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Chapter 1

Introduction

The main aim of WP4 is the development of a framework for compositional specification and
analysis of PDP systems. The PDP model (Piecewise Deterministic Markov Process) forms
a class of stochastic hybrid processes that contains virtually every process that does not have
diffusion terms (see [1] and [2]). In the report [13], we developed the automaton framework
CPDP. A CPDP is an automaton that represents a component of a complex PDP. A complex
PDP consists of multiple components, which can all be modelled by CPDPs. In [13] we also
defined a composition operator ||, which expresses and formalizes the interaction between the
component CPDPs.

In this report we take a close look at the CPDP-syntax, the CPDP-semantics and their
interrelation. (CPDPs are defined in [13]). The CPDP-model is designed mainly for com-
positional specification and analysis of PDP systems. A syntax for CPDPs should therefore
be suitable for specification, but also for analysis. Thus, for the analysis part, the syntax
should be such, that it can be exploited for analysis. Till now, in the definition of the CPDP
(the syntactic object) most emphasis was put on the convenience of modelling. First we de-
fined the CPDP model. Then we realized that the communication mechanism was somewhat
restricted and we defined an extended version of the CPDP-model. In this report we will
define an even more powerful composition operator, but in order to incorporate that oper-
ator in the CPDP-model, we might be forced to change the syntax again (although it need
not be drastically). Finally, there is also the intriguing idea of compositional analysis. So
far we did not pay attention to this in a structural way, but if we do this in the future, we
should be open for the fact that this might need another change in the CPDP-syntax. Thus,
there are enough reasons not to be dogmatic about the CPDP-syntax at this point of research.

In Chapter 2, we approach the question which semantics is suitable for CPDPs. Different
answers could be given, but from a PDP point of view, the answer seems to be straightforward.
However, before we answer this question we first look at how the CPDP-model originated from
the PDP-model. One of the main points is that CPDPs allow multiple jumping-mechanisms
at the same time, i.e. they allow that there is a race of multiple stochastic variables that can
generate a jump (the one who jumps first, wins the race). For example, at a specific location
two events may happen, event 1 and event 2, and both events have exponentially distributed
variables (as in a Markov chains). If event 1 happens, a jump to location L happens and if
event 2 happens, a jump to location L′ happens. In the PDP-model, this can be modelled,
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but there, the two stochastic variables should be combined into one stochastic variable. In
the CPDP-model we chose to explicitly allow this in the syntax: In the CPDP-model we can
define a (spontaneous) transition to L for event 1 and we can define another (spontaneous)
transition to L′ for event 2. Both transitions correspond with a separate stochastic variable
and the semantics of CPDP is defined such that there is a race between these two stochastic
variables. Thus, for convenience of modelling we think it is good to allow explicit modelling
of different stochastic events at the same time (in the sense of a race). Of course, the question
remains whether such a syntax can easily be exploited for (compositional) analysis. Although
we use (intentionally) a different syntax than the PDP-syntax, in Chapter 2 we prove that
the corresponding stochastic process of a CPDP is indeed a process that also corresponds to
some PDP.

Bisimulation for PDPs and CPDPs is treated in Chapter 3. In our current research, we
did not yet define a fixed or final version of bisimulation for (C)PDP. Therefore, the mate-
rial of this chapter should be seen as some first steps towards a theory of bisimulation for
(C)PDPs. Also, here we make our first steps when it concerns compositional analysis of
(C)PDPs. Bisimulation can be seen as a technique for analysis in the context of a composite
system: with bisimulation-techniques, we can reduce the state-space of certain components
and therewith the state-space of the composite system. It will turn out that, because of
the stochastic aspects of (C)PDPs, much attention must be paid to measurability aspects
of equivalence relations. We give a definition of bisimulation for PDPs and we make some
comments about how this definition could be adapted for the CPDP case.

In Chapter 4 we define the composition operator |PA|, which is more powerful than the
CPDP composition operator || (see [13]). Although the operator is embedded in the ac-
tive/passive framework (a distinction which was made for communication between CPDPs),
it is defined in a very general way such that it can potentially be applied to CPDPs, but
also to any other transition-based model for communicating processes. In this chapter we
also give a potential application field for this operator, supervisory control (see [11]), and we
explain why we think that this operator can be used in a natural way for specification of
(modular) supervisory control systems. This chapter can be seen as a stand-alone chapter.
Incorporating the defined operator in the CPDP-model is something we plan to work out in
the near future. This will then enrich the interaction-structures (where the title of this report
refers to) for CPDPs.

Within the Hybridge project, another model is used for compositional specification of
PDPs, which is the Petri-net model DCPN (Dynamically Colored Petri-Nets). In Chapter 5
we compare the DCPN model with the CPDP model. For the comparison we distinguish two
aspects. First, we compare the (compositional) modelling power of the two models. Second,
we compare the syntactic structures from a compositionality point of view and we ask whether
these structures might be suitable for exploitation by compositional analysis techniques.

In the final chapter we give an overview of the research done in WP4 of the Hybridge
project and we point out directions for future research within WP4 of the Hybridge project.
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Chapter 2

CPDP Semantics

We will describe how the CPDP model originated from the PDP model. This will give insight
in the relation between PDPs and CPDPs. This insight might make clear which semantics,
or which solution concept, is suitable for CPDPs.

First we look at the most evident similarities between PDPs and CPDPs. The state-space
of PDPs and CPDPs are hybrid and have identical structures: There are countably many
locations and each location has its own continuous state space which is an open subset of the
euclidean space R

n, where n may depend on the location. Furthermore, for both the PDP
and the CPDP model, the piecewise continuous dynamics is specified by means of a vector
field: To each hybrid state a direction vector is assigned which determines the continuous
flow. So far, the PDP model and the CPDP model are identical. The difference lies in the
jump-process and in the stochastic reset-maps.

We could say that the jump-process and the reset-maps of the PDP model are split out
over the different locations in the CPDP model. Suppose we have a (C)PDP with two lo-
cations, l1 and l2, and the initial state is some state in location l1. For the PDP there is
one stochastic variable (with some survivor function) that determines when the jump from
location l1 takes place. When this jump takes place, there is one probability measure that
determines the target state of the jump. This target state might be in location l1 as well as in
location l2. For the CPDP, both potential target locations l1 and l2 have their own stochastic
variables that determine potential jump-times. The jump-time is therefore determined by a
race of these two stochastic variables: We draw samples for both stochastic variables and
the one with the smallest value wins and determines the target location. Then the winning
stochastic variable has its own reset-map (probability measure) that determines the contin-
uous state within the target location. When none of the two stochastic variables decides to
jump before the boundary of the invariant is hit, we get a boundary-hit jump. This means
that an additional stochastic variable (the choice function) chooses which location, l1 or l2,
will be the target location of the jump and then this location has its own stochastic reset map
that determines the continuous state after the jump.

This specific CPDP process is specified in the automaton model as follows. Between two
locations (lets say from l1 to l2) there can be a spontaneous transition. Lets call this transi-
tion s. This transition s assigns a jump-rate λs(ξ) and a probability measure Rs(ξ) on the
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invariant (i.e. continuous state-space) of l2 to each continuous state ξ within l1. The jump-
rate λs determines a specific survivor function (or stochastic variable) for this transition.
If in a specific run of the system, this transition wins the race and generates a jump from
state ξ, then Rs(ξ) is the probability measure that determines the target continuous state in l2.

Between two CPDP locations (say l1 and l2) there can also be a boundary-hit transition
(say b). This transition b assigns to each state ξ in l1 a probability measure Rb(ξ) on the
invariant of l2. If a run of the CPDP process hits the boundary of l1 at state ξ, then the choice
function may choose transition b, and then Rb(ξ) determines the target continuous state in
l2.

Because we have split out the PDP-jump mechanism over different transitions in CPDP,
we have created a clear distinction (in the sense of different transitions) between jumping to,
say, location 1 and jumping to, say, location 2. In the PDP both jumps are combined in one
jump-rate and one reset-map. This distinction in CPDP can be exploited in communication
between components. A component can now communicate to the other components to which
location it jumps.

We will prove that for every CPDP, all spontaneous and boundary-hit transitions with
their corresponding stochastic reset maps can be combined into one jump-rate function λ
and one reset map Q and then the PDP with characteristics λ and Q will have exactly the
same stochastic executions (sample paths) as the CPDP. This means that the CPDP and this
corresponding PDP have the same stochastic process. The stochastic process of a CPDP can
therefore be realized as the realization of the stochastic process of the corresponding PDP.
Proving that every PDP can be written as a CPDP can be done in the same lines. The proof
is based on the transition equivalence notion from [13], but is more complete and sound than
the proof in [13].

We first give the exact definition of CPDP and the definition of its stochastic executions.
Then we prove the equivalence with PDP. After that we discuss the semantics or solution
concepts for CPDPs.

2.1 Definition CPDP

In this section we introduce the CPDP formalism. First we will formally define its structure
and after that we will explain how the execution of a CPDP takes place.

A CPDP A is a 9-tuple (L, d, Inv, A,C,B,M,P, G), where

• L is a countable set of locations.

• d : L → N is a mapping, which maps each location to the dimension of the continuous
state space in that location.

• Inv maps each location to its invariant set. This means that for each l ∈ L, Inv(l) is
an open subset of R

d(l). We also define the boundary set ∂Inv(l) := Inv(l)\Inv(l) of
Inv(l), where Inv(l) denotes the closure of Inv(l).
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• A is the set of labels. These labels are the names of the active discrete events that
happen when boundary-hit or spontaneous transitions are executed.

• C is the transition-choice function. C(b, l, ξ) ∈ [0, 1] is the probability of executing the
boundary-hit transition b (see next item) from the boundary state (l, ξ). C(b, l, ξ) is
defined on all l ∈ L and all ξ ∈ ∂Inv(l) and all b ∈ B (see next item) that are outgoing
transitions of l. Furthermore

∑

b∈Bl→
C(b, l, ξ) = 1, where Bl→ is the set of all elements

of B that are outgoing transitions of l.

