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1 Aim and Scope

The objective of WP5 of HYBRIDGE is to develop algorithms for assisting air traffic

controllers and pilots with conflict resolution maneuvers. In Deliverable D5.1 we gave

an introduction to the structure of Air-Traffic Management and to the role of air traffic

controllers in the current system. In Deliverable D5.2 we proposed a Model Predictive

Control formulation of the conflict resolution task in Air-Traffic Control. The main aim

of Deliverable D5.3 of HYBRIDGE is summarized in Task 5.3 of WP5:

The optimization problem is likely to be computationally demanding. Ran-

domized algorithms will be employed to obtain efficient estimates of the opti-

mum and confidence bounds.

In this deliverable we present the optimization framework adopted for conflict resolution

in WP5 of HYBRIDGE. The optimization problems that arise in the context of conflict

resolution are notoriously complex computationally. We consider two different method-

ologies for efficiently computing approximate solutions to these optimization problems.

The first part of the deliverable is devoted to the stochastic optimization framework de-

veloped for the Model Predictive Control approach to conflict resolution in a stochastic

setting. The second part is devoted to a neurodynamic optimization approach for efficient

conflict resolution when the resolution problem is posed as an optimal control problem in

a deterministic setting.

In Section 2 we introduce the context of optimization for Stochastic Model Predictive

Control. In Section 3.1, we discuss the penalty formulation of constrained optimization

problems in a stochastic setting. The Metropolis-Hasting algorithm, introduced in Sec-

tion 3.2, and Simulated Annealing, introduced in Section 3.3, will be used as optimization

tools to solve the optimization problem. Simulated Annealing was originally developed

for a deterministic setting, Section 3.4 is devoted to present the use of this method for

the optimization of an expected value criterion. In Section 3.5 we discuss implementation

issues and improvements. The reader is referred to Deliverable D5.4 for an illustration of

the use of these optimisation algorithms for conflict resolution. This illustration will be

given through simulations benchmarks inspired by current ATC practice.

Section 4 initiates the second part of the deliverable by introducing conflict resolution as an

optimal control problem. The resulting non-linear optimization problem is formulated in

Section 4.1-2. Section 4.3 describes the use of neural networks for efficient approximation

of the solution.
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2 Optimization for Model Predictive Control

The essence of the Model Predictive Control (MPC) approach to the control of uncertain

systems is the following algorithm:

Step 1: Calculate the control inputs that optimize the performance of the controlled

variables, as predicted by a prediction model, according to a performance criterion de-

fined over a prediction horizon;

Step 2: Apply the initial segment of the optimized control input trajectory to the system

and estimate the new state of the system from the latest measurements. Jump back to

Step 1 and repeat.

The use of the latest measurements, combined with the receding horizon strategy, intro-

duces feedback which combats the uncertainty in the evolution of the system. A unique

advantage of MPC, compared with other control methodologies, is that constraints can be

introduced into the problem formulation; a constrained optimization problem must then

be solved [15]. MPC relies on the repeated solution of an optimization problem in real

time; advances in MPC are therefore heavily dependent on advances in optimization.

Most research on MPC has assumed a deterministic setting in which uncertainty (un-

known disturbances and modeling errors) is described by hard-bounded intervals which

represent admissible ranges of values for the unknown quantities in the system. This

approach leads to criteria of worst-case type, typically leading to min-max optimization

problems [10, 15]. On the other hand, stochastic descriptions of uncertainty are very com-

mon and widely used. In a stochastic setting, a natural criterion is the expected value

of the performance over the prediction horizon. The optimization of an expected value

criterion is a difficult task. Except for a very few special cases, it is usually impossible

or computationally intractable to evaluate analytically the integrals involved in calcu-

lating the expectations. One of the few examples, for the case of Stochastic Predictive

Control, is [11] where, motivated by the particular application, Gaussian and linear-in-

the-instruments models are considered and therefore exact calculations can be made. In

general, currently there exists no usable method of applying the MPC approach to more

complex stochastic nonlinear and hybrid dynamical systems. Here, the term hybrid de-

notes dynamical systems where the continuous evolution is interlaced by abrupt changes

regulated by finite discrete, and possibly probabilistic, dynamics [3, 5, 8].

In HYBRIDGE we address the solution of such problems, based on recent advances in

simulation-based Monte Carlo methods. The speed and power of modern computers allow

such solutions to be implemented in real-time for an increasing range of applications —

among these applications is Air-Traffic Control, where substantial computational power

is available and computation times of the order of one minute are acceptable.

Our simulation-based approach is motivated by conflict resolution in Air-Traffic Control.

Here, we introduce the context of research in Air-Traffic Control and explain why this

7



approach represents an important novelty in this area.

