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Chapter 1

Introduction

1.1 Scope of the report

This report deals with some fundamental issues in the control of complex stochastic hybrid
systems.

Let us start with a disclaimer. The report does not deal with any aspect of optimal control
of stochastic hybrid systems, although there does exist a substantial body of knowledge about
this topic. In particular we refer to the work by Davis on optimal control of Piecewise-
Deterministic Markov processes [7], and the work by Ghosh and Arapostathis [11].

Instead our focus will be on structural issues in the control of stochastic hybrid systems
which are strictly related to the complexity of the system, as well as to the delineation of
some sort of limits of performance of the controlled complex system. Common theme will be
to look at control as the addition of extra components to the complex system, that is, control
by interconnection or, more precisely, control by composition since the nature of composition
(and the related communication structure) is fundamental in complex hybrid systems, being
stochastic or not.

We will be far from presenting a complete theory. Instead we will report on three rather
loosely related recent lines of research which in our opinion all will play a role in a larger
body of theory which is waiting to be developed. The first chapter treats a basic control by
composition problem for hybrid automata, without explicit taking into account stochasticity.
The second chapter is concerned with an extension of the framework of CPDPs as recently
developed within Workpackage 4, see in particular Deliverables [32] and [33]. The main issue
addressed here is an extension of the possibilities for communication in the composition of
CPDPs, and appears to be important both for modeling (see the presented ATM example)
and control by composition. The third chapter studies conditions for stability of complex
switched linear systems, which can be seen as a necessary requisite for a theory of stabilization
of complex hybrid systems. This chapter convincingly shows how the analysis and control of
complex hybrid systems profitably uses tools from automata theory.

1.2 Summary of contents

In the first chapter the problem of control by composition is treated for Hybrid Behavioral
Automata (HBA). HBAs are automata that make use of the distinction between active and
passive transitions. Therefore HBAs are closely related to CPDPs, although HBAs do not
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involve stochastic aspects. The control problem can be seen as a combination of the control
by interconnection problem for the continuous dynamics of each location of a complex hybrid
system (modelled as an HBA), i.e. each location has its own control objective. To solve
the problem, the controller needs to know at all times in which location the process is. In
order to gain that knowledge, the controller uses passive transitions to observe the switchings
between the locations of the process. Under certain conditions of the transition structure of
the process, the control problem can be solved.

In the second chapter, we define value-passing CPDPs. In the composition of two value-
passing CPDPs, one CPDP can communicate the value of its continuous state to the other
CPDP. The other CPDP may use this information to switch to another location. The reset
map of this switch may also depend on the information that was communicated. This idea
is formalized via a special kind of synchronization of active transitions. Synchronization of
two active transitions is not possible in the CPDP framework (with composition operator ||)
of [33]. However, with the composition operator |PA|, also described in [33] for active/passive
transition systems (but not for CPDPs), it is possible to express active-active synchronization.
Therefore, in this chapter we define the composition operator |PA| for value-passing CPDPs
(after having defined value-passing CPDPs), such that value passing can be expressed via this
operator.

After the definitions of value-passing CPDPs and |PA| for value-passing CPDPs, we apply
(the composition of) value-passing CPDPs to a part of the air traffic management example
’Free Flight’ (described in [25] and [10]). The use of value passing for compositional specifica-
tion can be clearly seen in this example. The section ends with a discussion on the adequacy
of our concept of value-passing from a compositional analysis point of view.

The final section of the second chapter is concerned with the connection between value-
passing CPDPs and PDPs. We give an algorithm that can be used to convert a closed
value-passing CPDP to a PDP. We prove that, when the algorithm terminates, the value-
passing CPDP expresses a PDP behavior and the corresponding PDP is given by the results
of the algorithm. As an example, the algorithm is applied to the ’Free Flight’ example of the
second section. The result is that the algorithm terminates (in five rounds), which shows that
the value-passing CPDP expresses a PDP behavior.

