indistinguishable.

Remark 3.6. Since solutions of (3.3) are càdlàg processes the requirement (3.9) can
be relaxed to:

(3.10) P (X0 = X ′
0) = 1 =⇒ P (Xt = X ′

t) = 1, for every t ≥ 0.

Definition 3.7. Weak Uniqueness. Suppose we are given weak sense solutions

{(Ωi,Fi, Pi), (Fi,t)t≥0, {Xi,t}}, i = 1, 2,

to (3.3). We say that weak uniqueness holds if equality of the distributions induced
on Rn by Xi,0 under Pi, i = 1, 2, implies the equality of the distributions induced
on D(Rn) by {Xi,t} under Pi, i = 1, 2.

Strong uniqueness is also referred to as pathwise uniqueness, whereas weak
uniqueness is often called uniqueness in (the sense of probability) law. Strong
uniqueness implies weak uniqueness.

3.3. Strong Uniqueness. In what follows we will state and prove strong existence
and strong uniqueness theorems for SDE (3.3), following [12], pp.223-245.

We assume that Wiener process W and Poisson random measures p1 and p2 are
mutually independent. Suppose {Wt}, p1 and p2 are adapted to the given filtration
(Ft)t≥0. If τ is a stopping time relative to Ft and Xτ is an Fτ measurable random
variable, then we will be looking for an {Ft}-adapted process {Xt}, defined for
t > τ , for which the following equation holds with probability 1

(3.11)

Xt = Xτ +
∫ t

τ

a(s,Xs)ds +
∫ t

τ

b(s,Xs)dWs +
∫ t

τ

∫

U

f1(s,Xs−, u)q1(ds, du)

+
∫ t

τ

∫

U

f2(s,Xs−, u)p2(ds, du).

If equality (3.11) holds for all t ∈ (τ, ζ), with ζ another stopping time, ζ > τ , then
we will say that {Xt} is the solution of SDE (3.3) on interval (τ, ζ), if started at
Xτ .

Theorem 3.8. Assume that the coefficients of equation (3.3) satisfy the following
condition:
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(i) for each r > 0 there exist a constant lr, for which

|a(s, x)− a(s, y)|2 + |b(s, x)− b(s, y)|2

+
∫

U

|f1(s, x, u)− f1(s, y, u)|2m1(du) ≤ lr|x− y|2,

for all |x| ≤ r, |y| ≤ r, s ≤ r.
(ii) Assume that condition (3.6) is satisfied
(iii) Let S be the support of f2(·, ·, ·) and let Su be the projection of S on U , then

assume that m2(Su) < ∞.
Then a solution of equation (3.3) for any given X0 is strongly unique.

Proof. We fix some admissible filtration {Ft} and consider only Ft-measurable
solutions. Suppose τ1 < τ2 < . . . are all jump moments of the Poisson process
p2(Su, [0, t]). Since it is a homogeneous process with parameter m2(Su) < ∞, there
will be only finite number of jumps on every finite interval. Let τ0 = 0. Note,
that it suffices to establish the uniqueness of solution of equation (3.3) on interval
[τk, τk+1], with assumption that Xτk

is given. Then we establish by induction that
a solution of (3.3) is unique on any interval [0, τk], and

⋃
[0, τk] = R+. Suppose

{Xt} and {Xt} are two solutions of (3.3) on [τk, τk+1), for which Xτk
= Xτk

. For
τk ≤ t < τk+1

(3.12) Xt = Xτk
+

∫ t

τk

a(s,Xs)ds+
∫ t

τk

b(s,Xs)dWs +
∫ t

τk

∫

U

f1(s,Xs, u)q1(ds, du),

since the last integral with respect to measure p in (3.11) will be equal to zero.
Similar equality holds for solution Xt. Let ζr = inf{t > τk, |Xt| + |Xt| ≥ r} ∧ r.
Since

Xt∧ζr −Xt∧ζr =
∫ t∧ζr

τk

[a(s,Xs)− a(s, Xs)]ds

+
∫ t∧ζr

τk

[b(s,Xs)− b(s,Xs)]dWs

+
∫ t∧ζr

τk

[f1(s,Xs, u)− f1(s,Xs, u)]q1(ds, du),

E
(∣∣∣

∫ t∧ζr

τk

[a(s,Xs)−a(s, Xs)]ds
∣∣∣
2

|Fτk

)
≤ lr(t−τk)E

(∫ t∧ζr

τk

|Xs−Xs|2ds|Fτk

)
,

E
(∣∣∣

∫ t∧ζr

τk

[b(s,Xs)− b(s, Xs)]dWs

∣∣∣
2

|Fτk

)
≤ lrn

2E
( ∫ t∧ζr

τk

|Xs −Xs|2ds|Fτk

)
,

where n - dimensionality of X,

E
(∣∣∣

∫ t∧ζr

τk

∫

U

(f1(s,Xs, u)− f1(s,Xs, u))q1(ds, du)
∣∣∣
2

|Fτk

)

≤ lrE
( ∫ t∧ζr

τk

|Xs −Xs|2ds|Fτk

)
,
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(we have made use of the properties of stochastic integrals and theorem conditions),
then for some L (it is a Fτk

-measurable quantity)

E(|Xt∧ζr −Xt∧ζr |2|Fτk
) ≤ LE

( ∫ t∧ζr

τk

|Xs −Xs|2ds|Fτk

)
.

But then the following holds

(3.13) E(|Xt −Xt|2I{ζr>t}|Fτk
) ≤ L

∫ t

τk

E(|Xs −Xs|2I{ζr>s}|Fτk
)ds.

Hence, because of Gronwall’s lemma :

E|Xs −Xs|2I{ζr>t} = 0.

Since I{ζr>t} −→ 1 as r −→ ∞, thus Xt = Xt for τk ≤ t < τk. It remains to
show that Xτk+1 = Xτk+1 . Suppose X∗

t is a solution of (3.12). It was already
shown that it is unique, does not have discontinuities of second kind, and thus is
continuous with probability 1 at the point t = τk+1, because τk+1 is independent
of X∗

t and its distribution is continuous, and number of discontinuity points of Xt

is at most countable. Now note, that solution of equation (3.11) at point τk+1 can
be expressed in terms of X∗

t on [τk, τk+1] in the following way:

Xτk+1 = X∗
τk+1

+ f2(τk+1, X
∗
τk+1

, ûk+1)

= Xτk+1−0 + f2(τk+1, Xτk+1−0, ûk+1),

where ûk+1 - such a point from U , that p2({ûk+1}×{τk}) = 1. From the coincidence
of Xτk+1−0 and Xτk+1−0 follows the coincidence Xτk+1 = Xτk+1 . ¤

It is easy to see from the proof of theorem 3.8 that not only two solutions of one
equation coincide, but also solutions with equal initial conditions of two different
equations coincide as long as their coefficients coincide. We formulate this statement
precisely, known as the theorem of local uniqueness.

Theorem 3.9. Suppose {Xt} is a solution of equation (3.8), and {X̃t} is a solution
of equation

X̃t = X̃0 +
∫ t

0

ã(s, X̃s)ds +
∫ t

0

b̃(s, X̃s)dWs

+
∫ t

0

∫

U

f̃1(s, X̃s, u)q1(ds, du) +
∫ t

0

∫

U

f̃2(s, X̃s, u)p2(ds, du).

If conditions of theorem 3.8 are satisfied and a(s, x) = ã(s, x), b(s, x) = b̃(s, x),
fk(s, x, u) = f̃k(s, x, u) given |x| ≤ N , then Xs = X̃s for s ≤ τ , where τ = inf{s :
|Xs| ≥ N}.
3.4. Strong Existence. First, we state the classical existence results for the fol-
lowing equation:

(3.14) Xt = X0 +
∫ t

0

a(s,Xs)ds +
∫ t

0

b(s,Xs)dWs +
∫ t

0

∫

U

f1(s,Xs, u)q1(ds, du).