In the current organisation of Air-Traffic Management the centralised Air-Traffic Control

is in complete control of the air-traffic and ultimately responsible for safety. The main

objective of Air-Traffic Control is to maintain safe separation between aircraft by issuing

proper instructions to the pilots. A conflict is defined as the situation of loss of minimum

safe separation between two aircraft. If it is possible, Air-Traffic Control tries also to fulfil

the (possibly conflicting) requests of aircraft and airlines; for example, desired paths to

avoid turbulence or desired time of arrivals to meet schedule.

In order to improve performance of Air-Traffic Control, mainly in anticipation of increasing

levels of traffic, research effort has been spent in the last decade on creating tools for

conflict detection and resolution. A review of research work in this area of Air-Traffic

Control is presented in [12].

Uncertainty is introduced in air-traffic by the action of the wind field, incomplete knowl-

edge of the physical coefficients of the aircraft and unavoidable imprecision in the ex-

ecution of ATC instructions. In conflict detection the objective is to evaluate conflict

probability over a certain future horizon starting from the current positions and flight

plans of the aircraft. In conflict resolution the objective is to calculate suitable maneu-

vers to avoid a predicted conflict. A number of conflict resolution algorithms has been

proposed for a deterministic setting, for example [7, 9, 21]. These methods are charac-

terised by the use of extremely simplified models, which are forced by the computational

complexity of the algorithms. Moreover, in conflict resolution several resolution maneu-

vers usually coexist and the choice of the actual resolution maneuver implies the solution

of the combinatorial problem of selecting the proper coordination between the aircraft.

Thus the computational complexity grows explosively with the number of aircraft. In a

stochastic setting, resolution strategies virtually do not exist. The research has concen-

trated mainly on efficient algorithms for conflict detection. The main reason for this is the

complexity of stochastic prediction models which, even if it does not make it impossible to

estimate conflict probability through Monte Carlo methods, it makes the quantification

of the effects of possible control actions intractable. To the best of the authors knowledge

the only probabilistic approach to conflict resolution is the decentralized approach of [18],

based on stochastic variant of “gradient descent” type methods used in robotics. Again,

the dynamics considered in this work are very simplistic.

The main bottleneck in conflict resolution using optimization methods is the computa-

tional complexity of the algorithms. As discussed above, this has forced most authors to

restrict their attention to extremely simplistic (and hence unrealistic) models. Instead of

approximating the model, we approximate the optimization computation. Two different

approximations schemes are considered. One is probabilistic and is based on stochastic

optimization methods and the other is deterministic and is based on the principles of

neuro-dynamic programming.
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3 Randomized approximation methods

3.1 Penalty formulation of an expected value optimisation prob-

lem with constraints

In our approach we formulate conflict resolution as a constrained optimisation problem.

Detailed formulations for two practical ATM problems are given in [13, 14]. Here it

suffices to say that, given a set of aircraft, a maneuver is determined by a parameter ω

which defines the nominal paths of the aircraft during the maneuver and that the actual

execution of the maneuver is affected by uncertainty. Therefore, the sequence of actual

positions of the aircraft during the resolution maneuver (for example: the sequence of

positions every 6 seconds which is a typical time interval between two successive radar

sweeps) a-priori of its execution is a random variable denoted by X. A conflict is defined

as the event that the positions of two aircraft during the execution of the maneuver are

too close. The objective is to select ω in order to maximise the expected value of some

measure of performance associated to the execution of the resolution maneuver while

ensuring a small probability of conflict. In this section we introduce the formulation of

the problem in a general fashion.

Let X be a random variable whose distribution depends on some parameter ω. The

distribution of X is denoted by pω(x) with x ∈ X. The set of all possible values of ω is

denoted by Ω. We assume that a constraint on the random variable X is given in terms

of a feasible set Xf ⊆ X. We say that a realisation x, of random variable X, violates the

constraint if x 6∈ Xf . Moreover, we assume that for a realisation x ∈ Xf some definition

of performance of x is given. In general performance can depend also on the value of ω,

therefore performance is measured by a function perf(ω, x), x ∈ Xf , ω ∈ Ω. We assume

that perf(ω, x) takes values in (0, 1]. The probability of satisfying the constraint is denoted

by P(ω)

P(ω) =

∫

x∈Xf

pω(x)dx . (1)

The probability of violating the constraint is denoted by P̄(ω) = 1−P(ω). The expected

performance for a given ω ∈ Ω is denoted by Perf(ω), where

Perf(ω) =

∫

x∈Xf

perf(ω, x)pω(x)dx . (2)

Ideally one would like to maximise the performance over all ω, subject to a bound on

the probability of constraint satisfaction. Given a bound P̄ ∈ [0, 1], this corresponds to

solving the constrained optimization problem

Perfmax |P̄ = sup
ω∈Ω

Perf(ω) (3)
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subject to P̄(ω) < P̄. (4)

Clearly, a necessary condition for the problem to have a solution is that there exists ω ∈ Ω

such that P̄(ω) ≤ P̄, or, equivalently,

P̄min = inf
ω∈Ω

P̄(ω) < P̄. (5)

This optimization problem is generally difficult to solve, or even to approximate by ran-

domised methods. Here we approximate this problem by an optimisation problem with

penalty terms. We show that with a proper choice of the penalty term we can enforce the

desired maximum bound on the probability of violating the constraint, provided that such

a bound is feasible, at the price of sub-optimality in the resulting expected performance.