The third chapter presents a stability analysis approach for a class of hybrid automata. It
is assumed that the dynamics in each location of the hybrid automaton is linear and stable,
and that the guards on the transitions are hyperplanes in the state space. For each pair of
ingoing and outgoing transitions in a location a conservative estimate is made of the gain via
a Lyapunov function for the dynamics in that location. It is shown how the choice of the
Lyapunov function can be optimized to obtain the best possible estimate. The calculated
conservative gains are used in defining a so-called gain automaton that forms the basis of an
algorithmic criterion for the stability of the hybrid automaton.
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Chapter 2

Control by composition using the
active/passive framework

2.1 Introduction

In this chapter we discuss the hybrid behavioral automata (HBA) model. In particular, we
are interested in the interconnections of such structure and its relation with controller design
problem.

One of the defining features of the HBA is the introduction of the passive transitions. With
the passive transitions in the model, we can model uni-directional discrete synchronizations
between automata, in contrast with the common bi-directional synchronizations commonly
used in other models.

There are other models that capture the spirit of uni-directional synchronization, for
example, I/O automata [21] and its extension, hybrid I/O automata [19, 20]. The differences
between the these frameworks and our framework are that in our framework synchronization
with multiple active (output) agents is allowed and that input enabledness is embedded in
the composition semantics rather than imposed on top of the structure as an assumption.

Formulation of control as interconnection has been recently advocated in behavioral sys-
tem theory [38, 27]. This had led to some fundamental results, generalizing classical results
in the input-output framework; see [37, 4] for the linear case and [29], [28] for extensions to
other system classes. The same paradigm also appeared in computer science, for example, in
the submodule construction problem [22].

In this chapter, a control problem is presented. A solution, derived from the construction of
canonical controllers presented in [28] is derived. We also present and discuss some conditions
under which the proposed controller solves the problem.

The layout of this chapter is as follows. In the next section we will present the structure
of hybrid behavioral automata. Some notions of interconnection and projection of HBA are
given in Section 3. In Section 4, we discuss the control problem and propose a solution, which
is designed according to the canonical controller in [28]. In Section 5, the connection with
CPDP is disussed and some concluding remarks are given.
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2.2 Definitions and Notations

We begin by defining hybrid behavioral automata and their behaviors. First, note that
throughout this paper we use a general totally ordered set T as the underlying time axis for
the trajectories inside each location. Instances of T can be R, R+ or other chosen sets. This
time axis is not to be mistaken with the hybrid time trajectory, which is defined later.

A hybrid behavioral automaton (HBA) A is a septuple (L,W,A, T, P, Inv,B), where

• L is the set of locations or discrete states,

• W is the set of continuous variables taking values in W,

• A is the set of labels,

• T is the set of active jumps/transitions. Each jump is given as a pentuple (l,a, l′, G,R),
where l is the origin location, a is the label of the jump, l′ is the target location, G :=
(γ, g) is the guard of the jump, where γ : B(l)×T →codomain(γ) and g ⊂codomain(γ),
and R : B(l) × T → 2B(l′) is the reset map of the jump.

• P is the set of passive jumps/transitions. We represent each passive jump as a quadruple
(l,a, l′, R). Passive jumps are not guarded.

• Inv maps each location l ∈ L to a pair Inv(l) := (ν, V ), where ν : B(l) × T →co-
domain(ν) and V ⊂codomain(ν).

• B maps each location to its continuous behavior. A behavior is a subset of WT.

The guard G and the invariant Inv(l) as introduced above are instances of dynamic
predicates. In general, a dynamic predicate is a pair C := (ψ,Ψ),

ψ : B × T → codomain(ψ),

Ψ ⊂ codomain(ψ).

B signifies a behavior over the general (ordered) time axis T. A pair (w, t) ∈ B×T is said to
satisfy the dynamic predicate C if ψ(w, t) ∈ Ψ. We denote it by (w, t) |= C. The negation of
this statement is denoted by (w, t) 6|= C.

We assume that the maps γ, R, and ν are causal. A map x : B × R → X is causal if for
any w1 and w2 in B and τ ∈ R, the following implication holds.

(

w1(t)|t≤τ = w2(t)|t≤τ

)

=⇒ (x(w1, t) = x(w2, t)) .

In order to describe the evolution of such automaton, we need to define a suitable timeline
structure. In this case, we use a slightly modified version of hybrid time trajectory, introduced
in [36]. The idea behind the hybrid time trajectory is as follows. We have continuously
evolving dynamical system, but punctuated by jumps. Because of this, we choose a timeline
that consists of intervals of T. Each interval acts as a timeline for describing the evolution
between jumps.