Theorem 3.10. Assume that coefficients of equation (3.14) satisfy the following
conditions:

(1) a(s, 0), b(s, 0),
∫ |f1(s, 0, u)|2m1(du) are locally bounded with respect to s,
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(2) there exists increasing function l(s) such that

|a(s, x)− a(s, y)|2 + |b(s, x)− b(s, y)|2

+
∫

U

|f1(s, x, u)− f1(s, y, u)|2m1(du) ≤ l(s)|x− y|2.

Let us denote by Ft the σ-algebra generated by X0, q1(ds, du), Ws with s ≤ t. If
X0 is independent of Ws, q1(ds, du) and E|X0|2 < ∞, then equation (3.14) has
Ft-measurable solution, moreover E|Xs|2 < ∞.

Theorem 3.11. Assume that for coefficients of equation (3.14) the following con-
dition holds:

|a(t, x)|2 + |b(t, x)|2 +
∫

U

|f1(t, x, u)|2m1(du) ≤ l(1 + |x|2),

and for any r > 0 one can specify constant lr such that

|a(s, x)− a(s, y)|2 + |b(s, x)− b(s, y)|2

+
∫

U

|f1(s, x, u)− f1(s, y, u)|2m1(du) ≤ lr|x− y|2

for s ≤ r, |x| ≤ r, |y| ≤ r. If X0 is independent of {Ws, q1(ds, du)}, and σ-algebras
Ft are constructed as in theorem 3.10, then there exists an Ft-measurable solution
of (3.14) for every t ∈ R+.

Remark 3.12. Suppose {F̂t} is some admissible filtration, τ is a stopping time
relative to this filtration. Let us consider the SDE for t > τ :

(3.15)

Xt = Xτ +
∫ t

τ

a(s,Xs)ds +
∫ t

τ

b(s,Xs)dWs +
∫ t

τ

∫

U

f1(s,Xs, u)q1(ds, du).

Under conditions of theorem 3.11 equation (3.15) has F̂t-measurable solution, no
matter what is the F̂τ -measurable variable Xτ . To prove this, it suffices to consider
the process X̂t which is a solution of the following equation

(3.16)

X̂t = X̂0+
∫ t

0

a(s+τ, X̂s)ds+
∫ t

0

b(s+τ, X̂s)dŴs+
∫ t

0

∫

U

f1(s+τ, X̂s, u)q̂1(ds, du),

where

(3.17) Ŵs = W (s + τ)−Wτ ; q̂1([s1, s2]× du) = q1([s1 + τ, s2 + τ ]× du).

Obviously, that Ŵ and q̂1 possess the same properties as W , q1 and are independent
of Fτ . Thus, for equation (3.16), all derivations which were verified for equation
(3.14), hold as well, if mathematical expectations and conditional mathematical ex-
pectations with given X0 are substituted by conditional mathematical expectation
with respect to σ-algebra F̂τ . Obviously, then Xt = X̂t−τ will be the solution of
equation (3.15).

Now we prove the existence theorem for general SDE (3.3).

Theorem 3.13. Assume that for equation (3.3) the following conditions are sat-
isfied:

11



(1) coefficients a, b, f1 satisfy the conditions of theorem 3.11;
(2) X0 is independent of {Ws, q1(ds, du), p2(ds, du)}.
(3) Conditions (ii) and (iii) of theorem (3.8) are satisfied.

Let Ft denote the σ-algebra generated by X0 and {Ws, q1([0, s], du), p2([0, s], du),
s ≤ t}. Then there exists Ft-measurable solution of equation (3.3).

Proof. Let τ1 < τ2 < · · · < τn < . . . denote all stopping times that are the “growth”
points of the last integral term in (3.8). The number of “growth” points on every
finite time interval will be finite due to condition (3). It suffices to construct
the solution of equation (3.3) on each interval [0, τ1), [τ1, τ2), . . . , [τn, τn+1), . . .

Since
∫ t

τn

∫
f2(s,Xs, u)p2(ds, du) = 0 when t ∈ [τn, τn+1), then on each of the

specified intervals equation (3.3) turns into equation of type (3.15), where τ equals
0, τ1, τ2, . . . and so on. As it was pointed out in remark 3.12, there exists a solution
of this equation if Xτ is Fτ -measurable. Let us prove that this is indeed the case.
If τ = 0, then X0 is F0-measurable by definition of σ-algebra Ft. Suppose, that
Xτn

is Fτn
-measurable. We will show that then Xτn+1 will be Fτn+1-measurable.

Let Xn
t be the solution of the following equation

Xn
t = Xn

τn
+

∫ t

τn

a(s,Xn
s )ds +

∫ t

τn

b(s,Xn
s )dWs +

∫ t

τn

∫

U

f1(s,Xn
s , u)q1(ds, du)

for t ≥ τn. In consequence of remark 3.12 such solution exists. Set Xt = Xn
t for

t < τn+1. Let un+1 be such a point in U that p2({τn+1} × {un+1}) = 1. Now let
us define Xτn+1 by the equality

(3.18) Xτn+1 = Xn
τn+1

+ f2(τn+1, X
n
τn+1

, un+1).

Since Xn
t is Ft-measurable, has no discontinuities of the second kind and is continu-

ous with probability 1 at the point τn+1, then Xn
τn+1

is Fτn+1-measurable. Similarly
un+1 is also Fτn+1 -measurable. Therefore both summands in the right hand side
of (3.18) are Fτn+1-measurable, i.e. Xτn+1 is Fτn+1 -measurable. Thus, we can suc-
cessively construct Ft-measurable process Xt. In order to make certain that it is
indeed a solution of (3.3), it suffices to see that

f2(τn+1, X
n
τn+1

, un+1) =
∫ τn+1

τn

∫

U

f2(t,Xt, u)p2(dt, du).

¤

Remark 3.14. Solution, existence of which was established in theorem 3.13, is
unique. Indeed, by theorem 3.8 we have that for any enlargement of initial probabil-
ity space and any admissible filtration of σ-algebras F̃t, and F0-measurable initial
variable X0, F̃t-measurable solution of equation (3.3) is unique. Since Ft ⊂ F̃t, thus
solution Xt constructed in theorem 3.13 will be also F̃t-measurable, and therefore,
there will be no other F̃t-measurable solutions of equation (3.3).

Remark 3.15. The solution constructed in theorem 3.13 is fully determined by
initial condition, Wiener process W and Poisson random measures p1 and p2, i.e.
it is a “strong” solution (solution-process). Thus, theorem 3.13 states that there
exists a strong solution of equation (3.3) (strong existence), and from the remark
3.14 it follows that under conditions of theorem 3.13 any solution of (3.3) is unique
(strong uniqueness).
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Remark 3.16. Under condition of theorem 3.13 the solution of SDE (3.3) admits
the decomposition (2.1) with

At =
∫ t

0

a(s,Xs)ds +
∫ t

0

∫

U

f2(s,Xs−, u)p2(ds, du) ∈ Vn,

Mt =
∫ t

0

b(s,Xs)dWs +
∫ t

0

∫

U

f1(s,Xs−, u)q1(ds, du) ∈Mn
loc,

hence it is a semimartingale.
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4. Stochastic Hybrid Processes as Solutions of SDEs

4.1. SDE on hybrid state space. In this section we construct a switching jump
diffusion {Xt, θt} taking values in Rn ×M, where M = {e1, e2, . . . , eN} is a finite
set. In order to work with neutral topology we assume that for each i = 1, . . . , N ,
ei is the i-th unit vector, ei ∈ RN . Let {Xt, θt} be an Rn×M-valued process given
by the following stochastic differential equation of Ito-Skorohod type.

dXt = a(Xt, θt)dt + b(Xt, θt)dWt +
∫

Rd

g1(Xt−, θt−, u)q1(dt, du)(4.1)

+
∫

Rd

g2(Xt−, θt−, u)p2(dt, du),

dθt =
∫

Rd

c(Xt−, θt−, u)p2(dt, du).(4.2)

Here:
(i) for t = 0, X0 is a prescribed Rn-valued random variable.