Let us introduce the function u(ω, x) defined as

u(ω, x) =







perf(ω, x) + Λ x ∈ Xf

1 x 6∈ Xf ,

(6)

where Λ ≥ 1. The parameter Λ represents a reward for constraint satisfaction. The

expected value of u(ω, x) is given by

U(ω) =

∫

x∈X

u(ω, x)pω(x)dx ω ∈ Ω . (7)

Instead of the constrained optimization problem (3)–(4) we solve the unconstrained opti-

mization problem:

Umax = sup
ω∈Ω

U(ω). (8)

Assume the supremum is attained and let ω̄ denote the optimum solution, i.e. Umax =

U(ω̄). For ω̄ we would like to obtain bounds on the probability of violating the con-

straints and the level of suboptimality of Perf(ω̄) over Perfmax |P̄. A basic bound on

the probability of violating the constraint at ω̄ is the following.

Proposition 3.1 P̄(ω̄) satisfies

P̄(ω̄) ≤
1 + (Λ − 1)P̄min

Λ
. (9)

Proof: The optimisation criterion U(ω) can be written in the form

U(ω) =

∫

x∈Xf

(perf(ω, x) + Λ)pω(x)dx +

∫

x 6∈Xf

pω(x)dx

= Perf(ω) + Λ − (Λ − 1)P̄(ω) .

By the definition of ω̄ we have that U(ω̄) ≥ U(ω) for all ω ∈ Ω. We therefore can write

Perf(ω̄) + Λ − (Λ − 1)P̄(ω̄) ≥ Perf(ω) + Λ − (Λ − 1)P̄(ω) ∀ω.

10



Since 0 < perf(ω, x) ≤ 1, Perf(ω) satisfies

0 < Perf(ω) ≤ P (ω) . (10)

Therefore

P (ω̄) − (Λ − 1)P̄(ω̄) ≥ −(Λ − 1)P̄(ω) ∀ω

or, equivalently,

P̄(ω̄) ≤
1 + (Λ − 1)P̄(ω)

Λ
∀ω

We obtain (9) by taking a minimum to eliminate the quantifier on the right-hand side of

the above inequality.

Proposition 3.1 suggests a method for choosing Λ to ensure that the solution ω̄ of the

optimization problem will satisfy P̄(ω̄) ≤ P̄. The following immediate corollaries make

this observation more explicit.

Corollary 3.1 Any

Λ ≥
1 − P̄min

P̄ − P̄min

(11)

ensures that P̄(ω̄) ≤ P̄.

Typically such a bound will not be useful in practice, since the value of P̄min will be

unknown. If we know that there exists a parameter ω ∈ Ω for which the constraints are

satisfied almost surely a tighter (and potentially more useful) bound can be obtained.

Corollary 3.2 If there exists ω ∈ Ω such that P̄(ω) = 0, then any

Λ ≥
1

P̄
(12)

ensures that P̄(ω̄) ≤ P̄.

For cases where the existence of such an ω cannot be guaranteed, it suffices to know P̄(ω)

for some ω ∈ Ω with P̄(ω) < P̄ to obtain a bound.

Corollary 3.3 If there exists ω ∈ Ω for which P̂ = P̄(ω) ≤ P̄ is known, then any

Λ ≥
1 − P̂

P̄ − P̂
(13)

ensures that P̄(ω̄) ≤ P̄.

The last bound will of course be more conservative than those of the previous two corollar-

ies. In addition to bounds on the probability that ω̄ satisfies the constraints, we would also

like to obtain a bound on how far the performance Perf(ω̄) is from the ideal performance

Perfmax |P̄. The following proposition provides a basic bound in this direction.
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Proposition 3.2 The performance of the maximiser, ω̄, of U(ω) satisfies

Perf(ω̄) ≥ Perfmax |P̄ − (Λ − 1)(P̄ − P̄min). (14)

Proof: By definition of ω̄ we have that U(ω̄) ≥ U(ω) for all ω ∈ Ω. In particular, we

know that

Perf(ω̄) ≥ Perf(ω) − (Λ − 1)
[

P̄(ω) − P̄(ω̄)
]

∀ω : P̄(ω) ≤ P̄ .

Taking a lower bound of the right-hand side, we obtain

Perf(ω̄) ≥ Perf(ω) − (Λ − 1)
[

P̄ − P̄min

]

∀ω : P̄(ω) ≤ P̄ .

Taking the maximum and eliminating the quantifier on the right-hand side we obtain the

desired inequality.

Clearly to minimise the gap between the optimal performance and the performance of ω̄

we need to select Λ as small as possible.

This observation, together with Corollaries 3.1–3.3 leads to the following.