• B is the set of boundary-hit transitions. Each element b of B is a quadruple (l, a, l′, R),
where l is the origin location, a is the label of the jump, l′ is the target location, and
R is the reset map of the jump. R(A, ξ) ∈ [0, 1] is the probability of jumping into the
set A when the transition b is taken from state ξ ∈ ∂Inv(l). R(A, ξ) is defined for all
ξ ∈ ∂Inv(l) with C(b, l, ξ) > 0 and for all Borel subsets A of Inv(l′).

• M is the set of spontaneous transitions (the equivalent of Markovian transitions in
Interactive Markov Chains in [4]). We also refer to these spontaneous transitions as
Poisson transitions. Each element m of M is a pentuple (l, a, l′, R, λ), where l is the
origin location, a is the label of the jump, l′ is the target location, R is the reset map of
the jump, and λ is the jump rate. R(A, ξ) ∈ [0, 1] is the probability of jumping into the
set A when the transition m is taken from state ξ. R(A, ξ) is defined for all ξ ∈ Inv(l)
and for all Borel subsets A of Inv(l′). λ : Inv(l) → R+ is a bounded Borel measurable
function, and determines the rate of jumping of the process.

• P is the set of passive transitions. Each element p of P is a quadruple (l, a, l′, R), where
l is the origin location, a is the label of the jump, l′ is the target location, and R is
the reset map of the jump. R(A, ξ) ∈ [0, 1] is the probability of jumping into the set A
when the transition p is taken from state ξ. R(A, ξ) is defined for all ξ ∈ Inv(l) and for
all Borel subsets A of Inv(l′).

• G determines the flow of the continuous states within the locations. For each l ∈ L,
G(l) is a locally Lipschitz continuous function from R

d(l) to R
d(l), and is the vector field

for the continuous flow in location l.

In order to restrict the behavior of CPDPs to PDP-behavior, we need to impose the
standard PDP conditions on a CPDP. They can be found on page 62 of [2]. Also it is not
necessary that choice-functions and reset-maps of boundary-hit transitions are defined on
all boundary-states. Some boundary-states are non-reachable and there these functions and
reset-maps need not be defined.

A CPDP A as defined above, generates a stochastic process. To give insight to the
execution of a CPDP process, we will now describe how sample paths of this stochastic process
can be generated. As we will see later, the passive transitions play a role in communication
with the outside world. For the generation of a sample path, we assume that the outside world
is silent, in other words, no communication takes place and therefore, the passive transitions
play no role in this sample path generation.
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Generating sample-paths for a CPDP

We assume that an initial hybrid state x0 = (l0, ξ0) is given. The flow function φl0(t, ξ0) of
the continuous state ξ in location l0 is for t ≥ 0 determined by the differential equation

d

dt
ξ = Gl0(ξ),

i.e.
dφl0(t, ξ0)

dt
= Gl0(φl0(t, ξ0)).

G(l) is written here as Gl. Suppose that ξ(t) reaches the boundary ∂Inv(l0) at time τb
(otherwise, τb equals ∞) and suppose that location l0 has n outgoing spontaneous transitions.
During the continuous flow, for every outgoing spontaneous transition m we define a survivor
function

Fm(t, ξ0) = I(t<τb) exp

(

−

∫ t

0
λm(φl0(t, ξ0))dt

)

,

which can be interpreted as follows: The probability that either m generated a jump before
time instant t or the process reached the boundary before time instant t equals 1−Fm(t, ξ0).
Note that IA is the indicator function: IAx = 1 if x ∈ A and IA(x) = 0 if x 6∈ A.

For each outgoing spontaneous transition mi, we draw a sample τi from its survivor
function (i.e. a sample from a random variable with distribution function 1 − Fm). This
means that mi would cause a jump at time τi if τi < τb and no other Poisson-jump occurred
before τi. Therefore the most relevant spontaneous transition is the one corresponding to

τM := min
i=1..n

τi,

assumed that τM < τb. This transition causes a jump at time τM . If τM = τb, then we have
a boundary-hit jump at time τb. Note that the latter does not mean that a Poisson point
is generated exactly at the boundary, but that no Poisson points are generated before the
boundary is hit.

Boundary-hit transition

A boundary-hit transition at time τb from the boundary state ξ(τb) ∈ ∂Inv(l0) is executed as
follows. It could be that multiple boundary-hit transitions are active in state ξ(τb), therefore
we use the choice function C to choose one of the active transitions. We draw a sample
b ∈ Bl0→ from the probability measure determined by C(·, l0, ξ(τb)). Now, b = (l0, ab, l

′
b, Rb)

is the transition that will be executed. The target location is l′b and the target state ξ′ in
Inv(l′b) is drawn from the probability measure Rb(·, ξ(τb)). With the new hybrid state (l′b, ξ

′)
at time τb, we can repeat the algorithm above to continue the sample path.

Spontaneous transition

A spontaneous transition m = (l0, am, l
′
m, Rm, λm) at time τM from the state ξ(τM ) ∈ Inv(l0)

is executed as follows. The target location is l′m and the target state ξ′ ∈ Inv(l′m) is drawn
from the probability measure Rm(·, ξ(τM )). With the new hybrid state (l′m, ξ

′) at time τM ,
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we can repeat the algorithm above to continue the sample path.

With the sample path description above, we informally described the stochastic processes
that correspond to the CPDPs.

2.2 Equivalence CPDPs and PDPs

To show that closed CPDPs (i.e. CPDPs that do not have passive transitions) and PDPs
generate the same class of stochastic processes, we introduce the following notions for closed
CPDPs.

Suppose we have a CPDP with initial state x = (l, ξ). With τb we denote the first potential
boundary-hit time (i.e. the boundary-hit time assumed that no spontaneous jumps happen
before the boundary is hit). With H we denote the hybrid state space, i.e. H = {(l, ξ)|l ∈
L, ξ ∈ Inv(l)}, and we write ∂H = {(l, ξ)|l ∈ L, ξ ∈ ∂Inv(l)}. Suppose that Tm is a random
variable with distribution-function 1−Fm for any spontaneous transition m. Then we define

T = min
m∈Ml→

Tm.

P (T < t) equals the probability that either one of the Poisson-transitions generated a jump
before t or the boundary was hit before t. It can easily be seen that T has distribution
function

1 − I(t<τb) exp



−

∫ t

0

∑

m∈Ml→

λm(φl(t, ξ))dt



 .

Therefore, the total survivor function F (t, x) of the CPDP process equals

F (t, x) = I(t<τb) exp



−

∫ t

0

∑

m∈Ml→

λm(φl(t, ξ))dt



 .

As we described before, generating a CPDP sample path, starting from hybrid state
x = (l, ξ), is done by first drawing samples from all Poisson transitions that are outgoing
from location l, followed by drawing a sample from the reset map that corresponds to the
winning Poisson transition or, in case of a boundary point, from the choice function followed
by drawing a sample from the reset map of the winning boundary-hit transition. To find
an equivalent PDP, we ask the following: Can we find a jump-rate function λ(x) on the hy-
brid state space of the CPDP and a reset map Q(·, x) (also depending on the hybrid state)
such that λ(x) generates (as it does in PDPs) exactly the survivor function F of the CPDP
and such that drawing a sample t̂ from this survivor function followed by drawing a sample
from Q(·, φ(t̂, x)) is equivalent with the sample-path generation procedure as described above?

The part concerning λ(x) is clear. We can see from the survivor function F (t, x) of the
CPDP that this λ(x) should be equal to

∑

m∈Ml→
λm(ξ) (remember that x = (l, ξ)).

For the second part, we first have to formalize the notion of equivalent sample-path gen-
eration procedures. We do that as follows. From a starting state, both procedures determine
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two things: first, the time of jumping and second, the target state where to jump to. The time
of jumping is an element of R and the target-jump-state is an element of H. Formally we say
that both procedures generate the same jump time and target state (which are of course in-
terrelated) when they define the same probability measure P on the space (R×H,B(R×H)),
where B(X) means the Borel sets of the topological space X, where P (A), with A ∈ B(R×H),
equals the probability that (t, x), with t the jump-time and x the target state, lies in the set
A. Before we show this, we first look at the structure of the sets in B(R ×H).

Any Borel subset of H (according to the topology defined on H at p.58 of [2]) can be
written as a countable union of disjoint subsets of the form (l, B) (see [2] p.57). This
splits a Borel subset of H into Borel subsets of the invariants of the different locations.
If for example B̂ ∈ B(H) is split into (l1, B1),· · · ,(ln, Bn), then Q(B̂, (l, ξ)) is equal to
Q((l1, B1), (l, ξ)) + · · · +Q((ln, Bn), (l, ξ)).

For arbitrary t > 0 and for arbitrary Borel subset B ∈ B(Inv(l′)) for some location l′, we
consider the Borel subset A = (−∞, t]× (l′, B) ∈ B(R×H). For x = (l, ξ) we now determine
Px(A) as induced by the sample-generation procedure of the CPDP, where x denotes the
initial hybrid state of the PDP.

Suppose location l has n outgoing stochastic transitions, and suppose that k of them
are directed towards location l′. With F1, · · · , Fk we denote the survivor functions of the
k transitions from l to l′ and with Fk+1, · · · , Fn we denote the survivor functions of the
transitions from l not to l′. Let Ti be a random variable with survivor function Fi. In
general, with µX we denote the probability measure induced by the random variable X.
For the sake of notational simplicity we write F (τ), Ri(B, τ), λi(τ),Q(A, τ), C(b, τ) for
F (τ, x), Ri(B, φl(τ, ξ)), λi(φl(τ, ξ)), Q(A, (l, φl(τ, ξ))) and C(b, l, φl(τ, ξ)) respectively. We
define f(τ) := dF

dt (τ), which is well-defined for t < t∗, where t∗ denotes the boundary-hit
time. If A = (−∞, t] × (l′, B) is such that t < t∗, then we get

Px(A) =
k
∑

i=1

∫ t

0





∏

j 6=i

P (Tj > τ)



Ri(B, τ)dµTi
(τ).