Definition 1. A hybrid time trajectory τ = {Ii}N
i=0 is a finite or infinite sequence of intervals

of T, such that:
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• I0 = [τ0, τ
′
0] or (−∞, τ ′0], τ0 ≤ τ ′0 ∈ T,

• Ii = [τi, τ
′
i ] for i < N and, if N <∞, IN = [τN , τ

′
N ] or IN = [τN , τ

′
N ),

• for all i, τi ≤ τ ′i = τi+1.

A hybrid time trajectory τ ′ = {I ′i}N ′

i=0 is said to be a prefix of another time trajectory
τ = {Ii}N

i=0 if N ′ ≤ N and I ′i = Ii for all 0 ≤ i ≤ N ′. A hybrid time trajectory τ = {Ii}N
i=0 is

said to be infinite if N = ∞ or τ ′N = ∞.

In line with this timeline structure, we describe the evolution of an HBA. A hybrid trajec-
tory is denoted as (τ, ξ). Here τ is a hybrid time trajectory and ξ maps the interval {In}n≥0

in τ to a triple (ln, wn, jn), where ln ∈ L, wn : In → W, and jn ∈ (T ∪ P ) or jn = ∅. The
case where jn = ∅ may happen only on the last interval of τ.

A hybrid trajectory (τ ′, ξ′) is said to be a prefix of another hybrid trajectory (τ, ξ) if τ ′ is
a prefix of τ and ξ′ = ξ on τ ′. A hybrid trajectory (τ, ξ) is called infinite if τ is infinite.

A hybrid trajectory (τ, ξ) is included in the hybrid behavior A of the automaton A if the
following conditions are satisfied for all n ≥ 0.

1. wn ∈ B(ln),

2. jn = (ln,a, ln+1, Gn, Rn), for some a ∈ A,

3. jn ∈ T,

4. (wn, τ
′
n) |= Gn,

5. τ ′n ≤ inf{t | t ≥ τn and (wn, t) 6|= Inv(ln)},

6. wn+1 ∈ Rn(wn, τ
′
n).

Such trajectory is called a valid trajectory. Notice that we do not have passive jumps in
a valid trajectory.

A hybrid trajectory (τ, ξ) is included in the potential behavior Ā if it satisfies conditions
1,2,4,5 and 6 above, together with a relaxed version of condition 3, jn ∈ (T ∪P ). The intuitive
idea is that we only include hybrid trajectories without any passive jumps in A, while in Ā
we also allow passive jumps. Obviously A ⊂ Ā. Notice that, by the way they are defined, A
and Ā are prefix closed. This means that if a hybrid trajectory (τ, ξ) is in A (or Ā), then any
of its prefixes (τ ′, ξ′) is also in A (or Ā).

Throughout this chapter we shall also use the following shorthand notation. We write
l

a→ l′ to denote the existence of an active transition going from location l ∈ L to location
l′ ∈ L with label a∈ A. The existence of a passive transition with the same characteristics

is denoted by l
a

99K l′. The notations l
a→ and l

a

99K denote the existence of l′ ∈ L such that

l
a→ l′ and l

a

99K l′ respectively. The absence of such transitions are denoted as l
a

6→ l′, l
a

699K l′,

l
a

6→, and l
a

699K respectively.
If the information about the guard and the reset map is also included in the notation, we

write l
(a,G,R)−→ l′ to denote (l,a, l′, G,R) ∈ T, and l

(a,R)
99K l′ if (l,a, l′, R) ∈ P.
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2.3 Composition and projection operators

Two HBA, A1 and A2 characterized by (Li,W,A, Ti, Pi, Invi,Bi), i = 1, 2, can be intercon-
nected to form another HBA A = A1 ‖ A2. The automaton A is characterized by the septuple
(L,W,A, T, P, Inv,B), where

L = L1 × L2,

B((l1, l2)) = B1(l1) ∩ B2(l2),

Inv((l1, l2)) = (ν, V ),

such that Inv((l1, l2)) is satisfied if and only if both Inv1(l1) and Inv2(l2) are satisfied.
The set T and P consist of pentuples and quadruples, ((l1, l2),a, (l