Corollary 3.4 If P̄min is known, the choice

Λ =
1 − P̄min

P̄ − P̄min

ensures that P̄(ω̄) ≤ P̄ and Perf(ω) ≥ Perfmax |P̄ + P̄− 1. The same bound is achieved

if an ω ∈ Ω such that P̄(ω) = 0 is known to exist by setting Λ = 1
P̄
.

Corollary 3.5 If there exists ω ∈ Ω for which P̂ = P̄(ω) is known and P̂ < P̄, then the

choice

Λ =
1 − P̂

P̄ − P̂

ensures that P̄(ω̄) ≤ P̄ and

Perf(ω̄) ≥ Perfmax |P̄ −
P̄ − P̄min

P̄ − P̂
[1 − P̄].

3.2 The Metropolis-Hastings algorithm

Metropolis-Hastings is an algorithm to generate extractions from a desired arbitrary dis-

tribution h(ω) by simulating a Markov Chain Ω(k) whose stationary distribution is h(ω).

In the algorithm, g(ω|ω̄) is an instrumental (or proposal) distribution, freely chosen by

the user. The only requirement is that g(ω|ω̄) covers the support of h(ω).

Metropolis-Hastings algorithm

Given ω(k):
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1 Extract Ω̃ ∼ g (ω|ω(k))

2 Extract the new state of the chain as

ω(k + 1) =

{

Ω̃ with probability ρ(ω(k), Ω̃)

ω(k) with probability 1 − ρ(ω(k), Ω̃)

where

ρ(ω, ω̃) = min

{

1,
h(ω̃)

h(ω)

g(ω|ω̃)

g(ω̃|ω)

}

(15)

A well-known and, in a large number of cases, very useful property of the Metropolis-

Hastings algorithm is that the desired distribution h(ω) can also be known only up to a

scaling factor which, in fact, would be irrelevant in the calculation of ρ(ω, ω̃).

Under very general conditions the stationary distribution of the chain produced by the

algorithm is h(ω). If we denote by Ω the support of h(ω), we have that for every con-

ditional distribution g(ω|ω̄) whose support include Ω, h(ω) is a stationary distribution

of the chain produced by the Metropolis-Hastings algorithm. This result can be easily

proved by calculating the kernel of the Markov Chain Ω(k) which is:

κ(ω̄, ω) = ρ(ω̄, ω)g(ω|ω̄) +

[

1 −

∫

Ω

ρ(ω̄, z)g(z|ω̄)dz

]

δω̄(ω) . (16)

Then, it can be shown that κ(ω̄, ω) satisfies the detailed balance condition κ(ω̄, ω)h(ω̄) =

κ(ω, ω̄)h(ω) which implies that h(ω) is the stationary distribution of the chain. Notice

that, even if the search distribution g(ω̄|ω) changes at each step due to the conditioning

with respect to the current state of the chain, the kernel of the chain is homogeneous.

The ergodicity of Ω(k) (i.e. convergence in distribution to the stationary distribution)

can also be proved with minimal assumptions.

In case g(ω|ω̄) = g(ω) (i.e. no conditioning is considered), the following result on the

convergence rate to stationary distribution is available.

Proposition 3.3 [19, Theorem 6.3.1] The Markov Chain Ω(k) is uniformly ergodic if

M = sup
ω∈Ω

h(ω)

g(ω)
(17)

is finite. In this case, let Kn(ω, · ) denote the n-transitions kernel of Ω(k), then

‖Kn(ω, · ) − h(·)‖TV ≤ 2

(

1 −
1

M

)n

∀ω ∈ Ω (18)

where ‖ · ‖TV denotes the total variation norm.

In case of a general proposal distribution g(ω|ω̄) there are instead no general results and,

though the Ω(k) is ergodic by construction, in some cases it could even be not uniformly

ergodic.

13



3.3 Simulated Annealing

Simulated Annealing is a randomised strategy for approximate global optimisation of a

deterministic criterion C(ω)[22]. It relies on extractions of a random variable Ω whose

distribution has modes which coincide with the optimal points of C(ω). These extrac-

tions are obtained through Monte Carlo Markov Chain simulation [19]. The problem of

optimising the expected criterion is then reformulated as the problem of estimating the

optimal points from extractions concentrated around them.

To introduce Simulated Annealing we consider the case in which ω is a discrete set. In

particular, denote Ωopt = {ωopt
i , i = 1, . . . ,Ropt} the set of global minimisers of C(ωi),

then the essence of Simulated Annealing is the construction of a Markov Chain with

stationary distribution hc(ωi), with tunable parameter c, that converges, as c tends to 0,

to a uniform distribution on the set Ωopt, i.e.

lim
c→0

hc(ωi) = πi (19)

where

πi =

{

R−1
opt if ωi ∈ Ωopt

0 elsewhere
. (20)

Sufficient conditions for hc(ωi) to satisfy (19) and (20) are given in the following theorem.