The above integrals are well-defined because P (Tj > τ) = Fj(τ) is bounded and measurable
(and therefore integrable) and Ri(B, τ) is bounded and is measurable because Ri(B, τ) =
Ri(B, φl(τ, ξ)) where Ri(B, ξ) is measurable for fixed B and φl is continuous and therefore
measurable. Then we can write

Px(A) =
k
∑

i=1

∫ t

0

dFi

dt
(τ)





∏

j 6=i

Fj(τ)



Ri(B, τ)dτ =

∫ t

0

(

k
∑

i=1

λi(τ)Ri(B, τ)

)

F (τ)dτ,

where dτ means integrating over the Lebesgue measure and F (τ) is the total survivor function.
Considering the possibility that t ≥ t∗ we get

Px(A) =

∫

[0,t∗[

(

k
∑

i=1

λi(τ)Ri(B, τ)

)

F (τ)dτ + ψ(t∗)
∑

b∈B
l→l′

C(b, t∗)Rb(B, t∗),
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where ψ(t∗) = I(−∞,t](t∗) (lims↑t∗ F (s)). Then we can rewrite the formula as follows.

Px(A) =

∫

[0,t∗[

(

k
∑

i=1

λi(τ)Ri(B, τ)

)

f(τ)
∑

n∈Ml→
λn(τ)

dτ + ψ(t∗)
∑

b∈B
l→l′

C(b, t∗)Rb(B, t∗),

where the integrand is defined to be zero when
∑

n∈Ml→
λn(τ) = 0. Then, using the fact that

λi(τ) = 0 for all i if τ ≥ t∗ and using the measure µT induced by T , we get

Px(A) =

∫

[0,t]





∑k
i=1 λi(τ)Ri(B, τ)
∑

n∈Ml→
λn(τ)

+ It∗(τ)
∑

b∈B
l→l′

C(b, t∗)Rb(B, t∗)



 dµT (τ),

which we can write as

=

∫

[0,t]
Q(B, τ)dµT (τ),

if we define

Q(B, τ) :=







∑

m∈M
l→l′

(

λm(τ)
∑

n∈Ml→
λn(τ)Rm(B, τ)

)

, if φ(τ, x) ∈ Inv(l)
∑

b∈B
l→l′

C(b, τ)Rb(B, τ), if φ(τ, x) ∈ ∂Inv(l)

The latter expression exactly expresses Px(A) for the procedure when samples are created
by drawing a sample t from T followed by drawing a sample x′ from Q(·, t). This means that
generating jump-time and target state via T and Q induces the same probability on sets of
the form (−∞, t]× (l′, B). If B′ is a Borel subset of H, then it can be split into (li, B

′
i) for the

different locations li and then Px((−∞, t] × B′) equals
∑

i Px((−∞, t] × (li, B
′
i). Therefore,

the two methods determine the same probabilities on sets of the form (−∞, t] × B, with B
a Borel subset of H. This collection of sets forms a π-system (i.e. the collection is closed
under finite intersections). Two probability measures that agree on a π-system, also agree on
the σ-algebra generated by the π-system. Therefore the two procedures determine the same
probability measure on σ{(−∞, t] × B|t ∈ R, B ∈ B(H)}, which is the Borel σ-algebra on
R ×H.

In [2] the E-valued stochastic process {xt(ω), t > 0} corresponding to a PDP with state-
space E is formally defined on the Hilbert cube (Ω,A, P ), which is the product space of
(Ωi,Ai, Pi) (i ∈ N), where Ωi = [0, 1], Ai is the set of Lebesgue measurable sets and Pi is
the Lebesgue measure. A measurable function ψ : Ω → DE [0,∞[, with DE [0,∞[ the set
of right-continuous E-valued functions on R+ with left-hand limits, is determined. This ψ
assigns to each ω ∈ Ω a sample function of the PDP process. Then the stochastic process
of the PDP is defined as xt(ω) = ψ(ω)(t). Realizing the stochastic process of the CPDP
on the Hilbert cube can now be done as follows: A U[0,1] stochastic variable Y1 (defined as
Y1(ω) = ω1, where ω = (ω1, ω2, · · · )) is used for determining the first jump-time. This is
done by using the survivor function F of the CPDP. Y2(ω) = ω2 is used for determining the
target state of the first jump. This is done by using the Q of the CPDP (as defined above).
Y3(ω) = ω3 is used for determining the second jump-time, etc. In this way, the realization
of the CPDP-process is exactly the same as the realization of the PDP that has the CPDP
characteristics λ and Q. Therefore we can say that the realization of the CPDP-process is
defined as the realization of the PDP that has the CPDP characteristics λ and Q. We proved
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above that this realization indeed agrees with the CPDP sample-path generation procedure.
This means that a CPDP-process realization is indistinguishable from the realization of its
corresponding PDP (i.e. the PDP with characteristics λ and Q).

2.3 CPDP semantics

The CPDP model is a hybrid model. On the one hand there is a continuous dynamics, on the
other hand there are discrete events. In CPDP, some discrete events are labelled. Jumps that
correspond to active (i.e. boundary-hit) and passive transitions are labelled with elements
from the set of events A. Spontaneous jumps however, are not labelled with events, because
they are not used for communication.

Choosing a semantics for CPDP, means also choosing which aspects of the process are
relevant for example analysis. From a PDP-point-of-view, the relevant aspects are the con-
tinuous dynamics and the stochastics, with other words the stochastic process of the CPDP
(because the stochastic process is the object that we want to analyze). Therefore, we define a
stochastic-processes-semantics for CPDPs, which is the stochastic process of its corresponding
PDP. Note that passive transitions play no role in this semantics because passive transitions
cannot influence the stochastic process, unless the CPDP is within a composition context,
where the passive transitions can be triggered by other components. But for this stochastic-
processes-semantics, we assume that we are not within a composition, but that we are dealing
with the total composed system, i.e. with the final object that we want to analyze.

This means that if we want to express within the semantics how the process behaves as a
component (i.e. within a composition context), then information regarding the labels and the
passive transitions are essential, since they define the interaction behavior between compo-
nents. We plan to define such a semantics, which combines the stochastic and communicating
behaviors, in the near future. This semantics can then be used for compositional analysis
techniques like bisimulation.
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Chapter 3

Bisimulation for PDPs and CPDPs

In the literature concerning labelled transition systems (i.e. process algebra, automata etc.),
bisimulation is one of the most popular equivalence notions. Bisimulation is effectively used
for state-space reduction (see e.g. [4] for examples in the context of Interactive Markov
Chains), which makes analysis easier. We could say that two bisimular processes are exter-
nally equivalent. They may differ when it comes to internal dynamics, but their external
(that what we can see or measure and what we can influence) behaviors are the same. In
[14], a bisimulation notion is defined for systems with continuous dynamics and in special
for non-stochastic hybrid systems. Also algorithms are given through which we can compute
maximal bisimulations (which can be used for maximal state reduction). From an analysis
point of view, bisimulation can be a powerful technique, because bisimulation algorithms may
reduce the state space and therefore can make analysis (which can then be performed on a
smaller model) easier.

In this chapter we make the first steps towards a notion of bisimulation for PDPs and for
CPDPs. One of our aims is to develop the bisimulation notion along the lines of [14], such
that also algorithms can be constructed to compute maximal bisimulations. This is far from
trivial, which is mainly due to the role of the stochastic aspects in PDPs and CPDPs.

From a compositional analysis point of view, a bisimulation relation should be congruent
with respect to the parallel composition operator, which means that if we replace one of the
components of a composite system by a bisimular component, then the resulting composite
system should be bisimular with the composite system before substitution.

Concerning PDPs in this chapter, we consider PDPs enhanced with an output function.
This output function maps each hybrid state to a real value, the output of the state. The
external behavior is then defined as the behavior of the output process. If two PDPs have
different state spaces with different dynamics, but the dynamics of the output are the same,
then their external behaviors are the same. This will be the leading idea for our notion of
bisimulation for PDPs. In the next section this is found back in formal language in Conjecture
1.

In the next section we give a formal definition of bisimulation for PDPs. Although the idea
is rather simple, the formalization gets rather technical because of the stochastic reset-maps.
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If two states (of two PDPs for example) are bisimular and a jump might take place from this
state, then the reset-maps of these two states should be equivalent in some sense. This means
that these reset-maps, which are probability measures, should assign the same probabilities
to equivalent measurable sets. In the next section we define in Definition 1 which measurable
sets are equivalent and which are not. This definition is rather technical because we have to
make sure that equivalence classes of hybrid states are totally contained in a measurable set
or are totally not contained. Once this technicality has been worked out, the definition of
bisimular PDPs can be stated straightforwardly without any non-intuitive parts.

In the final section of this chapter we make some comments about bisimulation for CPDPs,
although we do not give a formal definition because research has not been developed so far.

3.1 Bisimulation for PDPs

In this section we define an equivalence or bisimulation notion for weighted PDPs (i.e. PDPs
enhanced with an output function). This notion is such that when two PDPs are bisimilar (i.e.
their initial states are bisimilar), then the stochastic processes of their outputs are equivalent
in the sense that we can find realizations of these processes on the Hilbert cube such that
the stochastic processes are indistinguishable. That we define the realizations of stochastic
processes on the Hilbert cube is mainly because we follow the lines of [2], where the stochastic
process xt of a PDP is defined on the Hilbert cube. Before we can define bisimulation for
PDPs, we need to introduce some notation.

We call the measurable space (E, E) a standard Borel space if E is a Borel subset of a
complete separable metric space and E is the corresponding sub-σ-algebra. A standard Borel
space (E, E) is called separable if {x} ∈ E for all x ∈ E. The space (E, E) of a PDP as defined
in [2] is a separable standard Borel space.

Let X and Y be some spaces. We define the equivalence relation on X that is induced by
the relation R ⊂ X×Y , as the transitive closure of {(x, x′)|∃y s.t. (x, y) ∈ R and (x′, y) ∈ R}.
We write X/R and Y/R for the sets of equivalence classes of X and Y induced by R. We
denote the equivalence class of x ∈ X by [x]. We will now define the notion of measurable
relations and of equivalent measures. We will see that in that definition, two probability
measures on two spaces X and Y are equivalent with respect to some relation R ⊂ X × Y
if both measures induce the same probability measure on the set of equivalence classes of X
and Y .