(ii) for t = 0, θ0 is a prescribed M-valued random variable.

(iii) W is an m-dimensional standard Wiener process.

(iv) q1(dt, du) is a martingale random measure associated to a Poisson random
measure p1 with intensity dt×m1(du).

(v) p2(dt, du) is a Poisson random measure with intensity dt×m2(du) = dt×du1×
µ̄(du), where µ̄ is a probability measure on Rd−1, u1 ∈ R, u refers to all components
of u ∈ Rd except the first one.

The coefficients are defined as follows

a : Rn ×M→ Rn

b : Rn ×M→ Rn×m

g1 : Rn ×M× Rd → Rn

g2 : Rn ×M× Rd → Rn

φ : Rn ×M×M× Rd−1 → Rn

λ : Rn ×M×M→ R+

c : Rn ×M× Rd → RN .

Moreover, for all k = 1, 2, . . . , N we define measurable mappings Σk : Rn×M→ R+

in a following manner

(4.3) Σk(x, ei) =

{∑k
j=1 λ(x, ei, ej) k > 0,

0 k = 0,

and function c(·, ·, ·) by

(4.4) c(x, ei, u) =

{
ej − ei if u1 ∈ (Σj−1(x, ei), Σj(x, ei)],
0 otherwise ,

and function g2(·, ·, ·) by

(4.5) g2(x, ei, u) =

{
φ(x, ei, ej , u) if u1 ∈ (Σj−1(x, ei), Σj(x, ei)],
0 otherwise .
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Let Uθ denote the projection of the support of function φ(·, ·, ·, ·) on U = Rd−1. The
jump size of Xt and the new value of θt at the jump times generated by Poisson
random measure p2 are determined by the functions (4.4) and (4.5) correspondingly.
There are three different situations possible:
I. Simultaneous jump of Xt and θt{

c(·, ·, u) 6= 0 if u1 ∈ (Σj−1(x, ei), Σj(x, ei)], i, j = 1, . . . , N and j 6= i,

g2(·, ·, u) 6= 0 if u1 ∈ (Σj−1(x, ei), Σj(x, ei)], i, j = 1, . . . , N and u ∈ Uθ.

II. Switch of θt only
{

c(·, ·, u) 6= 0 if u1 ∈ (Σj−1(x, ei), Σj(x, ei)], i, j = 1, . . . , N and j 6= i,

g2(·, ·, u) = 0 if u1 ∈ (Σj−1(x, ei), Σj(x, ei)], i, j = 1, . . . , N and u /∈ Uθ.

III. Jump of Xt only
{

c(·, ·, u) = 0 if u1 ∈ (Σj−1(x, ej), Σj(x, ej)], j = 1, . . . , N,

g2(·, ·, u) 6= 0 if u1 ∈ (Σj−1(x, ej), Σj(x, ej)], j = 1, . . . , N, and u ∈ Uθ.

We make the following assumptions on the coefficients of SDE (4.1)-(4.2).

(A1) There exists a constant l such that for each i = 1, 2, . . . , N

|a(x, ei)|2 + |b(x, ei)|2 +
∫

Rd

|g1(x, ei, u)|2m1(du) ≤ l(1 + |x|2).

(A2) for any r > 0 one can specify constant lr such that for each i = 1, 2, . . . , N

|a(x, ei)− a(y, ei)|2 + |b(x, ei)− b(y, ei)|2

+
∫

Rd

|g1(x, ei, u)− g1(y, ei, u)|2m1(du) ≤ lr|x− y|2

for |x| ≤ r, |y| ≤ r.

(A3) Function c satisfies (4.3), (4.4) and for i, j = 1, 2, . . . , N , λ(ei, ej , ·) are bounded
and measurable, λ(ei, ej , ·) ≥ 0.

(A4) Function g2 satisfies (4.3), (4.5) and for all t > 0, i, j = 1, . . . , N
∫ t

0

∫

Rd

|φ(x, ei, ej , u)|p2(ds, du) < ∞, P -a.s.

4.2. Strong existence and uniqueness.

Theorem 4.1. Assume (A1)-(A4) and (4.3), (4.4), (4.5). Let p1, p2,W,X0 and
θ0 be independent. Then SDE (4.1)-(4.2) has a unique strong solution which is a
semimartingale.

Proof. The switching jump diffusion {Xt, θt} governed by equations (4.1)-(4.2) can

be seen as the Rn+N -valued homogeneous jump diffusion {ξt} 4
= {(Xt, θt)T } gov-

erned by the stochastic differential equation

(4.6) dξt = ã(ξt)dt + b̃(ξt)dWt +
∫

Rd

f̃1(ξt−, u)q1(dt, du) +
∫

Rd

f̃2(ξt−, u)p2(dt, du)
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with the following coefficients:

ã : Rn+N → Rn+N ã(·) 4= [a(·), ON ]T

b̃ : Rn+N → R(n+N)×m b̃(·) 4= [b(·), ON×m]T

f̃1 : Rn+N × Rd → Rn+N f̃1(·, ·) = [g1(·, ·), ON ]T

f̃2 : Rn+N × Rd → Rn+N f̃2(·, ·) = [g2(·, ·), c(·, ·)]T

where by Ok and Ok×s we denote the k-dimensional zero vector and k×s-dimensional
zero matrix correspondingly.

Next we show that conditions (A1)-(A4) together with (4.3), (4.4), (4.5) imply
the conditions of theorems 3.8 and 3.13 thus the equation (4.6) has an a.s. unique
strong solution which implies that SDE (4.1)-(4.2) has an a.s. unique strong solu-
tion.

Let us verify all conditions.
Growth condition: by (A1) for every ξ = (x, ei)T ∈ Rn+N i = 1, . . . , N we have

|ã(ξ)|2+|b̃(ξ)|2+
∫

Rd

|f̃1(ξ, u)|2m1(du) = |ã(x, ei)|2+|b̃(x, ei)|2+
∫

Rd

|f̃1(x, ei, u)|2m1(du)

= |a(x, ei)|2+|b(x, ei)|2+
∫

Rd

|g1(x, ei, u)|2m1(du) ≤ l(1+|x|2) ≤ l(1+|x|2+|ei|2) = l(1+|ξ|2).

Lipschitz condition: From (A1) and (A2) it follows that for any r > 0 one can
specify a constant Lr such that for all ξ = (x, ei)T ∈ Rn+N , ζ = (y, ej)T ∈ Rn+N

i, j = 1, . . . , N , and for |x| < r, |y| < r, i.e. |ξ| ≤ √
r2 + 1, |ζ| ≤ √

r2 + 1, we have

|ã(ξ)− ã(ζ)|2 + |b̃(ξ)− b̃(ζ)|2 +
∫

Rd

|f̃1(ξ, u)− f̃1(ζ, u)|2m1(du)

= |a(x, ei)−a(y, ej)|2 + |b(x, ei)− b(y, ej)|2 +
∫

Rd

|g1(x, ei, u)−g1(y, ej , u)|2m1(du)

≤ 2
(|a(x, ei)−a(y, ei)|2+|b(x, ei)−b(y, ei)|2+

∫

Rd

|g1(x, ei, u)−g1(y, ei, u)|2m1(du)

+ |a(y, ei)−a(y, ej)|2 + |b(y, ei)− b(y, ej)|2 +
∫

Rd

|g1(y, ei, u)−g1(y, ej , u)|2m1(du)
)

≤ 2
(
lr|x− y|2 + 4

(|a(y, ei)|2 + |b(y, ei)|2 +
∫

Rd

|g1(y, ei, u)|2m1(du)
))

≤ 2
(
lr|x−y|2+4l(1+|y|2)) ≤ 2

(
lr|x−y|2+4l(1+r2)

)
= 2

(
lr|x−y|2+2l(1+r2)|ei−ej |2

)

≤ Lr

(|x− y|2 + |ei − ej |2
)

= Lr|ξ − ζ|2,
where Lr = max(2lr, 4l(1 + r2)).