Theorem 3.1 [20] Let hc(ωi) be in the form

hc(ωi) =
ψ(C(ωi), c)

∑R
j=1 ψ(C(ωj), c)

(21)

where ψ(C, c) is a two arguments function satisfying the following three conditions

lim
c→0

ψ(C, c) =

{

0 if C > 0

∞ if C < 0
(22a)

ψ(C1, c)

ψ(C2, c)
= ψ(C1 − C2, c) (22b)

ψ(0, c) = 1 ∀c > 0 (22c)

then hc(ωi) satisfies (19) (20).

The statement of the above theorem can be easily proved by noticing that hc(ωi) for

ωi ∈ Ωopt, by using properties (22b-22c), can be also written as

hc(ωi) =
1

Ropt +
∑

j: ωj∈Ω−Ωopt

ψ(C(ωj) − C(ωi), c)
.

14



Then, since the terms C(ωj) − C(ωi) are positive, we obtain that the sum in the above

expression goes to 0 as c → 0 due to (22a). We can write a similar expression for the

case ωi 6∈ Ωopt and in this case we obtain a denominator that tends to infinity as c → 0.

Eventually we obtain exactly conditions (19) and (20).

In the original formulation of Simulated Annealing, the following distribution was adopted:

h(ωi, c) =
e

C(ωi)

c

∑R
j=1 e

C(ωi)

c

. (23)

Since hc(ωi) can be evaluated point-wise up to the normalising factor, the construction

of the Markov Chain with the desired stationary distribution hc(ωi) can be performed

through Metropolis-Hastings algorithm. From equations (19) and (20) we obtain that for

a sufficiently small c and for a sufficient long simulation time the Ωs obtained by Markov

Chain simulation will be concentrated around the global minimisers.

In practice, in the application of the optimisation algorithm, the parameter c must be

decreased during the optimisation procedure. Therefore a sequence c(k) satisfying

lim
k→∞

c(k) = 0; (24a)

c(k) ≥ c(k + 1) k = 0, 1, . . . (24b)

is usually assumed. In doing so, care must be exercised in order to maintain convergence.

In fact the Markov Chain becomes inhomogeneous and the previous convergence results

do not apply straightforwardly.

A number of conditions, implying convergence of the inhomogeneous chain to the station-

ary distribution, have been derived for the form:

c(k) =
Γ

log(k)
∀k ≥ 0 .

where the constant Γ depends on the particular structure of the problem [22]. As an

example, in the basic case of target distribution (23) with uniform proposal distribution,

among the neighbours states of the current one, a possible value for Γ is

Γ = R∆Cmax

where ∆Cmax = max{C(ωi)} − min{C(ωi)}.

3.4 Optimisation of an expected value criterion

In this section we recall a simulation-based procedure, to find approximate maximisers of

U(ω), which has been defined in (7). The only requirement for applicability of the proce-

dure is the possibility of obtaining realisations of the random variable X with distribution
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pω(x) and of evaluating u(ω, x) pointwise, no other particular assumptions are imposed on

the optimisation criterion. This optimisation procedure is in fact a general procedure for

the optimisation of expected value criteria. It has been originally proposed in Bayesian

statistics literature [16]. This approach can be seen as the counterpart of Simulated An-

nealing for a stochastic setting. A formal parallel between these two strategies has been

derived in [17].

The problem of maximising U(ω) can be equivalently stated as the problem of minimising

ln[U(ω)]. Notice that U(ω) > 0∀ω since u(x, ω) > 0 ∀ω, x. In order to apply Simulated

Annealing techniques, we consider a target distribution defined by:

hc(ω) ∝ e
1
c

ln(U(ω)) = U(ω)1/c (25)

In the remainder of this section we show that it is in fact possible to construct such a

Markov Chain Ω(k) with the desired target distribution through the Metropolis-Hastings

algorithm.

The optimisation procedure can be described as follows. Consider a stochastic model

formed by a random variable Ω, whose distribution has not been defined yet, and J

conditionally independent replicas of random variable X with distribution pΩ(x). Let

us denote by h(ω, x1, x2, . . . , xJ) the joint distribution of (Ω, X1, X2, X3, . . . , XJ). It is

straightforward to see that if

h(ω, x1, x2, . . . , xJ) ∝
∏

j

u(ω, xj)pω(xj) (26)

then the marginal distribution of Ω, say h(ω), satisfies

h(ω) ∝

[
∫

u(ω, x)pω(x)dx

]J

= U(ω)J . (27)

This means that if we can extract realisations of (Ω, X1, X2, X3, . . . , XJ) then the ex-

tracted Ω’s will be concentrated around the optimal points of U(Ω) for a sufficiently high

J . These extractions can be used to find an approximate solution to the optimisation of

U(ω).

Realisations of the random variables (Ω, X1, X2, X3, . . . , XJ), with the desired joint prob-

ability density given by (26), can be obtained through Monte Carlo Markov Chain sim-

ulation. The algorithm is presented below. In the algorithm, g(ω|ω(k)) is known as the

instrumental (or proposal) distribution and is freely chosen by the user; the only require-

ment is that g(ω|ω(k)) covers the support of h(ω).