′
1, l

′
2), GT , RT ) and

((l1, l2),a, (l
′
1, l

′
2), RT ) respectively, such that the following interconnection semantics are com-

mutatively satisfied.

l1
(a,G,R)
−→ l′1,l2

a

699K

(l1,l2)
(a,G,R)
−→ (l′1,l2)

l1
(a,G,R1)

−→ l′1,l2
(a,R2)
99K l′2

(l1,l2)
(a,G,R1∩R2)

−→ (l′1,l′2)

l1
a

699K,l2
(a,R)
99K l′2

(l1,l2)
(a,R)
99K (l1,l′2)

l1
(a,R1)
99K l′1,l2

(a,R2)
99K l′2

(l1,l2)
(a,R1∩R2)

99K (l′1,l′2)

By taking intersection of reset maps, we mean intersecting their respective images.
The interconnection operation described here possesses some ideal properties that make

it suitable for establishing modularity for hybrid behaviors, namely commutativity and asso-
ciativity [30].

Notice that all (continuous) variables are involved in the synchronization. This type of
interconnections is called total interconnections. It is also possible to define partial intercon-
nections, where only a part of the variables are synchronized.

Two HBA, A1 and A2 characterized by (Li,Wi ∪ Z,A, Ti, Pi, Invi,Bi), i = 1, 2, are
partially interconnected over Z to form another HBA A = A1 ‖Z A2. The automaton A is
characterized by the septuple (L,W1 ∪W2 ∪ Z,A, T, P, Inv,B), where

L = L1 × L2,

B((l1, l2)) = B1(l1) ‖Z B2(l2),

Inv((l1, l2)) = (ν, V ), where

Invi(li) =: (νi, Vi), i = 1, 2,

ν((w1, w2, z), t) = (ν1((w1, z) , t), ν2((w2, z), t)), and

V = V1 × V2.

The set T and P consist of pentuples and quadruples, ((l1, l2),a, (l
′
1, l

′
2), GT , RT ) and

((l1, l2),a, (l
′
1, l

′
2), RT ) respectively, such that the following interconnection semantics are com-

mutatively satisfied.

l1
(a,G,R)
−→ l′1,l2

a

699K

(l1,l2)
(a,G,R)
−→ (l′1,l2)

l1
(a,G,R1)

−→ l′1,l2
(a,R2)
99K l′2

(l1,l2)
(a,G,R1‖ZR2)

−→ (l′1,l′2)

l1
a

699K,l2
(a,R)
99K l′2

(l1,l2)
(a,R)
99K (l1,l′2)

l1
(a,R1)
99K l′1,l2

(a,R2)
99K l′2

(l1,l2)
(a,R1‖ZR2)

99K (l′1,l′2)
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By performing partial interconnection on the reset maps we mean partially interconnecting
their respective images in the behavioral sense1.

Let A = (L,W ∪Z,A, T, P, Inv,B). We can project the automaton to the set of variables
W, written as πW A, by defining πW A = (L,W,A, πWT, πWP, πW Inv, πW B), where

πW B := {w | ∃z such that (w, z) ∈ B}.

The projected set of active transitions πWT consists of pentuples (l,a, l′, πWG, πWR), with
(l,a, l′, G,R) ∈ T. The projected guard and reset map are defined as follows. For any w ∈
πW B(l) and t ∈ T, the pair (w, t) satisfies πWG if and only if there is a z ∈ ZT such
that (w, z) ∈ B(l) and (w, z, t) satisfies G. For any w ∈ πW B(l) and t ∈ T, the trajectory
w′ ∈ B

′(l′) is included in R′(w, r) if and only if there are z and z′ such that

(w, z) ∈ B(l),

(w′, z′) ∈ B(l′),

(w′, z′) ∈ R(w, z, t).

The projected set of passive transitions πWP consists of quadruples (l,a, l′, πWR), with
(l,a, l′, R) ∈ P. The projected invariant πW Inv is such that for any l ∈ L, w ∈ πW B(l) and
t ∈ R, the pair (w, t) satisfies πW Inv(l) if and only if there exists a z such that (w, z) ∈ B(l)
and (w, z, t) satisfies Inv(l).

We also define another notion of projection, which we call factorization. The idea behind
it is as follows.