Let S be the support of f̃2 and Su = Su1 ×Su be the projection of S on U = Rd.
By (A3), (A4) and the fact that µ̄ is a probability measure, we have that m2(Su) =
mL(Su1) · µ̄(Su) < ∞, where mL is the Lebesgue measure.

By (A4) and definition of function c we have that for all t > 0, i = 1, . . . N

∫ t

0

∫

Rd

|f̃2(x, ei, u)|p2(ds, du) < ∞, P -a.s.
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We have shown that coefficients of equation (4.6) satisfy the conditions of the-
orems 3.8 and 3.13, thus equation (4.6) (correspondingly (4.1)-(4.2)) has an a.s.
unique strong solution.

It is clear that under conditions of the theorem the solution {ξt} = {(Xt, θt)T }
admits the decomposition (2.1) with

At =
∫ t

0

ã(ξs)ds +
∫ t

0

∫

U

f̃2(ξs−, u)p2(ds, du) ∈ Vn,

Mt =
∫ t

0

b̃(ξs)dWs +
∫ t

0

∫

U

f̃1(ξs−, u)q1(ds, du) ∈Mn
loc,

hence it is a semimartingale. ¤

4.3. Transformation of Blom [4]. Following Blom 2003 [4] one can show that
solution of (4.1)-(4.2) is indistinguishable from the solution of the following set of
equations:

dθt =
N∑

i=1

(ei − θt−)p2

(
dt, (Σi−1(Xt−, θt−), Σi(Xt−, θt−)]× Rd−1

)
,(4.7)

dXt = a(Xt, θt)dt + b(Xt, θt)dWt +
∫

Rd

g1(Xt−, θt−, u)q1(dt, du)(4.8)

+
∫

Rd

φ(Xt−, θt−, θt, u)p2

(
dt,

(
0, ΣN (Xt−, θt−)

]× du
)
.

Theorem 4.2. Assume (A1)-(A4) and (4.3), (4.4), (4.5). Let p1, p2,W,X0 and
θ0 be independent. Then SDE (4.7)-(4.8) has a unique strong solution which is a
semimartingale.

Proof. The proof consists of showing that the solution of (4.7)-(4.8) is indistinguish-
able from the solution of (4.1)-(4.2). Subsequently Theorem 4.2 is the consequence
of Theorem 4.1.

Indeed, rewriting of (4.7) yields (4.2):

dθt =
N∑

i=1

(ei − θt−)p2

(
dt, (Σi−1(Xt−, θt−), Σi(Xt−, θt−)]× Rd−1

)

=
∫

Rd

N∑

i=1

(ei − θt−)1(Σi−1(Xt−,θt−),Σi(Xt−,θt−)](u1)p2(dt, du1 × du)

=
∫

Rd

c(Xt−, θt−, u)p2(dt, du).

Next, since the first three right hand terms of (4.8) and (4.1) are equal, it remains
to show that the fourth right hand term in (4.8) yields the fourth right hand term
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in (4.1) up to indistinguishability:
∫

Rd

φ(Xt−, θt−, θt, u)p2

(
dt,

(
0,ΣN (Xt−, θt−)

]× du
)

=
∫

(0,∞)

∫

Rd−1
φ(Xt−, θt−, θt, u)1(0,ΣN (Xt−,θt−)](u1)p2(dt, du1 × du)

=
∫

(0,∞)

∫

Rd−1
φ(Xt−, θt−, θt, u)

N∑

i=1

1(Σi−1(Xt−,θt−),Σi(Xt−,θt−)](u1)p2(dt, du1 × du)

=
∫

(0,∞)

∫

Rd−1

N∑

i=1

[
φ(Xt−, θt−, θt, u)1(Σi−1(Xt−,θt−),Σi(Xt−,θt−)](u1)

]
p2(dt, du1×du)

=
∫

(0,∞)

∫

Rd−1

N∑

i=1

[
φ(Xt−, θt−, θt−+∆θt, u)1(Σi−1(Xt−,θt−),Σi(Xt−,θt−)](u1)

]
p2(dt, du1×du)

=
∫

(0,∞)

∫

Rd−1

N∑

i=1

[
φ(Xt−, θt−, θt− + (ei − θt−), u)×

× 1(Σi−1(Xt−,θt−),Σi(Xt−,θt−)](u1)
]
p2(dt, du1 × du) =

=
∫

(0,∞)

∫

Rd−1

N∑

i=1

[
φ(Xt−, θt−, ei, u)1(Σi−1(Xt−,θt−),Σi(Xt−,θt−)](u1)

]
p2(dt, du1×du)

=
∫

Rd

g2(Xt−, θt−, u)p2(dt, du).

¤
Remark 4.3. We notice the interesting aspect that presence of θt in φ (equation
(4.8)) explicitly shows that jump of {Xt} depends on the switch from θt− to θt,
i.e., it is a hybrid jump.
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5. General Stochastic Hybrid Processes as solutions of SDEs

In this section we will consider processes of somewhat more general type than
those in previous sections. We want to construct an Rn × M-valued switching
jump diffusion which may have instantaneous jumps and switches when hitting
boundaries of some given sets. In order to simplify analysis we initially assume
that purely discontinuous martingale term is equal to zero (i.e. we take g1 ≡ 0).
For this we follow the approach in D2.2 (pp. 38-39).

5.1. Sequence of processes. Suppose for each ei ∈ M, i = 1, . . . , N there is an
open connected set Ei ⊂ Rn, with boundary ∂Ei. Let

E = {x |x ∈ Ei, i = 1, . . . , N} =
N⋃

i=1

Ei,

∂E = {x |x ∈ ∂Ei, i = 1, . . . , N} =
N⋃

i=1

∂Ei.

The interior of the set E is the jump “destination” set. Suppose function g2, defined
by (4.5), in addition to requirement (A4) has the following property:

(B1) (x + φ(x, ei, u)) ∈ Ei for each x ∈ Ei, u ∈ Rd−1, i = 1, . . . , N .

Following the approach in D2.2 (pp. 38-39) we consider an increasing sequence
of stopping times τE

n and a sequence of jump-diffusions {Xn
t t ≥ τE

n−1}, n = 1, 2, . . .
governed by the following SDEs (in integral form):

Xn
t = Xn

τE
n−1

+
∫ t

τE
n−1

a(Xn
s )ds +

∫ t

τE
n−1

b(Xn
s )dWs(5.1)

+
∫ t

τE
n−1

∫

Rd

g2(Xn
s−, θn

s−, u)p2(ds, du),

θn
t = θn

τE
n−1

+
∫ t

τE
n−1

∫

Rd

c(Xn
s−, θn

s−, u)p2(ds, du),(5.2)

Xn+1
τE

n
= gx(Xn

τE
n

, θn
τE

n
, βτE

n
),(5.3)

θn+1
τE

n
= gθ(Xn

τE
n

, θn
τE

n
, βτE

n
).(5.4)

More specifically, the stopping times are defined as follows

τE
k
4
= inf{t > τE

k−1 : Xk
t ∈ ∂E},(5.5)

τE
0
4
= 0(5.6)

k = 1, 2, . . . , N , i.e. τE
0 < τE

1 < · · · < τE
k < . . . a.s.,

gx : ∂E ×M× V → Rn,(5.7)

gθ : ∂E ×M× V →M,(5.8)

and {βt, t ∈ [0,∞)} is the sequence of V -valued (one may take V = Rd) i.i.d.
random variables distributed according to some given distribution. The initial
values X1

0 and θ1
0 are some prescribed random variables.
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Remark 5.1. Property (B1) assures that the sequence of stopping times (5.5) is
well defined and the boundary ∂E can be hit only by continuous part

(5.9) Xc,n
t = Xn

τE
n−1

+
∫ t

τE
n−1

a(Xn
s )ds +

∫ t

τE
n−1

b(Xn
s )dWs

of the processes {Xn
t }, n = 1, 2, . . . , between the jumps and/or switching times

generated by Poisson random measure p2.