MCMC algorithm

Given ω(k), xj(k), j = 1, . . . , J realisations of random variable X(k) with distribution

pω(k)(x), and uJ(k) =
∏J

j=1 u(ω(k), xj(k)) :
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1 Extract

Ω̃ ∼ g(ω|ω(k))

2 Extract

X̃j ∼ pΩ̃(x) j = 1, . . . , J

and calculate

ŨJ =
∏

j

u(Ω̃, X̃j)

3 Extract the new state of the chain as

[ω(k+1), uJ(k+1)] =







[Ω̃, ŨJ ] with probability ρ(ω(k), uJ(k), Ω̃, ŨJ)

[ω(k), uJ(k)] with probability 1 − ρ(ω(k), uJ(k), Ω̃, ŨJ)

where

ρ(ω, uJ , ω̃, ũJ) = min

{

1,
ũJ

uJ

g(ω|ω̃)

g(ω̃|ω)

}

This algorithm is a formulation of the Metropolis-Hasting algorithm for a desired distri-

bution given by h(ω, x1, x2, . . . , xJ) and proposal distribution given by

g(ω|ω(k))
∏

j

pω(xj) .

In this case, the acceptance probability for the standard Metropolis-Hastings algorithm is

h(ω̃, x̃1, x̃2, . . . , x̃J)

h(ω, x1, x2, . . . , xJ)

g(ω|ω̃)
∏

j pω(xj)

g(ω̃|ω)
∏

j pω(x̃j)
.

By inserting (26) in the above expression one obtains the probability ρ(ω, uJ , ω̃, ũJ). Un-

der minimal assumptions, the Markov Chain Ω(k) is uniformly ergodic with stationary

distribution h(ω) given by (27). Results that characterise the convergence rate to the

stationary distribution can be found for example in [19].

A general guideline to obtain faster convergence is to concentrate the search distribution

g(ω) where U(ω) assumes nearly optimal values. The algorithm represents a trade-off be-

tween computational effort and the “peakedness” of the target distribution. This trade-off

is tuned by the parameter J which is the power of the target distribution and also the

number of extractions of X at each step of the chain. Increasing J concentrates the distri-

bution more around the optimisers of U(ω), but also increases the number of simulations

one needs to perform at each step. Obviously if the peaks of U(ω) are already quite sharp,

this implies some advantages in terms of computation, since there is no need to increase

further the peakedness of the criterion by running more simulations. For the specific U(ω)

proposed in Section 3.1, a trade-off exists between its peakedness and the parameter Λ,

which is related to probability of constraint violation. In particular, the greater Λ is

the less peaked the criterion U(ω) becomes, because the relative variation of u(ω, x) is

reduced, and therefore more computational effort is required for the optimisation of U(ω).
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3.5 Implementation and improvements

We are currently working on the following aspects:

• In order to improve the performance, allow parallel implementation and introduce

recursion we are currently investigating the particle implementation of the algorithm

presented above. Here we recall a particle version of the algorithm as derived in

[1]. The particle implementation of the algorithm is defined by the interaction of

N chains through an importance sampling and selection step (1-4) followed by the

usual Metropolis step (5-7).

MCMC algorithm (particle implementation)

Given ωi(k), i = 1, . . . , N :

1 Extract

Ω̃i ∼ gIS(ω|ωi(k)) i = 1, . . . , N .

2 Extract

X̃ij ∼ pΩ̃i
(x) j = 1, . . . , J ; i = 1, . . . , N .

and calculate

ŨJ
i =

∏

j

u(Ω̃i, X̃ij) .

3 Calculate the normalised weights

Wi ∝
ŨJ

i

gIS

(

Ω̃i|ωi(k)
) .

4 Resample (Ω̂1, . . . Ω̂N) from (Ω̃1, . . . Ω̃N) according to a multinomial distribu-

tion with weights Wi.

5 Extract

Ω̄i ∼ gMH(ω|Ω̂i) i = 1, . . . , N .

6 Extract

X̄ij ∼ pΩ̄i
(x) j = 1, . . . , J ; i = 1, . . . , N .

and calculate

ŪJ
i =

∏

j

u(Ω̄i, X̄ij) .

7 For each i = 1, . . . , N extract the new states of the chains as

Ωi(k + 1) =











Ω̄i with probability ρ(Ω̂i, Û
J
i , Ω̄i, Ū

J
i )

Ω̂i with probability 1 − ρ(Ω̂i, Û
J
i , Ω̄i, Ū

J
i )
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where

ρ(Ω̂, ÛJ , Ω̄, ŪJ) = min

{

1,
ŪJ

ÛJ

gMH(Ω̂|Ω̄)

gMH(Ω̄|Ω̂)

}

We are currently testing this version of the algorithm for optimisation problems in

conflict resolution. We are also investigating on the development of the particle

implementation in order to obtain a recursive optimisation procedure for receding

horizon optimisation problems, by suitable definition of the importance sampling

step [4]

• A penalty formulation of the problem has been considered here which guarantees

constraint satisfaction but delivers a suboptimal solution. Our current research

is concerned with overcoming the suboptimality imposed by the need to provide

constraint satisfaction guarantees. A possible way is to use the Monte Carlo Markov

Chain procedure to obtain optimisation parameters that satisfy the constraint and

to optimise over this set in a successive step.