We will now define the notion of measurable relation. A relation partitions the hybrid state-
space of a PDP. Suppose that two states in the same equivalence class are indistinguishable
in some sense (which sense does not matter now and will become clear later). For a reset-
map we are now only interested in the probability to jump to measurable sets of equivalence
classes. Therefore the relevant measurable sets are those in which every equivalence class is
either totally contained or totally not contained. For the definition of bisimulation we need
that for such a relevant set, the corresponding set (induced by this relation) in the bisimular
PDP is also measurable.

13



Definition 1 Let (X,X ) and (Y,Y) be standard Borel spaces and let R ⊂ X×Y be a relation.
Let

X ∗ = X ∩ {A ⊂ X| if x ∈ A and [x] = [x′] then x′ ∈ A}

be the collection of all Borel sets of X in which any equivalence class of X is either totally
contained or totally not contained. It can be checked that X ∗ is a σ-algebra. Let X/R be the
set of equivalence classes of X, let fX : X → X/R be the mapping that maps each x ∈ X to
its equivalence class and let

X/R = {A ⊂ X/R|f
−1
X (A) ∈ X ∗}.

Then (X/R,X/R), which is a measurable space, is called the quotient space of X with respect
to R. We define a bijective mapping f : X/R → Y/R as: f([x]) = [y] if (x, y) ∈ R for some
x ∈ [x] and some y ∈ [y] (this is uniquely defined). We say that the relation R is measurable
if X and Y define the same quotient space, i.e. if f(X/R) = Y/R.

Definition 2 Suppose we have measures PX and PY on standard Borel spaces (X,X ) and
(Y,Y) respectively. Suppose that we have a measurable relation R ⊂ X × Y . The measures
PX and PY are called equivalent with respect to R if they define the same probability measure
on the quotient space (Z,Z) of X and Y , i.e. if we have PX(f−1

X (A)) = PY (f−1
Y (A)) for all

A ∈ Z.

Suppose we have a PDP with state-space X and fX is a real-valued measurable function
on X. Then we call the pair (X, fX) a weighted PDP. (The function fX can easily be gener-
alized to a mapping to R

n or to any PDP hybrid state space). Thus, with (X, fX) we refer to
the PDP with state-space X. As long as we do not define different PDPs on one state-space,
(X, fX) will unambiguously denote one PDP with function fX defined on its state-space. For
x ∈ X we also write λ(x), φ(t, x), Q(x), t∗(x) to denote the λ, φ, Q and t∗ functions of the
PDP that corresponds with the state-space X (again assuming that there is exactly one).
Thus, if x = (ν, ζ) then φ(t, x) denotes φν(t, ζ) for the PDP which has x as state, etc.

The function fX can be seen as a weight function on the state-space. It can also be
seen as the continuous output or the observable component of the system. We call fX the
weight-function or the output-function. We will now define an equivalence notion for weighted
PDPs.

Definition 3 Suppose we have two weighted PDPs with state-spaces X and Y and weight-
functions fX and fY . A measurable relation R ⊂ X × Y is a bisimulation iff (x, y) ∈ R
implies that

• fX(x) = fY (y), t∗(x) = t∗(y) and λ(x) = λ(y).

• (φ(t, x), φ(t, y)) ∈ R for all t ∈ [0, t∗(x)[.

• Q(x) and Q(y) are equivalent probability measures with respect to R. Also Q(φ(t∗(x), x))
and Q(φ(t∗(y), y)) are equivalent probability measures with respect to R.

Two states x and y are bisimilar if they are contained in some bisimulation.
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In words, we could say that Definition 3 means that two bisimilar states x and y are
bisimilar if: Bullet 1: there outputs are equal, the times until the boundary is reached are
equal, the jump-rates are equal (the latter two mean that they have equal stochastic jump
times). Bullet 2: At all times before a jump, after the processes started in x and y, the states
are bisimilar. Bullet 3: The reset maps of two bisimilar states (and of the two boundary
states where they flow to) are equivalent.

Conjecture 1 If initial states x and y of two weighted PDPs (X, fX) and (Y, fY ) are con-
tained in some bisimulation R, then, assumed that the quotient space is a separable standard
Borel space, we can construct the stochastic processes xt and yt on the Hilbert cube (Ω,A, P )
in such a way that for each ω ∈ Ω we have fX(xt(ω)) = fY (yt(ω)).

The proof of this conjecture is under construction. Note that this conjecture says that
two weighted PDPs that are bisimular have indistinguishable output-processes. This means
that if we are interested only in the output behavior of a PDP (which is often the case when
we want to calculate distributions or expectations of PDPs), then if we can find a bisimular
PDP that has a simpler structure (like a smaller state-space), then we can as well analyze
that bisimular PDP.

3.2 Bisimulation for CPDPs

A bisimulation for CPDPs should concern two things: First, it should encompass the bisimu-
lation notion for PDPs, that is, the stochastic output behavior of two bisimular CPDPs should
be equivalent (Note that this needs the introduction of an output function for CPDPs). Sec-
ond, two bisimular CPDPs should have equivalent behavior when it concerns communication.
This means that two bisimular CPDPs interact in the same way with their environment and
consequently, substituting a component for another bisimular component will not change the
external behavior of the composite system.

A definition of bisimulation can be given in terms of the process semantics or in terms of
the process syntax. In the definition of bisimulation for PDPs in this chapter we find a mix of
syntactical terms (like the jump-rate function) and semantical terms (like the flow function).
A bisimulation that is defined in terms of the syntax is also called a structural bisimulation.
In order to design algorithms that can find automatically (maximal) bisimulations for CPDPs,
it is probably needed that the bisimulation for CPDPs is defined in a structural way.

The question whether the CPDP is syntactically defined in a convenient way, can also be
regarded from a bisimulation point of view. Therefore we will also look at the idea of a total
split of the PDP-mechanism and the communication mechanism (see also Chapter 5 for this
split-up idea) with the bisimulation idea in mind. With such a split-up (which is also used in
Interactive Markov Chains for example), it might be possible to also split up the bisimulation
in two parts: The stochastic process part and the communication part.
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Chapter 4

The composition operator |P
A
|

4.1 Introduction

A complex system typically consists of multiple components which are running simultane-
ously and which are interacting with each other. Modelling these complex systems in a
compositional way can be done by using a composition operator which combines the different
components of the system. If we denote the composition operator by |, then A|B is the system
that is composed out of subsystems A and B. The interaction between the two subsystems
is regulated by the composition rules of the operator |. Because the systems A and B run in
parallel (or concurrently), we call | the parallel composition operator.

The goal of this chapter is to make clear that for the modelling of many types of systems,
it is advantageous and natural to use two types of interaction: blocking-interaction and non-
blocking-interaction. We show that this idea can be formalized naturally by distinguishing
active and passive actions. For this chapter it does not matter which framework is used for
the modelling of systems, as long as it is a transition-based framework (such as CPDPs, au-
tomata or process algebra expressions).

In Section 4.2, which is the main part of this chapter, we introduce the active/passive
framework and we develop a composition operator that can establish several types of interac-
tion between systems (that are built out of active and passive transitions). While we develop
the operator step by step, we motivate each step by means of simple and clear examples. Some
of these examples are about supervisory control systems because we think that supervisory
control systems provide natural examples for our modelling framework. After the framework
has been introduced (including a structural operational semantics for the composition op-
erator), we give a more extensive example in Section 4.2.5 which shows all features of the
framework and the composition operator. In Section 4.2.6 we take a closer look at supervisory
control system. We explain why we think that our framework has certain advantages over
other frameworks in modelling supervisory control systems. Section 4.2 ends with a technical
result on the operator.

In [12] we used solid arrows for active transitions and we used dashed arrows for passive
transitions. If both an active and a passive transition have the same label, then they can
synchronize. In this chapter we have chosen for a different notation for the passive transitions.
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Here, passive transitions are distinguished from active transitions because the label has a little
bar above it. Now an active transition with label a can synchronize with a passive transition
with label ā. We chose for this notation because it is a common notation in process algebra
literature (as in [9]) and the contents of this chapter is, besides for example CPDPs, in fact
applicable for all kinds of process algebra models.

4.2 The active/passive framework

We can distinguish two types of interactions between processes. First, blocking-interaction:
both partners (for example the controller and the process) need to be able to do the action,
otherwise the action will not take place. This is the type of interaction that we see in many
process algebra models (e.g. [9]). Secondly, non-blocking-interaction: one of the partners (the
passive one) is not able to block the other (the active one). For example if a person (the pas-
sive partner) observes that a light (the active partner) is switched on. The person observes,
but is not able to block the switching, i.e. the light could also be switched on without the
person observing it.

Non-blocking-interaction can already be found in the literature, e.g. in broadcast sys-
tems ([10]) where several listening processes can receive (but not block) a signal, or in I/O
automata ([7, 8]), where processes should be input-enabled, i.e. ready to receive an input in
any state of the process, such that an output will never be blocked.

We see that most formalisms support only blocking interaction and that some formalisms
(broadcasting systems, I/O automata) support only non-blocking interaction. However, there
exists no formalism that supports both blocking and non-blocking interaction. We will mo-
tivate that for our purposes, it is desirable to have a formalism that supports both types of
interaction.

The context of processes that we want to specify is the following:

1. We want to specify supervisory control systems. We will see that we need both blocking
and non-blocking interaction for this.

2. We are also interested in modular supervisory control, where a controller may consist
of several modules. We will motivate that in addition to blocking and non-blocking
interaction, we need to control the scope of non-blocking interaction.

3. We want to specify complex processes that consist of interacting subprocesses. Here we
will argue that we need the possibility to have multi-way synchronizations.