Interconnecting two automata results in an automaton whose discrete dynamics is some-
what larger (i.e. more locations and more transitions) than those of the components. By
factorizing the interconnected automata, we aim to see the ’effect’ of the interconnection on
the individual component.

Take two HBA Ai = (Li,W,A, Ti, Pi, Invi,Bi), i = 1, 2. Let A = (L1×L2,W,A, T, P, Inv,B) =
A1 ‖ A2. Factorizing A with respect to its component A1, denoted as πA1A can be done as
follows. First, we construct the following equivalent relation. For any (l1i, l2i) and (l1j , l2j) in
L1 × L2,

(l1i, l2i) ≈ (l1j , l2j) iff (l1i = l1j).

Each equivalent class of ≈ represents a location in L1 and is named accordingly.
The action of the factorization πA1 to A results in πA1A = (L1,W,A, T

′, P ′, Inv′,B′),
where

T ′ = {(li,a, lj , G,R) | ∃l′i ∈ li, l
′
j ∈ lj ,

such that (l′i,a, l
′
j , G,R) ∈ T},

P ′ = {(li,a, lj , R) | ∃l′i ∈ li, l
′
j ∈ lj ,

such that (l′i,a, l
′
j , R) ∈ P},

B
′(li) =

⋃

l∈li

B(l),

and the invariant Inv′(li) is such that any pair (w, t) ∈ B
′(li)×T satisfies it iff (w, t) satisfies

at Inv(l) for at least one l ∈ li.

1(R1 ‖Z R2) := {(w1, w2, z) |(w1, z) ∈ R1 and (w2, z) ∈ R2}
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Figure 2.1: Control with partial interconnection.
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��
�

Figure 2.2: The controller Ccan = πZ(P ‖W S).

Factorizing A with respect to A1 gives us information about the effect of the interconnec-
tion to A1. This is particularly useful when interconnection is seen as controlling [28]. In this
point of view, a plant model (in this case it is A1) and a desired specification S are given. The
problem is to find a controller, in this case A2, such that πA1(A1 ‖ A2) = S. This formulation
is very closely related to control as seen from behavioral point of view [38].

2.4 The control problem and passive canonical controller

The behavioral approach to control theory sees control as interconnection. Given a plant (in
term of behavior) P and a specification S (also in term of behavior), the problem of finding a
controller that achieves the desired closed-loop behavior is translated to the problem of finding
a controller behavior C, such that P ‖ C = S [38, 28, 29]. The symbol ‖ signifies behavior
interconnection [38, 27]. This formulation is closely related to the submodule construction
problem in computer science [22].

In most of the problems, however, not all variables of the plant are available for inter-
connection with the controller. Most problems deal with partial interconnections. This type
of interconnection can be described as in Figure 2.1. In this figure, W represents the set of
variables on which the specification is expressed, while Z represents those used in the inter-
connection with the controller. Note that these two sets are not necessarily disjunct. Partial
interconnections are denoted by adding a subscript to the composition operator. Thus, the
structure in Figure 2.1 is P ‖Z C.

Such problems for general behaviors have been treated in [29, 28], where a construction
for canonical controllers is given. This construction is shown in Figure 2.2. A canonical
controller Ccan constructed in this way solves the problem provided that the plant P and the
specification S satisfy a couple of conditions, which can be thought of as some generalized
controllability and observability conditions. In this case, we then have

πW (P ‖Z Ccan) = S.

9



In the following, we introduce the notion of rooted hybrid behavioral automata. Simply
speaking, the root of an automata is the location in which all trajectories are assumed to
start. Thus, the root acts as discrete initial condition for the evolution. An HBA A that
has a root l is denoted as A(l). To this rooted automaton we can associate a rooted hybrid
behavior A(l), such that a hybrid trajectory (τ, ξ) ∈ A(l) if (τ, ξ) ∈ A and2 l0 = l. The rooted
potential behavior Ā(l) is defined in a similar fashion.

We are going to treat the following control problem:

Given a plant in terms of a rooted HBA P(l) = (L,W ∪ Z,A, Tp,∅, Invp,Bp), and a
specification S(l) = (L,W,A, Ts,∅, Invs,Bs). Notice that we assume that both the plant and
the specification do not have any passive transition. The problem is to find a controller C(l),
which is also expressed in terms of rooted HBA, such that

(πW ◦ πP) (P ‖Z C)(l, l) = S(l).