• The use of the optimisation algorithm presented in this deliverable will be illus-

trated in Deliverable D5.4 in simulation examples regarding sequencing of aircraft

in Terminal Airspace and approach maneuvers in Approach Sectors.
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4 Dynamic programming

An alternative approach to efficiently computing conflict resolution maneuvers based on

the optimal control formulation is to consider a dynamic programming approach. Dynamic

programming requires one to compute the value function of the optimal control problem:

roughly, how much is it worth to be in a certain state at a certain time, or equivalently,

how much cost/reward will be accumulated when going optimally from the given state

and time to the terminal time. The “gradient” of the value function can then be used to

compute the optimal controls.

In general, the dynamic programming approach suffers from the so called curse of di-

mensionality. The computation of the value function when the state space is continuous

typically requires gridding the state space; since the number of grid points grows expo-

nentially in the dimension of the space this approach scales very badly. An alternative

approach is to approximate the value function by a function in a certain well behaved

class which does not require gridding. A class of functions commonly used in practice for

such approximations are functions generated by neural networks. This approach gives rise

to the so called neuro-dynamic programming [2]. In this section we adapt this approach

to the conflict resolution problem.

Our data consists of the initial position and the orientation of each aircraft. Also, the

goal of each aircraft is known and that means that we know the final aircraft’s destination

(position and orientation). In addition we have a time line in which each aircraft is

necessary to complete its trajectory.

In this part of the document, we must clarify our assumptions. We have solved the

problem in the two dimensions, which means that all aircraft are moving on the same

plane. So, the aircraft can’t move down and up in order to avoid the conflict with another

aircraft. The only move which is allowable is turn left and right and move forth (apart

from the take-off and the landing).

Therefore, our ultimate goal is to determine the way-points of each aircraft, in other

words the optimal trajectory, without conflict and without unnecessary annoyance for the

passengers.

As we have investigated, the analytical solution of the optimization problem will had

been pointless due to the nonlinear nature of the equations that describe the problem.

So, our interest turns to finding a numerical solution to this problem, using machinery

from the field of Nonlinear Programming. After suitable formulation of the problem, we

have solved it for several scenarios. This procedure takes time, so it is important to find a

methodology faster than the present methodology. We decided to apply the methodology

of Neural Networks. We have collected all the data from nonlinear programming procedure

in order to have the necessary training data for the neuro-dynamic procedure.
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4.1 Air Traffic Modelling for dynamic programming

We know the initial conditions which include the initial and the final position and orien-

tation of each aircraft qio, qif , respectively, and the time between the transition t.

qi0(t) = [xi0(t) yi0(t) ϑi0(t)]
T

qif (t) = [xif (t) yif (t) ϑif (t)]
T

where x, y are the Cartesian coordinates of aircraft, ϑ is the orientation, i = 1 . . . N and

N is the number of aircraft.

We can define the state variables of our problem which are as follows:

qi(t) = [xi(t) yi(t) ϑi(t)]
T

Also, the control variables of the problem are the linear velocity and the angular velocity

of each aircraft.

ui(t) = [Vi(t) ωi(t)]
T

Furthermore, the problem is described from the kinematics equations, which are based on

the relationship between the velocities and the states of a unicycle in a plane.

ẋi(t) = Vi · cos ϑi

ẏi(t) = Vi · sin ϑi

ϑ̇i(t) = ωi

In its general description the problem could be written as:

q̇(t) = f(q(t), u1(t), . . . , uN(t))

where

q̇(t) = [q̇1(t), . . . , q̇N(t)]T

and

f(q(t), u1(t), . . . , uN(t)) = A(q) · u

with

A(q) =

























cos ϑ1 0 0 · · · 0 0 0

sin ϑ1 0 0 · · · 0 0 0

0 1 0 · · · 0 0 0
...

. . .
...

0 0 cos ϑN 0

0 0 sin ϑN 0

0 0 0 · · · 0 0 1
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Another important issue, in order to solve the problem, is the constrains which the move-

ment of each aircraft must satisfy. Such constrains are the upper and the lower bound of

the linear velocity and the angular velocity of aircraft.

Vmin ≤ Vi(t) ≤ Vmax

−ωo ≤ ωi(t) ≤ ωo

where the bounds Vmax, Vmin and ωo are taken from the BADA database [6].

There are also constrains which arise from the protection zones around the aircraft. The

constrain requires that the distance between two aircraft should not be less than a desired

separation minimum d.