5.2. Existence and uniqueness. We define the process {Xt, θt} as follows

(5.10)





Xt(ω) =
∑∞

n=1 Xn
t (ω)1[

τE
n−1(ω),τE

n (ω)
)(t)

θt(ω) =
∑∞

n=1 θn
t (ω)1[

τE
n−1(ω),τE

n (ω)
)(t)

provided there exist solutions {Xn
t , θn

t } of SDEs (5.1)-(5.4). On open set E process
{Xt, θt} (provided it exists) evolves as switching jump diffusion (4.1)-(4.2). At
times τE

k there is a jump and/or switching determined by the mappings gx and gθ

correspondingly, i.e. XτE
k
6= XτE

k − and/or θτE
k
6= θτE

k −.
To ensure the existence of a strong unique solution of (5.10) we need assumption

B1 and the following two:

(B2) d(∂E, gx(∂E,M, V )) > 0, i.e. {Xt} may jump only inside of open set E.

(B3) Process 5.10 hits the boundary ∂E a.s. finitely many times on any finite time
interval.

Theorem 5.2. Assume (A1)-(A4), (4.3), (4.4), (4.5) and (B1)-(B3). Let W , p2,
{βt, t ∈ [0,∞)}, X0 and θ0 be independent. Then process (5.10) exists for every
t ∈ R+, it is strongly unique and it is a semimartingale.

Proof. Let Ft be the σ-algebra generated by X0, Ws, p2(ds, du), and βs with s ≤ t.
Suppose τE

0 < τE
1 < . . . is the sequence of all instantaneous jumps and/or switches

at the boundary ∂E. By assumption (B3) the number of these jumps and/or
switches is a.s. finite on every finite time interval and τE

k ↑ ∞ a.s. Similarly as in
proofs of theorems 3.8 and 3.13 it suffices to establish the uniqueness and existence
of the process (5.10) on interval [τE

k−1, τ
E
k ] with assumption that FτE

k−1
-measurable

random variable (XτE
k−1

, θτE
k−1

) is given. Then we establish by induction that (5.10)
exists and is unique on

⋃∞
k=1[τ

E
k−1, τ

E
k ] = R+.

Suppose (XτE
k−1

, θτE
k−1

) = (Xk
τE

k−1
, θk

τE
k−1

) is FτE
k−1

-measurable. Then under condi-

tions (A1)-(A4), and (4.3), (4.4), (4.5) and using the same arguments as in remark
3.12 it follows from theorem 4.1 that for τE

k−1 ≤ t < τE
k there exists strongly unique

process

(5.11)
{

Xt = Xk
t ,

θt = θk
t .

It remains to show that (XτE
k

, θτE
k

) is FτE
k

-measurable and uniquely defined. By
definition of the process (5.10) we have:

(5.12)

{
XτE

k
= Xk+1

τE
k

= gx(Xk
τE

k
, θk

τE
k

, βτE
k

),

θτE
k

= θk+1
τE

k

= gθ(Xk
τE

k
, θk

τE
k

, βτE
k

).
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Since (Xk
t , θk

t ) is Ft-measurable, has no discontinuities of the second kind and by
condition (B1) is continuous with probability 1 at the point τE

k (see remark 5.1),
then (Xk

τE
k

, θk
τE

k
) is FτE

k
-measurable. βτE

k
is also FτE

k
-measurable. Thus the right

hand side of (5.12) is FτE
k

-measurable, i.e. (XτE
k

, θτE
k

) is FτE
k

-measurable. From
the strong uniqueness of {Xt, θt}t∈[τE

k−1,τE
k ) follows strong uniqueness of (XτE

k
, θτE

k
):

XτE
k

= gx(Xk
τE

k
, θk

τE
k

, βτE
k

) = gx(Xk
τE

k −0, θ
k
τE

k −0, βτE
k

) = gx(XτE
k −0, θτE

k −0, βτE
k

),

θτE
k

= gθ(Xk
τE

k
, θk

τE
k

, βτE
k

) = gθ(Xk
τE

k −0, θ
k
τE

k −0, βτE
k

) = gθ(XτE
k −0, θτE

k −0, βτE
k

).

By induction we obtain that process (5.10) exists and is strongly unique on⋃∞
k=1[τ

E
k−1, τ

E
k ] = R+. Moreover, it is a semimartingale, since by the theorem 4.1

each solution {Xk
t , θk

t }, k = 1, 2, . . . is a semimartingale. ¤
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6. Comparison of SDEs

This section presents a brief comparison of stochastic models developed in Blom
2003 [4], Ghosh and Bagchi 2004 [10] (also see Appendices A and B), and in the
present report. Table 1 shows what type of jumps and switches are covered by each
model.

Table 1. List of models and their main features

θ X1 X2 θ&X2 ∂E
GB1, Ghosh and Bagchi 2004 X - X X -
HB1, Henk Blom 2003 X - X X -
KB1, Krystul and Blom 2005 X X X X -
GB2, Ghosh and Bagchi 2004 X - - - X
HB2, Henk Blom 2003 X - X X X
KB2, Krystul and Blom 2005 X - X X X

Notations:
HB1 - switching hybrid-jump diffusion (Blom 2003 [4]);
HB2 - switching hybrid-jump diffusion with hybrid jumps at the boundary

(Blom 2003 [4]);
GB1 - switching jump diffusion (Ghosh and Bagchi 2004 [10] or appendix A);
GB2 - switching diffusion with hybrid jumps at the boundary (Ghosh and Bagchi

2004 [10] or appendix B);
KB1 - switching jump diffusion (Section 4);
KB2 - switching jump diffusion with hybrid jumps at the boundary (Section 5).

θ - independent random switching of θt;
X1 - independent random jump of Xt generated by compensated Poisson random

measure;
X2 - independent random jump of Xt generated by Poisson random measure;
θ&X2 - simultaneous jump of Xt and θt generated by Poisson random measure;
∂E - simultaneous jump of Xt and θt at the boundary.

First, let us consider models GB1 and HB1. These two SDEs differ only in
the integral term with respect to a Poisson random measure p, which determines
the jumps of Xt component. In GB1 p(dt, du) is a Poisson random measure with
intensity dt×m(du), where m is the Lebesgue measure on U = R. The projection
of support of integrand function on U = R must be bounded. In HB1 p(dt, du)
is a Poisson random measure with intensity dt × m(du1) × µ(u), where m is the
Lebesgue measure on U1 = R and µ is a probability measure on U = Rd−1. The
projection of support of integrand function on U1 = R is bounded by construction
and projection on U = Rd−1 can be unbounded. Thus, it is clear that HB1 includes
GB1 as a special case (GB1 ⊂ HB1).

KB1 is almost the same as HB1 plus an extra integral term with respect com-
pensated Poisson random measure q1 (HB1 ⊂ KB1).