Now we will introduce our framework, which is based on active and passive actions and
which supports both blocking and non-blocking interaction. We introduce the framework in
three steps, corresponding to the three points in the above context. In each step we give
motivating examples. In the first step we explain how active and passive actions can be used
to establish blocking and non-blocking interaction. In the second step we explain how to deal
with observations in systems that consist of more than two components. In the third step we
treat the problem of multi-way synchronization, i.e. the problem whether an active action
can be synchronized with multiple passive actions or only with one. After that, we give a
small summary of how the composition operator works.
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4.2.1 Step 1: establishing blocking and non-blocking interaction

We consider two types of actions: active actions (denoted as a, b etc.) and passive actions
(which are observing actions and are denoted as ā, b̄, etc.). Because we want to have both
blocking and non-blocking actions, we have to make clear which actions are blocking and
which actions are non-blocking. Therefore, we introduce the set A which contains all actions
that are blocking. The composition operator will now be denoted by |A|. We still use | to
denote the composition operator in cases where A is unspecified or where the set A is not
used. Blocking-interaction is now expressed by the following operational rule:

r1.
L1

a
−→ L′

1, L2
a

−→ L′
2

L1|A|L2
a

−→ L′
1|A|L

′
2

(a ∈ A),

which says that a blocking-synchronization (or active-active synchronization) on a from
joint location L1|A|L2 to L′

1|A|L
′
2, can only happen when both partners have the action a

available from locations L1 and L2 to locations L′
1 and L′

2 respectively. (In order to comply
with the terminology used in timed and hybrid automata, we use the term locations to des-
ignate the states in an automaton). For a graphical example of a product automaton that is
the result of composition operators that have composition rules in the form of r1, we refer to
[13]. In Figure 4.1, where a ∈ A, we see that both the process P and the controller C have
transitions labelled with a from their initial locations P1 and C1. This results in the (syn-
chronized) a-transition in the composite system P |C. In location P3, P can do an a-action,
but because a ∈ A and C does not have an active a-transition in location C3, this transition
is blocked by C and therefore the transition is not present in P |C.

P C CP |

a b ba

a b

1P

2P 3P

4P 5P

1C

2C
3C

a b

b

Figure 4.1: Process P controlled by C

Blocking as expressed in rule r1 can be used in supervisory control where a controller C
blocks certain actions of the process P . Another situation where active actions must syn-
chronize (i.e. are in A) is where two partners cooperate on a certain task. If two persons
are chatting with each other, then they are cooperating on the chat-task so to say. In other
words, both are chatting or both are not chatting, one cannot chat without the other (this
situation will be described in the example in Section 4.2.5). For a situation where two persons
P1 and P2 can both do a specific action (like hanging up the phone as described in Section
4.2.5) independently of the other person, then the action can be independently performed
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(i.e. should not be in A).

For non-blocking-interaction, we need an active a with a 6∈ A in one partner and a passive
ā in the other partner. Non-blocking interaction is now expressed by

r2.
L1

a
−→ L′

1, L2
ā

−→ L′
2

L1|A|L2
a

−→ L′
1|A|L

′
2

(a 6∈ A),

which means that L1 executes an a, which is observed by a ā-transition outgoing from
L2. In Figure 4.1 we see for example that the b-transition from location P1 in P , is ob-
served by the b̄-transition in C. We also need rule r2’, which is the mirrored rule of r2 (i.e.

L1
ā

−→ L′
1, L2

a
−→ L′

2 instead of L1
a

−→ L′
1, L2

ā
−→ L′

2 etc.).

If L2 can not observe a-actions (i.e. there is no outgoing ā-transition), L1 should still be
able to execute a, since this execution does not depend on whether or not some other process
is observing the action. This is expressed by

r3.
L1

a
−→ L′

1, L2 6
ā

−→

L1|A|L2
a

−→ L′
1|A|L2

(a 6∈ A)

and its mirror rule r3’. In Figure 4.1 we see for example that P has a b-transition from
location P3, which cannot be observed by C, but which is still present in P |C.

Note that rule r3 says that if L2 can observe a, then it also will observe a, i.e. if L2 has
a ā-transition, then it can not choose not to observe an a executed by the other component.
This makes sense because when some system broadcasts a radio signal a and a receiver is able
to receive the signal (i.e. it has a passive ā-transition), then we should not allow the possibil-
ity that the signal is broadcast while the receiver does not receive (i.e. does not synchronize
its passive ā-action with the active a-action).

In the supervisory control context, observing as active/passive-synchronization means that
the controller observes actions of the process. Outside the supervisory control context, this
mechanism can be used for other kinds of observation (e.g. a person that observes an alarm
signal as described in Section 4.2.5).

4.2.2 Step 2: Controlling the scope of the observations

Passive transitions are intended to observe active transitions. This means that outside an
open-systems context (i.e. when the system is closed and will not interact with other sys-
tems), passive transitions are supposed not to be present, since there is nothing to observe.
Suppose we have a system that consists of a process P and a controller C, where the con-
troller observes the actions of P . One could reason that |A| should be defined such that
after composition, there are no passive transitions anymore (which is the case if we only con-
sider rules r1,r2 and r3). But that would not be suitable for a broader composition context
like modular supervisory control: Suppose we have a system with one process P and two
controllers C1 and C2, where both C1 and C2 are concurrently observing P . If we define
C := C1|C2 as the composed controller, then C should still observe P , with other words, C
should still contain the passive transitions from C1 and C2 to observe P . This means that the
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’real’ observations happen when we compose C with P and not when we compose C1 with C2.

One solution one could think of is to indicate within the composition operator where the
’real’ observations take place. We could use an observation set O and then |O (or together
with A, |OA|) means that observations take place in this composition for the events in O. Then
in the compound (C1|C2)|OP there are no passive transitions with labels from O anymore.

For the double-controller situation, |O seems to be a good solution. However, it seems
that for modelling the following situation we need a different solution: Suppose three persons
P1, P2 and P3 are working on a problem. All persons start working independently on this
problem. Once one of the persons found the solution, all three persons stop with the problem.
This can be modelled as in Figure 4.2, where the signal ready is ’broadcast’ by one of the
persons as soon as this person solved the problem, and is then received by the others. In this
situation, every Pi should be able to hear every Pj (i 6= j). With |O we can not express this.
(In (P1|P2)|OP3, P1 does not observe P2. In (P1|OP2)|P3, P3 does not observe P1 and P2 etc.).

1P

ready

ready

2P

ready

ready

3P

ready

ready

Figure 4.2: Situation where all persons can observe all others

Instead of using |O, we use the closing operator [·]C . [X]C discards all passive transitions
in X with labels from C. With this closing operator, we can solve both the double-controller
and the ’three persons’ problem. The composition rules for this operator are

r7.
L

a
−→ L′

[L]C
a

−→ [L′]C

r8.
L

ā
−→ L′

[L]C
ā

−→ [L′]C
(ā 6∈ C).

With [·]C we can control the scope of the observations. Now, | should be defined such
that in X|Y , X can observe Y (and vice versa), but also X|Y can still observe Z in (X|Y )|Z.
This is expressed by

r4.
L1

ā
−→ L′

1

L1|A|L2
ā

−→ L′
1|A|L2

and mirror rule r4’ which say that after the composition, every passive transition ’remains’,
such that the component to which this transition belongs, is still able to observe a new
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component which might be added to the composite system in a new composition operation.
If, for example, we know that X and Y only observe each other and will (or can) not observe
Z or other components, then we could specify this as [X|Y ]|Z. ([·] is shorthand for [·]Σ̄ with
Σ̄ the set of all passive actions).

4.2.3 Step 3: Multi-way synchronization

Consider the modular supervisory control situation again where we have two controllers C1

and C2 and a process P . Now suppose that P has an action a which can be observed by both
C1 and C2 (i.e. both controllers have ā-transitions). If we allow that both controllers can
observe a concurrently (which is most natural), then we need to express the possibility of a
multi-way synchronization (in this case: two passive actions and one active action). Another
example (outside the supervisory control context) where we need a multi-way synchroniza-
tion is the situation where an alarm signal in an office is heard (observed) by two different
employees working in that office (this example is also described in Section 4.2.5).

The question now is whether there are situations we want to model that do not allow
multi-way synchronizations. One such example (also considered in Section 4.2.5) is the tele-
phone situation: a telephone in an office rings and only one of the employees may answer
the call. Although both employees hear the telephone, only one may answer it (i.e. may
synchronize its passive action with the active telephone signal).

We see that it is desirable to distinguish two types of passive actions: passive actions for
which multi-way synchronization is allowed and passive actions for which this is not allowed.
Therefore we introduce the set P , which contains all passive actions for which multi-way
synchronization is allowed. The composition operator will now be denoted by |PA|. Multi-way
synchronization is expressed by

r5.
L1

ā
−→ L′

1, L2
ā

−→ L′
2

L1|PA|L2
ā

−→ L′
1|

P
A|L

′
2

(ā ∈ P ),

which means that two passive ā-transitions, one in C1 and one in C2, synchronize, which
results in a ā-transition for the composite system C1|C2. This synchronized passive transi-
tion can observe an a in P , which results in a new (multi-way) synchronized transition in
(C1|C2)|P which then expresses that C1 and C2 concurrently observe P .

If a ∈ P and C1 can observe a, but C2 cannot observe a, then C1 in (C1|C2)|P should
synchronize its passive ā with the active a of P , while C2 idles. This situation is expressed
by

r6.
L1

ā
−→ L′

1, L2 6
ā

−→

L1|PA|L2
ā

−→ L′
1|

P
A|L2

(ā ∈ P )

and its mirror rule

r6′.
L1 6

ā
−→, L2

ā
−→ L′

2

L1|PA|L2
ā

−→ L1|PA|L
′
2

(ā ∈ P ).
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In the new situation (where we have introduced the set P ), we can see that rule r4 (which
expresses that passive transitions should interleave) only applies for passive actions not in P .
Therefore r4 should be changed to

r4.
L1

ā
−→ L′

1

L1|PA|L2
ā

−→ L′
1|

P
A|L2

(ā 6∈ P ).

With the set P as part of the operator, rules r1,r2 and r3 should be changed to

r1.
L1

a
−→ L′

1, L2
a

−→ L′
2

L1|PA|L2
a

−→ L′
1|

P
A|L

′
2

(a ∈ A),

r2.
L1

a
−→ L′

1, L2
ā

−→ L′
2

L1|PA|L2
a

−→ L′
1|

P
A|L

′
2

(a 6∈ A),

r3.
L1

a
−→ L′

1, L2 6
ā

−→

L1|PA|L2
a

−→ L′
1|

P
A|L2

(a 6∈ A).