((xi(t) − xj(t))
2 + (yi(t) − yj(t))

2) ≥ d2

where x, y are the coordinates of aircraft at the same time instant, and i, j = 1, . . . , N

with i 6= j.

4.2 Non-Linear Programming

In a nonlinear programming problem it is necessary to define the function which we would

like to minimize or to maximize and constrains which describe the problem.

In our problem, we would like to evaluate the optimal control law which will minimize

the function presented below. The aim of this function is to save the energy (we do not

want wide fluctuations in the aircraft velocity and tight turns).

min
u

J = min
u

[

1

2
·

n
∑

i=1

(

qT
i · Q · qi + uT

i · R · ui

)

· ∆t

]

The matrices, in the above equation, are constant symmetric matrices and additionally

Q is a positive semi-definite matrix and R is a positive definite matrix.

Also, we need to define the constrains of the problem. In order to solve the problem

numerically it is important to transfer it in its discrete form. We must write the kinematic

equations in a discrete time form by integration between time instants.

xk+1 = Vk

ωk
· (sin (ωk · ∆t + ϑk) − sin (ϑk)) + xk

yk+1 = Vk

ωk
· (cos (ϑk) − co s (ωk · ∆t + ϑk)) + yk

ϑk+1 = ωk · ∆t + ϑk
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When the value of angular velocity ωk is very small this discrete time form becomes:

xk+1 = Vk · cos (ϑk) · ∆t + xk

yk+1 = Vk · sin (ϑk) · ∆t + yk

ϑk+1 = ωk · ∆t + ϑk



























The other constrains are as we have defined above (linear and angular velocities, separation

minimum constrains). The state variables of the system which we would like to find are:

qij =
[

xij yij ϑij

]T

where i = 1, . . . , N , and j = 2, . . . , (n − 1) the number of time steps. The behavior of

subscript j is different because the values of the state variables are known at the first and

at the last time instant.

Furthermore, we would like to evaluate the control variables for each time instant.

uij =
[

Vij ωij

]T

In this equation the subscript j takes all the values j = 1, . . . , n.

4.3 Neural Networks

Suppose that we are interested in approximating a function J : S → R , where S is some

set, S will usually be the state space of a dynamic programming problem and J will be

the optimal cost-to-go function. Supposing r be the vector of parameters and we claim

the functional form J (k) ≈ J̃ (k, r). The architecture which we have chosen is described

by the function J̃ which is a known function and its value is easy to estimate for fixed

vector r values. Thereinafter, it is necessary to decide the values of the parameter vector

r, in order to achieve the minimum distance between the function J that we are trying

to fit and the approximant J̃ .

We have used a nonlinear architecture in which the dependence of J̃ (k, r) on r is nonlinear.

In this case, we can use the data sets in order to solve the least squares problem of

minimizing
∑

k

(

J (k) − J̃ (k, r)
)2

The nonlinear architecture which we used is the multilayer perceptron or feed-forward

neural network with a single hidden layer. Under this architecture, the state k is encoded
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as a vector X with components xp(k), p = 1, . . . , L, which is then transformed linearly

through a ”linear layer”, involving the coefficients r1 (j, p), to give the λ scalars

L
∑

p=1

r1 (j, p) · xp (k), j = 1, . . . , λ

Each of these scalars becomes the input to a function σ, called a sigmoidal function, which

is differentiable, monotonically increasing and has the property:

−∞ < lim
ξ→−∞

σ (ξ) < lim
ξ→∞

σ (ξ) < ∞

One common choice is the hyperbolic tangent function:

σ (ξ) = tanh (ξ) =
eξ − e−ξ

eξ + e−ξ

At the output of the sigmoidal functions, the scalars

σ

(

L
∑

p=1

r1 (j, p) · xp (k)

)

, j = 1, . . . , λ

are obtained. These scalars are linearly combined using coefficients r2(j) to produce the

final output:

J̃ (k, r) =
λ

∑

j=1

r2 (j) · σ

(

L
∑

p=1

r1 (j, p) · xp (k)

)

.

The parameter vector r consists of the coefficients r2(j) and r1(j, p), which are also known

as the weights of the network.

Our goal is to train the neural network, i.e. to evaluate the parameter vector r as with

a given input in the network to take the respective output. The important issue at this

point is to choose the variables of the input and the output. We decided to use as an

input xp(k) of the network the known parameters of beginning and final position and

orientation of each aircraft and the time of interest. As an output yi(k) we defined the

control variables of each aircraft at every time instant.

We let the data sets the optimal solutions for a various scenarios from the nonlinear

programming problem and we want to minimize the distance between the output of the

network and the real values of the control variables.

min
r

f (r) = min
r

(

1

2
·

m
∑

k=1

‖gk (r)‖2

)

where

gk (r) = (uk − r2 · σ (r1 · Xk))

is a continuously differentiable function, m is the number of training data, and uk is the

vector with the optimal control variables.
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