HB2 is the HB1 plus the hybrid jumps at a boundary (HB1 ⊂ HB2).
KB2 is the KB1 without integral term with respect to compensated Poisson

random measure q1, but with hybrid jumps at the boundary. Actually, KB2 and
HB2 fall into one class of SDEs (HB2 = KB2).
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In general GB2 is not a subclass of HB2 since in GB2 the state of the system
(Xt, θt) takes values in

⋃∞
k=1(Sk,Mk), where Mk = {e1, e2, . . . , eNk

} and Sk ⊂ Rdk

may be different for different k’s. Let us denote by GB2∗ the set of GB2 models
with (Sk,Mk) = (Rn,M) for all k ∈ N. Then GB2∗ ⊂ HB2. Indeed, the GB2∗ is
a standard switching diffusion with hybrid jumps at the boundary, thus, it can be
seen as a special case of HB2.

Finally, it is important to point out that assumptions adopted for HB1, HB2 and
KB1, KB2 models, in order to ensure the existence and uniqueness of solutions, are
more relaxed than in case of models GB1 and GB2 (GB2∗) (see Appendices A and
B).

We summarize the “hierarchy” of models in table 2.

Table 2. The hierarchy of models

GB1 ⊂ HB1 ⊂ KB1
∩

GB2∗ ⊂ HB2 = KB2
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7. Markov Property

Assume we are given [11]:
a) a measurable space (S,B)
b) a measurable space (Ω,G) and a family of σ-algebras {Gs

t , 0 ≤ s ≤ t ≤ ∞},
such that Gs

t ⊂ Gu
v ⊂ G provided 0 ≤ u ≤ s ≤ t ≤ v; Gs

t denotes a σ-algebra of
events on time interval [s, t]; we write Gt in place of G0

t and Gs in place of Gs
∞;

c) a probability measure Ps,x for each pair (s, x) ∈ [0,∞)× S on Gs;
d) a function (stochastic process) ξt(ω) = ξ(t, ω) defined on [0,∞) × Ω with

values in S;
The system of objects described in a) - d) will be denoted by {ξt,Gs

t , Ps,x}.
Definition 7.1. A system of objects {ξt,Gs

t , Ps,x} is called a Markov process pro-
vided:

1) for each t ∈ [0,∞) ξt(ω) is measurable mapping of (Ω,G) into (S,B);
2) for arbitrary fixed s, t and B (0 ≤ s ≤ t, B ∈ B) the function P (s, x, t, B) =

Ps,x(ξt ∈ B) is B-measurable with respect to x;
3) Ps,x(ξs = x) = 1 for all s ≥ 0 and x ∈ S;
4) Ps,x(ξu ∈ B|Gs

t ) = Pt,ξt
(ξu ∈ B) for all s, t, u, 0 ≤ s ≤ t ≤ u < ∞, x ∈ S and

B ∈ B.

The measure Ps,x should be considered as a probability law which determines
probabilistic properties of the process ξt(ω) given that it starts at point x at the time
s. Condition 4 expresses the Markov property of the processes. Let Es,x denote
the mathematical expectation with respect to measure Ps,x. For Gs-measurable
random variable ξ(ω)

Es,x(ξ(ω)) =
∫

ξ(ω)Ps,x(dω).

It is not difficult to show that the Markov property (4) can be rewritten in terms
of mathematical expectations as follows:

Es,x(f(ξu)|Gs
t ) = Et,ξt(f(ξu)), 0 ≤ s ≤ t ≤ u < ∞,

where f is an arbitrary B-measurable bounded function.

Next, let us show that process

(7.1)





Xt(ω) =
∑∞

n=1 Xn
t (ω)1[

τE
n−1(ω),τE

n (ω)
)(t)

θt(ω) =
∑∞

n=1 θn
t (ω)1[

τE
n−1(ω),τE

n (ω)
)(t)

defined as a concatenation of solutions {Xn
t , θn

t } of the system of SDEs (5.1)-(5.4)
(see sections 5, 5.2), is Markov. We follow the approach used in [12]. Let ξs,η

t =
(Xs,x

t , θs,θ
t ) denote the process (7.1) on [s,∞) satisfying initial condition ξs,η

s = η =
(Xs,x

s , θs,θ
s ). Assume that conditions of theorem 5.2 are satisfied. Let Fs

t , s < t
be the σ-algebras generated by {Wu − Ws, p2([s, u], dz), βu, u ∈ [s, t]}, F0

t = Ft,
Fs
∞ = Fs. For s ≤ t the σ-algebras Fs and Fs are independent. Process ξs,η

t is
Fs-measurable, hence, it is independent of σ-algebra Fs. Let ηs be an arbitrary
Rn ×M-valued Fs measurable random variable. Then ξs,ηs

t , t ≥ s, is unique Ft-
measurable process on [s,∞) satisfying the initial condition ξs,ηs

s = ηs. Since for
u < s process ξu,y

t is Ft-measurable process on [s,∞) with initial condition ξu,y
s

then the following equality holds

(7.2) ξu,y
t = ξ

s,ξu,y
s

t , u < s < t.
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Let ϕ be a bounded measurable function on Rn×M, let ζs be an arbitrary bounded
Fs-measurable quantity. The independence of Fs and Fs and the Fubini’s theorem
imply that measure P on F∞ is a product of measures Ps and P s, where Ps is a
restriction of P on Fs, where P s is a restriction of P on Fs, and

E(ϕ(ξu,y
t )ζs) = E(ϕ(ξs,ξu,y

s
t )ζs) = E

(
ζs[E(ϕ(ξs,x

t ))]x=ξu,y
s

)
.

Since ξu,y
s is Fs-measurable then E(ϕ(ξu,y

t )|Fs) =
[
E(ϕ(ξs,x

t ))
]
x=ξu,y

s
. Let

(7.3) P (s, x, t, B) = P (ξs,x
t ∈ B), B ∈ BRn×M,

here BRn×M is the σ-algebra of Borel sets on Rn ×M. Then, by taking ϕ = IB , we
obtain

(7.4) P (ξu,y
t ∈ B|Fs) = P (s, ξu,y

s , t, B).

If ξt is an arbitrary process defined by (7.1), by the same reasoning with help of
which equalities (7.2) and (7.4) have been obtained, one can show that ξt = ξs,ξs

t

for s < t and that
P (ξt ∈ B|Fs) = P (s, ξs, t, B).

In this way processes defined by (7.1) are Markov processes with transition probabil-
ity P (s, x, t, B) defined by equality (7.4). To be precise, we have shown that the sys-
tem of objects {(Xt, θt),Fs

t , Ps,(x,θ)} , where Ps,(x,θ)

(
(Xt, θt) ∈ B

)
= P (s, (x, θ), t, B) =

P
(
(Xs,x

t , θs,θ
t ) ∈ B

)
, B ∈ BRn×M, is a Markov process.
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8. Strong Markov property

Definition 8.1.

In this section we prove the Markov property

Ps,x(ξu ∈ B|Gs
t ) = Pt,ξt

(ξu ∈ B), s ≤ t ≤ u

remains valid also when a fixed time moment t is replaced by a stopping time.
Let {ξt(ω),Gs

t , Ps,x} be a Markov process in the space (S,B). Let T denote the
σ-algebra of Borel sets on [0,∞).

Definition 8.2. A Markov process is called strong Markov if:
a) the transition probability P (s, x, t, B) for a fixed B is a T ×B×T -measurable

function of (s, x, t) on the set 0 ≤ s ≤ t < ∞, x ∈ S;
b) it is progressively measurable;
c) for any s ≥ 0, t ≥ 0 and B-measurable function f(x) and an arbitrary stopping

time τ equality

(8.1) Es,x(f(ξt+τ )|Gs
τ ) = Eτ,ξτ (f(ξt+τ ))

is satisfied.