Now rules r1 till r6 (and the mirror rules r2’,r3’,r4’ and r6’) form the structural operational
semantics for |PA| and rule r7 and r8 form the structural operational semantics for [·]C .

Note that the synchronization-mechanisms for active transitions and passive transitions
are different. If an active action a is synchronizing (i.e. a ∈ A), then a component can execute
the action only when the other component in the composition can execute the action (and
vice versa). If a passive action ā is synchronizing (i.e. ā ∈ P ), then if both components can
execute the action, they have to synchronize. However, if only one component can execute the
action, the action can still be executed without the other component synchronizing with it.
This is expressed in rule r6. For active-active synchronization we do not have an equivalent
rule as r6. Because of this difference between the synchronization-mechanisms, we need to
use different composition rules for both the active and the passive actions (i.e. we can not
combine active and passive synchronization in the same rules).

4.2.4 Summary concerning |PA|

The operator |PA| expresses the following interaction: Actions that are elements of the set A
must synchronize. Suppose we have the context P1|

P
A|P2 and a ∈ A. Then P1 can execute

an a only if P2 can execute an a at the same time (and vice versa). Execution of a in P1

and P2 will than happen synchronously. If a 6∈ A, then if P1 can execute an a, it can be
executed independently of P2. Also, if a 6∈ A, passive ā-transitions in P2 will be triggered by
active a transitions in P1 (i.e. they synchronize), and vice versa. If ā ∈ P , then two passive
actions in P1 and P2 with this label must synchronize. This expresses multi-way synchro-
nization which means that multiple passive transitions (one transition in each of the multiple
components) can synchronize together with one active transition in another component. If
ā 6∈ P , then passive transitions with the same label interleave, which expresses that only one
passive transition may synchronize with an active transition. This means that when multiple
components are ready to synchronize their ā-transition on an a-transition in another compo-
nent, a (non-deterministic) choice should be made on which one is the one that is allowed to
synchronize.
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4.2.5 Example

In Figure 4.3 we see an example where we find back all interaction structures we described be-
fore: non-synchronizing active transitions, synchronizing active transitions, non-synchronizing
passive transitions, synchronizing passive transitions and active-passive synchronization.

iEring

hangup chat

stopchat

alarm

alarmalarm

O

alarm

ring

Figure 4.3: Example with different kinds of interaction

The example of Figure 4.3 concerns an office O with two employees E1 and E2. In the
office there are two sources which can produce a signal: A telephone and an alarm. The
telephone rings when somebody calls the office, the alarm fires when there is danger, which
means that the employees should leave the office when they hear the alarm. Both the tele-
phone and the alarm execute their signals independently from the employees. Therefore they
are modelled as active transitions labelled ring and alarm respectively (see Figure 4.3). If
the telephone rings, O makes a self-loop which means that O stays in the same location. This
location has the meaning of ’normal-working-conditions’. If the alarm goes, O jumps to a
second location which means ’dangerous-working-conditions’.

E1 and E2 have the same automaton-structure. From E1 (or E2), the employee can ex-
hibit three different actions: He can chat with his fellow employee, he can pick up the phone
and he can leave the office. Leaving the office only happens when the alarm goes off. This
action is modelled as a passive transition which synchronizes with the independent active
alarm-transition in O. We see that from every location, the employee can react on the alarm.
When the phone rings, the employee can pick up the phone by synchronizing its passive ring
event with the active ring from O. The employee hangs up with an active hangup event.
The employee can start a chat with his office-mate via the active chat event. This should
synchronize with an active chat event of the office-mate (both should be willing or able to
chat). The chat will be ended with an active-active synchronization of stopchat.

From the model we see that if the employees are chatting, they first have to end the chat
before one of them can pick up the phone. This means that they will probably miss the first
ring signal, but can maybe interact on the second ring signal (the phone might give multiple
ring signals when somebody calls). Also, if one employee is phoning, he first has to hang up
before a chat can be started.

Where do we see the different kinds of interaction? The passive ring transitions of E1 and
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E2 should be non-synchronizing since only one passive transition is allowed to synchronize
with the active ring transition in O. The passive alarm transitions in E1 and E2 should
synchronize because both employees react synchronously on the alarm. The active hangup
transitions in E1 and E2 should be non-synchronizing (only one employee hangs up). The
active chat and stopchat transitions in E1 and E2 should synchronize (both employees chat).

From the above follows that for the composition E1|
P
A|E2 we get A = {chat, stopchat}

and P = {alarm}. For the composition (E1|
alarm
chat,stopchat|E2)|

A
P |O we get A = ∅ and P = Σ̄.

The total specification is then

(E1|
alarm
chat,stopchat|E2)||O. (4.1)

If (4.1) is the system that we want to analyze, then we could close down all observation
channels (i.e. the passive transitions) with the [·] operator. Now suppose that (4.1) is only
one chamber of a bigger office consisting of multiple chambers. Then this chamber is only
one unit and lets call it U1. The other units then are U2 = (E′

1|
alarm
chat,stopchat|E

′
2)||O

′, U3 =

(E′′
1 |

alarm
chat,stopchat|E

′′
2 )||O′′ etc., where Ei = E′

i = E′′
i , O = O′ = O′′ etc. The telephones in each

office are local. With other words, if a telephone rings in one office, only the employees in that
office hear the phone and can answer it. The alarm however is global. If there is danger in the
building, the alarm goes synchronously in all offices. To specify that the phones are local, we
use [·] and get [Ui]ring. To specify that the alarm is global, we use alarm as a synchronization
event in the composition of the units. The total composition of the whole building is then

U ′
1|alarm|U ′

2|alarm|U ′
3|alarm| · · · ,

where U ′
i = [Ui]ring.

4.2.6 Supervisory control with |PA|

In this section we want to take a closer look at supervisory control. We will shortly de-
scribe the main concepts of supervisory control and thereafter we compare how specification
of control systems can be done in our active/passive framework to how it can be done in a
framework where there is only blocking-interaction.

In the supervisory control paradigm ([11]), the actions of a process can be observable
or unobservable and they can be controllable or uncontrollable. Observable actions can be
observed by the controller (and unobservable actions can not). Controllable actions can be
controlled by the controller (and uncontrollable actions can not). This means that the con-
troller can block these actions, i.e. can prevent them from happening.

If we specify the control system within an automata framework, then the process and the
controller are modelled as two separate automata which can interact. The plant executing an
action is then modelled as a transition (labelled with this action) from one process-location to
another process-location. The controller observing an action is then modelled as a transition
in the controller that synchronizes with the to-be-observed transition in the process.

Consider the process P in Figure 4.4 with a controllable/observable and b uncontrol-
lable/observable. We want to control this process such that the behavior of P is restricted to
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1P 2P
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Figure 4.4: Control in only-blocking framework and in active/passive framework

P |C in Figure 4.4.

First lets see how this can be done in the only-blocking-interaction framework. Since a and
b are both observable, we mark them as synchronization actions (i.e. in the composition op-
eration these actions must synchronize while non-synchronization actions will be interleaved).
The controller that does the job is Cblocking in Figure 4.4. We see that we need two self-loops
on action b, because otherwise the two upper b-transitions of P are blocked and that is not
what we want according to P |C. We see that, according to the specification P |C, transition
P1

a
−→ P3 of P is blocked because of the absence of an a-transition in Cblocking at location

C1.

For the active/passive framework, Cactive/passive in Figure 4.4 does the job, because a is
controllable (i.e. blockable), a ∈ A and because b is not controllable, b 6∈ A. Blocking the
a transition from P1 to P3 is done in the same way as in the only-blocking framework. The
difference however is, that here we do not need the self-loops on b.

We could say that in the active/passive framework, the controller will observe only (by
means of a passive transition) when it needs the information. In Figure 4.4, Cactive/passive

observes P1
b

−→ P2, but does not observe the upper b-transitions of P , because P may exe-
cute them without the controller ’knowing’ it. In the only-blocking framework, the controller
must also synchronize on the upper b-transitions, because otherwise they will be blocked. We
think that this is an important advantage of using active/passive transitions: for uncontrol-
lable/observable actions, transitions are only needed where observations are needed. If there
is only blocking-interaction, transitions in the controller are needed everywhere the process
executes an uncontrollable/observable action (otherwise they will be blocked and that is not
allowed).

In fact we can say that in the supervisory control context, A (from P |PA|C) contains the
controllable actions of the process P . Then, we resume: uncontrollable actions are observed by
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passive transitions and controllable actions are observed and controlled by active transitions.
Note that an active transition of C labelled with a controllable event of P is both controlling
(it allows P to execute the action) and observing (the controller synchronizes this transition
with the one from P ).

4.2.7 Commutativity and associativity of |PA|

In this section we present the more technical result that |PA| is commutative and associative.

Suppose that X, Y and Z are processes (automata). Suppose that L1 and L′
1 are locations

of X, L2 and L′
2 are locations of Y and L3 and L′

3 are locations of Z. For the composite
system X|Y we then have locations Li|Lj , with Li, Lj locations of X and Y respectively. For
the composite system (X|Y )|Z we have locations (Li|Lj)|Lk, with Li, Lj , Lk locations of X,
Y and Z respectively. etc. Commutativity of | means that for all processes X and Y and
for every transition L1|L2

α
−→ L′

1|L
′
2 of X|Y , we have that L2|L1

α
−→ L′

2|L
′
1 is a transition

of Y |X and vice versa (α may be active or passive). Associativity of | means that for all
processes X,Y and Z and for every transition (L1|L2)|L3

α
−→ (L′

1|L
′
2)L

′
3 of (X|Y )|Z, we have

that L1|(L2|L3)
α

−→ L′
1|(L

′
2|L

′
3) is a transition of X|(Y |Z) and vice versa.

Theorem: |PA| is commutative for all A and P . |PA| is associative if and only if we have that
a ∈ A implies ā ∈ P for all actions.