Remark 8.3. In order that equation (8.1) be satisfied, it is necessary that the
random variable g(ξτ , τ, t + τ) = Eτ,ξτ (f(ξt+τ )) be Gs

τ -measurable. For this reason
assumptions a) and b) make part of the definition of the strong Markov property
[11].

Now we return to the process ξt = (Xt, θt) defined in section 5.2. In previous
section we have shown that it is Markov process. The following theorem proves
that it is also a Strong Markov process.

Proposition 8.4. Assume (A1)-(A4), (4.3), (4.4), (4.5) and (B1)-(B3). Let W ,
p2, µE, X0 and θ0 be independent. Let Fs

t , s < t be the σ-algebras generated
by {Wu − Ws, p2(dz, [s, u]), βu, u ∈ [s, t]}. For any bounded Borel function f :
Rn ×M→ R and any Fs

t -stopping time τ

Es,x(f(ξt+τ )|Fs
τ ) = Eτ,ξτ (f(ξt+τ )).

Proof. Let {σk, k = 0, 1, . . . } denote the ordered set of the stopping times {τE
k , k =

1, 2, . . . } and {τk, k = 0, 1, . . . }. The latter set is the set of the stopping times
generated by Poisson random measure p2. Then on each time interval [σk−1, σk),
k = 1, 2, . . . process ξt evolves as a diffusion staring at point ξσk−1 at the time
σk−1. This means that on each time interval [σk−1, σk) the Strong Markov property
holds. Let Fs

τ be the σ-algebra generated by the Fs
t -stopping time τ . The sets
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{ω : τ(ω) ∈ [σk−1(ω), σk(ω))}, k = 1, 2, ... are Fs
τ -measurable. Hence

Es,x(f(ξt+τ )|Fs
τ ) =

∞∑

k=0

1[σk−1,σk)(τ)Es,x

(
f(ξt+τ )|Fs

τ

)

=
∞∑

k=0

Es,x

(
1[σk−1,σk)(τ)f(ξt+τ )|Fs

τ

)

=
∞∑

k=0

Eτ,ξτ

(
1[σk−1,σk)(τ)f(ξt+τ )

)

= Eτ,ξτ

( ∞∑

k=0

1[σk−1,σk)(τ)f(ξt+τ )
)

= Eτ,ξτ

(
f(ξt+τ )

)
.

This completes the proof. ¤
Acknowledgement: The authors are thankful to Vera Minina (PhD student at

Twente University) for developing the novel and elegant approach in the proof of
Proposition 8.4 in proving the strong Markov property for a similar hybrid stochas-
tic process (e.g. no Poisson jumps).
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9. Concluding Remarks

The aim of this report was to significantly further the study of SDE’s on a hybrid
space, including characterizations of its solutions in terms of pathwise uniqueness,
semimartingale and strong Markov process properties. We have used Jacod &
Shyriayev 1987 [14] and Gihman & Skorohod 1982 (Russian) [12] to characterize
jump-diffusion process solutions of SDE’s. This yielded a valuable improvement
over the Lepeltier & Marchal 1976 [16] regarding the understanding of semimartin-
gale property and pathwise uniqueness of jump-diffusions. Next we have followed a
similar path as taken by Blom 1990, 2003 [2, 4] in transferring this pathwise unique-
ness and semimartingale understanding to the class of stochastic hybrid processes.
This subsequently allowed to incorporate instantaneous jumps at a boundary within
the same framework including pathwise uniqueness and semimartingale property.
Finally we have introduced a novel approach in showing strong Markov property
of solutions of SDEs.
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Appendix A. Stochastic hybrid model 1 of Ghosh and Bagchi (2004)

The evolution of Rn × M-valued Markov process {Xt, θt} is governed by the
following equations:

dXt = a(Xt, θt)dt + b(Xt, θt)dWt +
∫

R
g(Xt−, θt−, u)p(dt, du),(10.1)

dθt =
∫

R
h(Xt−, θt−, u)p(dt, du).(10.2)

Here:
(i) for t = 0, X0 is a prescribed Rn-valued random variable.

(ii) for t = 0, θ0 is a prescribed M-valued random variable.

(iii) W is an n-dimensional standard Wiener process.

(iv) p(dt, du) is a Poisson random measure with intensity dt ×m(du), where m is
the Lebesgue measure on R. p is assumed to be independent of W .

The coefficients are defined as follows

a : Rn ×M→ Rn

b : Rn ×M→ Rn×n

g : Rn ×M× R→ Rn

h : Rn ×M× R→ RN .

Function h is defined as follows:

(10.3) h(x, ei, u) =

{
ej − ei if u ∈ ∆ij(x)
0 otherwise

where for i, j ∈ {1, . . . , N}, i 6= j, x ∈ Rn, ∆ij(x) are the intervals of the real line
defined in the following manner:

∆12(x) = [0, λ12(x))
∆13(x) = [λ12(x), λ12(x) + λ13(x))

...
∆1N (x) =

[∑N−1
j=2 λ1j(x),

∑N
j=2 λ1j(x)

)

∆21(x) =
[∑N

j=2 λ1j(x),
∑N

j=2 λ1j(x) + λ21(x)
)

and so on. In general,

∆ij(x) =
[ i−1∑

i′=1

N∑

j′=1
j′ 6=i′

λi′j′(x) +
j−1∑

j′=1
j′ 6=i

λij′(x),
i−1∑

i′=1

N∑

j′=1
j′ 6=i′

λi′j′(x) +
j∑

j′=1
j′ 6=i

λij′(x)
)
.

For fixed x these are disjoint intervals, and the length of ∆ij(x) is λij(x),
λij : Rn → R, i, j = 1, . . . , N , i 6= j.

Let K1 be the support of g(·, ·, ·) and let U1 be the projection of K1 on R. It
is assumed that U1 is bounded. Let K2 denote the support of h(·, ·, ·) and U2 the
projection of K2 on R. By definition of c, U2 is a bounded set. One can define
function g(·, ·, ·) so that the sets U1 and U2 form three nonempty sets: U1 \ U2,
U1 ∩ U2 and U2 \ U1 (see Figure 1). Then, we have the following:
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Figure 1. U1 ∪ U2 is the projection of set K1 ∪K2 on R

I: For u ∈ U1 ∩ U2 {
g(·, ·, u) 6= 0
h(·, ·, u) 6= 0

i.e., simultaneous jumps of Xt and switches of θt are possible.

II: For u ∈ U2 \ U1 {
g(·, ·, u) = 0
h(·, ·, u) 6= 0

i.e., only random switches of θt are possible.

III: For u ∈ U1 \ U2 {
g(·, ·, u) 6= 0
h(·, ·, u) = 0

i.e., only random jumps of Xt are possible.

Ghosh and Bagchi (2004) [10] proved that under the following conditions there
exists an a.s. unique strong solution of SDE (10.1-10.2).

(C1) For each ei ∈ M, i = 1, . . . , N , a(·, ei) and b(·, ei) are bounded and Lipschitz
continuous.

(C2) For all i, j ∈ {1, . . . , N}, i 6= j, functions λij(·) are bounded and measurable,
λij(·) ≥ 0 for i 6= j and

∑N
j=1 λij(·) = 0 for any i ∈ {1, . . . , N}.

(C3) U1, the projection of support of g(·, ·, ·) on R, is bounded.

Let us compare SDEs (4.1-4.2) and (10.1-10.2).
The first two terms (i.e. the drift and the diffusion term) in (4.1) and in (10.1)

are identical. However, when proving the existence of strong unique solution of
SDE (10.1-10.2) Ghosh and Bagchi (2004) assume that the drift and the diffusion
coefficients are bounded (condition C1). To prove the similar result for SDE (4.1-
4.2) more general growth condition (A1) is adopted.