Proof: Because we also have the symmetric rules 1’ till 6’ of 1 till 6, |PA| is clearly com-
mutative. For associativity, we first consider the case where P is full (the set of all labels),
we do this by considering 20 cases (which are all cases that can bring forth a transition in
the composite system): Independent of A, there are seven cases that bring forth a passive
transition in the composition of three components (case 1-7 below). If a 6∈ A, there are 12
cases (case 8-19) that bring forth an active transition in the composition of three components.
For the case that a ∈ A, there is only one case (case 20) where three components bring forth
an active transition.

In the following table, we see implication arrows. Above these arrows is indicated which
rules should be applied to get the result of that specific line in the table, where a zero means
that no rule should be applied. For line 1 for example we have that for the left hand situation
no rule should be applied for the in-bracket terms (which result in no-passive transitions for
this composition) after which rule r6’ should be applied which results in the passive transi-
tion after the second composition. For the right-hand side of line 1, we should apply rule
r6’ for the in-bracket term (which results in a passive transition for this composition), after
which rule r6’ should be applied again, which results in a passive transition after the second
composition. We see that for the situation in line 1, we have associativity. This result is now
proven in the following table for all possible situations.

1. ( 6
ā

−→ |PA| 6
ā

−→)|PA|
ā

−→
0,r6′
=⇒

ā
−→

r6′,r6′
⇐= 6

ā
−→ |PA|( 6

ā
−→ |PA|

ā
−→)

2. ( 6
ā

−→ |PA|
ā

−→)|PA| 6
ā

−→
r6′,r6
=⇒

ā
−→

r6,r6′
⇐= 6

ā
−→ |PA|(

ā
−→ |PA| 6

ā
−→)

3. (
ā

−→ |PA| 6
ā

−→)|PA| 6
ā

−→
r6,r6
=⇒

ā
−→

0,r6
⇐=

ā
−→ |PA|( 6

ā
−→ |PA| 6

ā
−→)

4. ( 6
ā

−→ |PA|
ā

−→)|PA|
ā

−→
r6′,r5
=⇒

ā
−→

r5,r6′
⇐= 6

ā
−→ |PA|(

ā
−→ |PA|

ā
−→)
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5. (
ā

−→ |PA| 6
ā

−→)|PA|
ā

−→
r6,r5
=⇒

ā
−→

r6′,r5
⇐=

ā
−→ |PA|( 6

ā
−→ |PA|

ā
−→)

6. (
ā

−→ |PA|
ā

−→)|PA| 6
ā

−→
r5,r6
=⇒

ā
−→

r5,r6
⇐=

ā
−→ |PA|(

ā
−→ |PA| 6

ā
−→)

7. (
ā

−→ |PA|
ā

−→)|PA|
ā

−→
r5,r5
=⇒

ā
−→

r5,r5
⇐=

ā
−→ |PA|(

ā
−→ |PA|

ā
−→)

a 6∈ A:

8. ( 6
ā

−→ |PA| 6
ā

−→)|PA|
a

−→
0,r3′
=⇒

a
−→

r3′,r3′
⇐= 6

ā
−→ |PA|( 6

ā
−→ |PA|

a
−→)

9. ( 6
ā

−→ |PA|
a

−→)|PA| 6
ā

−→
r3′,r3
=⇒

a
−→

r3,r3′
⇐= 6

ā
−→ |PA|(

a
−→ |PA| 6

ā
−→)

10. (
a

−→ |PA| 6
ā

−→)|PA| 6
ā

−→
r3,r3
=⇒

a
−→

0,r3
⇐=

a
−→ |PA|( 6

ā
−→ |PA| 6

ā
−→)

11. ( 6
ā

−→ |PA|
a

−→)|PA|
ā

−→
r3′,r2
=⇒

a
−→

r2,r3′
⇐= 6

ā
−→ |PA|(

a
−→ |PA|

ā
−→)

12. ( 6
ā

−→ |PA|
ā

−→)|PA|
a

−→
r6′,r2′
=⇒

a
−→

r2′,r3′
⇐= 6

ā
−→ |PA|(

ā
−→ |PA|

a
−→)

13. (
a

−→ |PA| 6
ā

−→)|PA|
ā

−→
r3,r2
=⇒

a
−→

r6′,r2
⇐=

a
−→ |PA|( 6

ā
−→ |PA|

ā
−→)

14. (
ā

−→ |PA| 6
ā

−→)|PA|
a

−→
r6,r2′
=⇒

a
−→

r3′,r2′
⇐=

ā
−→ |PA|( 6

ā
−→ |PA|

a
−→)

15. (
a

−→ |PA|
ā

−→)|PA| 6
ā

−→
r2,r3
=⇒

a
−→

r6,r2
⇐=

a
−→ |PA|(

ā
−→ |PA| 6

ā
−→)

16. (
ā

−→ |PA|
a

−→)|PA| 6
ā

−→
r2′,r3
=⇒

a
−→

r3,r2′
⇐=

ā
−→ |PA|(

a
−→ |PA| 6

ā
−→)

17. (
ā

−→ |PA|
ā

−→)|PA|
a

−→
r5,r2′
=⇒

a
−→

r2′,r2′
⇐=

ā
−→ |PA|(

ā
−→ |PA|

a
−→)

18. (
ā

−→ |PA|
a

−→)|PA|
ā

−→
r2′,r2
=⇒

a
−→

r2,r2′
⇐=

ā
−→ |PA|(

a
−→ |PA|

ā
−→)

19. (
a

−→ |PA|
ā

−→)|PA|
ā

−→
r2,r2
=⇒

a
−→

r5,r2
⇐=

a
−→ |PA|(

ā
−→ |PA|

ā
−→).

a ∈ A:
20. (

a
−→ |PA|

a
−→)|PA|

a
−→

r1,r1
=⇒

a
−→

r1,r1
⇐=

a
−→ |PA|(

a
−→ |PA|

a
−→).

Now suppose that an action a ∈ A and ā 6∈ P . Then, for the operator |PA|, only rules r1
and r4 apply. r1 says that active a-transitions must synchronize. It can easily be seen then
that for three components all components should have an active a-transition, otherwise the
composition result will not have an active a-transition. This is true for both composition
orders (left- and right-hand). This means that so far we have associativity for this operator.
r4 says that passive ā-transitions are interleaving (i.e. they are independent of active and
passive transitions in other components). Here it can also clearly be seen that there can not
be a composition case where this rule will violate associativity. Thus, if a ∈ A and ā 6∈ P ,
then |PA| is associative.

Now suppose there exists ā 6∈ P together with a ∈ A. Then the following is a counterex-
ample for associativity:

(L1
a

−→ L′
1|

P
A|L2

ā
−→ L′

2)|
P
A|L3

ā
−→ L′

3
r2,r2
=⇒ (L1|

P
A|L2)|

P
A|L3

a
−→ (L′

1|
P
A|L

′
2)|

P
A|L

′
3,

L1
a

−→ L′
1|

P
A|(L2

ā
−→ L′

2|
P
A|L3

ā
−→ L′

3) =⇒ (L1|
P
A|L2)|

P
A|L3 6

a
−→ (L′

1|
P
A|L

′
2)|

P
A|L

′
3.

We conclude that |PA| is associative if and only if a ∈ A implies ā ∈ P for all actions. �
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If, according to the above theorem, |PA1
| and |PA2

| are associative operators, we have

(X|PAi
|Y )|PAi

|Z = X|PAi
|(Y |PAi

|Z) (i = 1, 2) and therefore we could write X|PAi
|Y |PAi

|Z instead.

Note, however, that in general (X|PA1
|Y )|PA2

|Z 6= X|PA1
|(Y |PA2

|Z) just as in general we do not
have (X|A1|Y )|A2|Z 6= X|A1|(Y |A2|Z) in for example CSP (see [5]) or LOTOS (see [6]).

4.3 Conclusions

In this chapter we used active and passive transitions to model both one-way and two-way
interaction between processes. We motivated that the use of active/passive transitions is par-
ticularly interesting for modelling supervisory control systems. Supervisory controllers have
two distinct actions: observing and controlling, which can be modelled naturally with passive
and active transitions respectively. With the use of active/passive transitions, we are able to
avoid the problems that arise in the two-way framework when it comes to modelling uncon-
trollable process actions. We introduced the composition operator |PA| for the active/passive
framework by means of structural operational rules. With the active/passive framework and
the operators [·]C and |PA|, we have given two important tools for the modular specification
of control systems. First, with [·]C we can control the scope of the observations within the
composite system. Secondly, with |PA| we can establish synchronization of observations (which
results in multi-may synchronizations) via the set P . We think that many phenomena, in
particular supervisory control systems, can be modelled naturally within the active/passive
framework together with |PA| and [·]C .
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Chapter 5

CPDP and DCPN

Besides CPDP, another model has been developed for compositional specification of PDPs.
This model is called DCPN which stands for Dynamically Colored Petri Nets (see [3]). In
this chapter we will compare the CPDP-automaton model with the DCPN-Petri-net model.

Both the CPDP and the DCPN models are equivalent with the PDP model in the sense
that every PDP can be transformed into a CPDP/DCPN and every CPDP/DCPN can be
transformed into a PDP. This transformation is such that the stochastic processes of the PDP
and its transformed CPDP/DCPN (and vice versa) are the same.

5.1 Compositional modelling with CPDP and DCPN

Both CPDP and DCPN allow compositional modelling in the sense that a complex system can
be built by first specifying its parts (or components) followed by specifying the interrelation
between the parts.

5.1.1 DCPN

In the DCPN model, two DCPNs can be composed by connecting them with arcs (and if
desirable with extra places and transitions). There are two types of arcs that can be used
for this interconnection: Enabling arcs and inhibitor arcs. If a transition in a component has
incoming enabling arcs from other components, then this transition is enabled if each of the
components has a token in the place from which the enabling arc leaves. If a transition in
a component has an incoming inhibitor arc, then the transition is forbidden to be executed
when there is a token in the place on the other end of the inhibitor arc.

Interaction in DCPN can be seen as sending and receiving of information about the ab-
sence, presence and characteristics of tokens in places. In principle every place (in any compo-
nent) could send its token-information to any transition in the other components (by drawing
the corresponding arcs). This information can then be used in several ways: presence of a
token can be used for enabling or disabling the transition, characteristics (i.e. the color) of
the token can be used for determining the distribution of tokens (and their values) just after
the transition.
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Communication consists in fact of a continuous flow of information (i.e. a transition gets
input-information from its incoming enabling/inhibitor arcs at any moment).

With some clever use (of maybe extra transitions, places etc.), quite rich interaction
structures can be built. Two places in two components can for example enable each others
transitions (assumed that both places have one outgoing transition) which gives the effect of
two components waiting for each other before they do a synchronized transition. In this way
the classical synchronization idea (of most process algebra literature) can be simulated.

5.1.2 CPDP

Communication in CPDP (as it is established in [13]) is done via synchronizing passive and
active transitions. The idea is simple: If in one component an active (or boundary-hit) transi-
tion is executed, then all other components that are able to execute a passive transition with
the same label will execute these passive transitions synchronously with the active one. In this
way a component informs the other components that it executed an active (or spontaneous)
transition with a specific label.

Why do we put the communication labels on the boundary-hit and the spontaneous tran-
sitions? The idea is that the switching of a mode (i.e. jumping to another location via a
boundary-hit or a spontaneous transition) is a relevant action for other components. It can
be relevant for other components to know when and how the other components switch to other
modes/locations. This is exactly what is expressed by the CPDP communication mechanism:
Via passive transitions, components can receive information of the active (or spontaneous)
transitions of other components.

In Chapter 4 we developed a parallel composition operator which can express active-
passive interaction, but which can also express other kinds of communication (like active-
active interaction: Two components waiting for each other before they proceed). For this
active-active interaction, it does not seem very natural anymore to put the event-labels on
the boundary-hit and spontaneous transitions, because boundary-hit and spontaneous tran-
sitions ’just happen’ (from a PDP-point of view) and, intuitively, they do not wait for other
components. One possible new way of establishing communication for CPDPs, which we
are thinking of now, is making a total distinction between PDP-phenomena (like boundary-
hit jumps and spontaneous jumps) and communication-phenomena (i.e. transitions which are
only intended to communicate something). We would then get an orthogonal split-up of PDP-
transitions (boundary-hit/spontaneous) and communication-transitions (active/passive). In
extended-CPDP, in [13], we enhanced the boundary-hit transitions with extra guards, which
also gave the possibility of active-active interaction. However, in this way the transition (with
guard) is not exactly a boundary-hit transition anymore. Boundary-hit transitions are then
a special case of these guarded transitions, where the guards are equal to the boundaries of
the invariants.

Thus, we still have to think about how to exactly define the communication mechanism:
Do we want to specify boundary-hit transitions as special cases of guarded transitions, or do we
want to split PDP-transitions from communication-transitions? In the first case, the number
of different transitions is smaller (although we need to introduce guards), but in the second
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case the connection with PDPs can be made easier and more intuitive because the PDP-
behavior corresponds exactly with the PDP-transitions (and not with the communication-
transitions).

5.2 Comparison CPDP - DCPN

We look at two different aspects for the comparison of the CPDP-model and the DCPN-model:
Synchronization and reset-maps.

5.2.1 Synchronization

Comparing the communication mechanisms of CPDP and DCPN is difficult because their
communication-mechanisms are rather different. In DCPN, the tokens in some places pre-
enable transitions that are connected to other places via ordinary arcs. Once a transition is
enabled, it will be executed, alone. In CPDP, communication does not take place via enabling
or disabling of transitions, but by the synchronization of transitions. An active transition in
one component can force passive transitions in other components to synchronize with it. Still,
we could say that both communication mechanisms are equivalent in the sense that transitions
in one component influence or force transitions in other components: In DCPN, a transition in
one component changes the distribution of its tokens, which may change the pre-enabledness
of transitions in other components. That may have as consequence that immediate transitions
in these other components are forced to be executed immediately. In some sense this means
synchronization, since the transitions are executed at the same time. On the other hand, the
transitions are executed in a specific order which is not the case for synchronizing transitions
in CPDP.

����

A B A B

a a

����

Figure 5.1: Communication for CPDP and DCPN

In Figure 5.1 for example, we see CPDP A||B (i.e. the composition of A and B), where
the passive transition of A will synchronize on the active transition of B. The DCPN with
components A and B is equivalent: Once the guard-transition (i.e. the analogy of active
transition as boundary-hit) in B is executed, the immediate transition in A is enabled and
will be executed immediately. Therefore the two transitions are executed at the same time,
but still they have a specific order of execution where the transition in B is executed first
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while we do not have such an order of execution in the corresponding CPDP.

Note that (in general) changing the pre-enabledness of guard- and delay-transitions in
DCPN means, in CPDP-terms, jumping to another mode (location) where new jump-rates
and boundaries are active.

5.2.2 Reset-maps

For DCPN, the colors of the tokens from the input-places of a specific transition determine
the reset-map (i.e. firing measure in DCPN terminology). This means that different color-
values in these place may result in totally different reset-maps. We could say therefore that
there is communication of the continuous process data via these reset-maps in DCPN. In the
old-CPDP model, described in [13], this kind of continuous-communication was not possi-
ble. In the extended-CPDP model, also described in [13], continuous variables were able to
communicate (composition in the behavioral sense [15]) and also the reset-maps in a specific
component could be influenced by the values of the continuous processes of other components.

Thus, we could say that also here CPDP and DCPN seem to have more or less the same
modelling-power (although the communication mechanisms are rather different for CPDP
and DCPN), however, the mechanism of the reset-maps in extended-CPDP is not really
satisfactory from a compositionality point of view: A reset-map (as it is defined now in
CPDP) is part of a specific transition of a specific component. Thus, a specific reset-map is
a characteristic of one component. From a compositionality point of view, this should ideally
mean that this reset map should not contain information about other components, or about
the context of the composition (since we want that a certain component can be plugged-in in
many different composition contexts). But as it is defined now in extended-CPDP, the reset-
maps need inputs from specific variables. This means that the composition context should be
such that these variables should indeed be present in one of the components. Therefore, in this
way the reset-map assumes or claims a specific composition context and this results in the need
for compatibility conditions: components should be compatible with each other, otherwise the
process is not well-defined. If for example a reset-map of one component needs information
of the current value of variable V , but there is no component that indeed determines the
differential equations for V , then the process is ill-defined or at least underspecified (in the
sense that we need another component that will specify the flow of the continuous variable
V ). We should therefore find a new way which is satisfactory from a compositionality point
of view and where it is still possible to communicate data of the continuous variables.

5.3 Syntactical representation of composite systems

Both CPDPs and DCPNs are syntactical objects. Therefore, we have to be clear about the
behavior (or semantics) of such syntactical objects. For CPDPs and DCPNs this is done by
specifying how stochastic executions can be generated. In Chapter 2 we also made the con-
nection of CPDPs with PDPs, which gives the possibility to define the behavior of a CPDP
as the behavior of its corresponding PDP. The same thing is also done for DCPNs in [3].

For CPDPs, we defined a composition operator, denoted by ||. (For extended-CPDP we
defined in fact multiple composition operators). If A and B are CPDPs, then A||B is the
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CPDP that expresses the behavior of the composite system with as components A and B. A
and B are syntactical objects, but also A||B is a syntactical object. We could say that A||B is
a syntactical expression that represents the composite CPDP that consists of components A
and B. For A||B (or for A||B||C||D) it is clear for the composite system what its components
are: A and B (or A,B,C and D). Thus we could say that the compositional structure of
the composite system is reflected in the syntactical expression. This makes it possible to do
compositional analysis on the syntactical expression.

For DCPN, composite systems can be modelled as component-Petri-Nets (i.e. component-
DCPNs) which are then connected by extra arcs (and if desirable extra places). The composite
system is then again a DCPN (which is also a syntactical object). The difference with CPDP
is that there is no syntactical expression which can reveal the composition structure of the
composite system. Although specification of DCPNs can be done in a modular way, with rich
interaction structures, once the composite DCPN is specified, we do not have a formal means
(like a syntactical expression) which can reveal the composition structure.

Therefore, from a compositional modelling point of view, DCPN seems to be very powerful.
From a compositional analysis point of view (e.g. state space reduction by bisimulation), a
formal description of the composition structure of a composite system seems to be needed. We
think that using composition operators (with a clear operational semantics), which connect
components on a syntactical level, is a good choice if one has compositional analysis in mind
as one of the main targets.
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Chapter 6

Overview and future research

Finally in this report, we will give an overview of the research done in WP4 of the Hybridge
project and we will point out directions for future research.

Overview:

• We developed an automaton-model called CPDP. CPDPs can communicate with each
other by sending and receiving signals (discrete events) when either a boundary-hit
happens or when a spontaneous transition happens. Semantical equivalence of PDPs
and CPDPs has now been formally proven (by means of indistinguishable stochastic
processes).

• Steps were taken to make an extended model of the CPDP, which includes more pow-
erful discrete-event communication and also interaction between continuous variables.
However, from a compositionality point of view some problems arise in this extended
model concerning the stochastic reset maps.

• The composition operator |PA| has been developed and discussed in this report. This
operator allows different kinds of interaction and is potentially more powerful than the
one we defined for extended-CPDP. We tried to make clear that this operator might
have a natural use in the context of supervisory control systems.

• We defined a bisimulation notion for PDPs that are enhanced with output functions,
where bisimular PDPs have equivalent output-processes.

Future research:

• We will explore the idea of redefining the syntax of the CPDP model such that PDP-
transitions (boundary-hits, spontaneous jumps) and communication-transitions are split
instead of combined as it is now (where boundary-hit transitions carry a communication
label, etc.).

• We want to incorporate the |PA| operator in the CPDP-model. Here we might profit
from the split-up suggested in the previous item. Once this is done, we want to find
the conditions under which a composite CPDP (composed with these new operators)
behaves as a PDP.
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• We need to find a way to bring communication of data of the continuous process in
the CPDP-model. This should be done such that this data-communication can be
formalized by a composition operator like (an extended version of) |PA|. The way it is
done in extended-CPDP seems to be problematic. To have equivalent modelling power
as DCPN, this needs to be done.

• Compositional analysis: We will continue our work on bisimulation for CPDPs. Can
we find a structural definition of bisimulation, such that maximal bisimulations can
effectively be calculated?
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