The jump part of Xt in (4.1) consists of two integral terms: one is an integral
with respect to a compensated Poisson random measure q1 and the second one is
an integral with respect to a Poisson random measure p2 on R+×Rd with intensity
dt×m(du1)× µ̄(u) (see section 4). The jump part of Xt in (10.1) is described only
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by one integral term with respect to a Poisson random measure p on R+ × R with
intensity dt×m(du). The construction of the “switching” terms (4.2) and (10.2) is
almost identical with some minor differences in defining the “rate” intervals. The
conditions on “rate” functions λ(ei, ej , ·) and λij(·) are the same, i.e. these functions
are assumed to be bounded and measurable for all i, j = 1, . . . , N (conditions A3
and C2).

There is a substantial difference in definitions of integrand functions g2 and
g which determine the jump size of Xt. In order to satisfy the existence and
uniqueness conditions, U1, the projection of support of function g on U = R, must
be bounded (condition C3), which is a kind of limitation. In case of function g2 we
have a bit more freedom. It has an extra argument u ∈ U = Rd−1, and, since the
intensity of p2 with respect to u is a probability measure µ̄ (which is always finite),
the projection of support of g2 on U = Rd−1 can be unbounded. It is only required
that g2 be integrable with respect to p2(dt, du) (condition A4).

It is clear from the above that SDE (10.1-10.2) can be seen as a special case of
(4.1-4.2).
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Appendix B. Stochastic hybrid model 2 of Ghosh and Bagchi (2004)

The state of the system at time t, denoted by (Xt, θt), takes values in
⋃∞

n=1(Sn,Mn),
where Mn = {e1, e2, . . . , eNn

} and Sn ⊂ Rdn . Between the jumps of Xt the state
equations are of the form

dXt = an(Xt, θt)dt + bn(Xt, θt)dWn
t ,(11.1)

dθt =
∫

R
hn(Xt−, θt−, u)p(dt, du),(11.2)

where for each n ∈ N
an : Sn ×Mn → Rdn

bn : Sn ×Mn → Rdn×dn

hn : Sn ×Mn × R→ RNn .

Function hn is defined in a similar way as (10.3) with rates λn
ij : Sn → R, λn

ij ≥ 0
for i 6= j, and

∑Nn

j=1 λn
ij(·) = 0 for any i ∈ {1, . . . , N}. Wn is a standard dn-

dimensional Wiener process, p is a Poisson random measure on R+ × R with the
intensity dt×m(du) as in the previous section.

For each n ∈ N, let An ⊂ Sn, Dn ⊂ Sn. The set An is the set of instantaneous
jump, whereas Dn is the destination set. It is assumed that for each n ∈ N, An and
Dn are closed sets, An ∩Dn = ∅ and infn d(An, Dn) > 0. If at some random time
Xt hits An, then it executes an instantaneous jump. The destination of (Xt, θt) at
this juncture is determined by a map

gn : An ×Mn → ∪m(Dm ×Mm).

After reaching the destination, the process {Xt, θt} follows the same evolutionary
mechanism over and over again.

Let {ηt} be an N valued process defined by

(11.3) ηt = n if (Xt, θt) ∈ Sn ×Mn.

The {ηt} is a piecewise constant process, it changes from n to m when (Xt, θt)
jumps from the regime Sn ×Mn to the regime Sm ×Mm. Thus ηt is an indicator
of a regime and a change in ηt means a switching in the regimes in which {Xt, θt}
evolves.

Let

S̃ = {(x, ei, n)|x ∈ Sn, ei ∈Mn},
Ã = {(x, ei, n)|x ∈ An, ei ∈Mn},
D̃ = {(x, ei, n)|x ∈ Dn, ei ∈Mn}.

Then {Xt, θt, ηt} is an S̃-valued process. The set Ã is the set where jumps occur
and D̃ is the destination set for this process. The sets ∪n(Sn×Mn), ∪n(An×Mn)
and ∪n(Dn ×Mn) can be embedded in S̃, Ã and D̃ respectively.

Let d0 denote the injection map of ∪n(Dn ×Mn) into D̃. Define three maps

g̃i : Ã → D̃, i = 1, 2,

h̃ : Ã → N.
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g̃1(x, ei, n) = the first component in d0(gn(x, ei)),

g̃2(x, ei, n) = the second component in d0(gn(x, ei)),

h̃(x, ei, n) = the third component in d0(gn(x, ei)).

Let τm+1 be the stopping time defined by

τm+1 = inf{t > τm|Xt−, θt−, ηt− ∈ Ã}.
The equations for {Xt, θt, ηt} may thus be summarized as follows:

dXt =
(
a(Xt, θt, ηt) +

∞∑
m=0

[g̃1(Xτm−, θτm−, ητm−)−Xτm−)]δ(t− τm)
)
dt(11.4)

+ b(Xt, θt, ηt)dW ηt

t ,

dθt =
∫

R
h(Xt−, θt−, ηt−, u)p(dt, du)(11.5)

+
∞∑

m=0

[g̃2(Xτm−, θτm−, ητm−)− θτm−)]δ(t− τm)dt,

dηt =
∞∑

m=0

[h̃(Xτm−, θτm−, ητm−)− ητm−)]I{τm≤t},(11.6)

where δ is the Dirac measure and a(x, ei, n) = an(x, ei), b(x, ei, n) = bn(x, ei),
h(x, ei, n, u) = hn(x, ei, u).

To ensure the existence of strong unique solution of SDE (11.4-11.6) Ghosh and
Bagchi (2004) [10] adopted the following assumptions:

(D1) For each n ∈ N and ei ∈Mi, an(·, ei) and bn(·, ei) are bounded and Lipschitz
continuous.

(D2) For each n ∈ N, i, j = 1, . . . , Mn, i 6= j, functions λn
ij(·) are bounded and

measurable, λn
ij(·) ≥ 0 for i 6= j and

∑N
j=1 λn

ij(·) = 0 for any i ∈ {1, . . . , N}.
(D3) The maps gn, n ∈ N, are bounded and uniformly continuous.

(D4) infn d(An, Dn) > 0.

The above model has similarities to the one we have considered in section 5. Let
us see what are the main differences between SDE (5.1-5.4) and SDE (11.4-11.6).

Solutions of SDE (11.4-11.6) are the
⋃∞

n=1(Sn,Mn)-valued switching diffusions
with hybrid jumps at the boundary. Before hitting the boundary {Xt, θt} evolves
as an (Sn,Mn)-valued switching diffusion in some regime ηt = n ∈ N. The drift and
the diffusion coefficients and the mapping determining a new starting point of the
process after the hitting the boundary can be different for every different regime
n ∈ N.

Solutions of SDE (5.1-5.4) are the (Rn ×M)-valued switching-jump diffusions
with hybrid jumps at the boundary. The dimension of the state space and the
coefficients of SDE are fixed. Hence, on this specific point, model 2 of Ghosh and
Bagchi (2004) [10] is more general. However the jump term in SDE (5.1) is much
more general than the jump term in equation (11.4).

Now let us have a look at assumptions D1-D4. Assumption D1 implies that our
local assumptions A1 and A2 for SDE (4.1-4.2) are definitely satisfied. Assumptions
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D2 and D3 imply that assumptions A3 and A4 for SDE (4.1-4.2) are satisfied.
Assumption D4 implies that B1 and B2 adopted to SDE (5.1-5.4) are satisfied. It
ensures that after the jump the process starts inside of some open set, but not on
a boundary. The non-Zeno condition B3 of SDE (5.1-5.4) is missing in Ghosh and
Bagchi (2004) [10].
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