The operators πP and πW denote factorization of the interconnected automaton with respect
to P and projection of the continuous dynamics to the W variables. �

A solution, which is adopted from [29, 28], is proposed. The idea is as follows. We shall
use a controller that has no active transitions. Such controller is called a passive controller.
The controller has the same set of locations as the plant, and the set of passive transitions
in the controller is the same as the set of active transitions in the plant less the information
about the guard. The controller is a rooted HBA C(l) = (L,Z,A,∅, Pc, Invc,Bc). Since we
assume no active transitions in the controller, we also assume the invariant Invc is a dynamic
predicate that is always satisfied. Moreover, the behavior Bc is defined as follows.

Bc(l) = πZ(Bp(l) ‖W Bs(l)).

Notice that this construction is similar to that in [29, 28].

Theorem 1. The proposed controller C(l) solves the control problem,

(πW ◦ πP) (P ‖Z C)(l, l) = S(l),

if the following conditions hold.

(c1) For any l ∈ L, Bs(l) ⊂ πW (Bp(l)) .

(c2) For any l ∈ L and any pairs (w, z), (w̃, z) ∈ Bp(l), the following implication holds.

(w ∈ Bs(l)) ⇒ (w̃ ∈ Bs(l))

(c3) The set of active transitions Ts = πWTp.

(c4) The invariant Invs = πW Invp.

(c5) For any l ∈ L, a ∈ A, there can be at most one transition in Tp that starts in location l

with label a.

2Recall that l0 is the location of the first interval of τ.

10



(c6) For any l ∈ L, t ∈ T, (l,a, l′, G,R) ∈ Tp and any pairs (w, z), (w, z̃) ∈ Bp(l), the
following implications hold

(w, z, t) |= G⇔ (w, z̃, t) |= G, (2.2a)

(w, z, t) |= Invp(l) ⇔ (w, z̃, t) |= Invp(l), (2.2b)

(w′, z′) ∈ R(w, z, t) ⇔ (w′, z̃′) ∈ R(w, z, t)

for all (w′, z′), (w′, z̃′) ∈ Bp(l
′). (2.2c)

Proof. In this proof we shall denote P ‖Z C := Q for brevity. Consequently, its behavior
is denoted as Q. Assume that all the conditions above hold. Based on (c1) and (c2), we can
infer3

Bs(l) = πW (Bp(l) ‖Z Bc(l)) ,∀l ∈ L. (2.3)

Take any hybrid trajectory (τ, ξ) ∈ S(l). We shall prove that (τ, ξ) ∈ (πW ◦ πP)Q(l, l). Let
τ = {Ii}N

i=0. Since (τ, ξ) ∈ S(l), the following conditions must be satisfied.for all N ≥ n ≥ 0

l0 = l, (2.4a)

wn ∈ Bs(ln), (2.4b)

jn = (ln,an, ln+1, Gn, Rn) ∈ Ts, (2.4c)

(wn, τ
′
n) |= Gn, (2.4d)

τ ′n ≤ inf{t | t ≥ τn and (wn, t) 6|= Invs(ln)}, (2.4e)

wn+1 ∈ Rn(wn, τ
′
n). (2.4f)

We argue that there is a trajectory (τ, ξ̃) ∈ Q(l, l) such that for all N ≥ n ≥ 0

l̃0 = (l, l), (2.5a)

l̃n = (ln, ln), (2.5b)

w̃n = (wn, zn) ∈ Bp(ln) ‖Z Bc(ln), (2.5c)

j̃n = (l̃n,an, l̃n+1, G̃n, R̃n) ∈ Tq, where (2.5d)

(ln,an, ln+1, G̃n, R̃n) ∈ Tp, Gn = πW G̃n, Rn = πW R̃n, (2.5e)

(w̃n, τ
′
n) |= G̃n, (2.5f)

τ ′n ≤ inf{t | t ≥ τn and (w̃n, t) 6|= Invp(ln)}, (2.5g)

w̃n+1 = (wn+1, zn+1) ∈ R̃n(wn, zn, τ
′
n). (2.5h)

These relations are obtained by the following. Equation (2.5e) is obtained through (2.4c)
and (c3), then (2.5d) is obtained using the definition of partial interconnection. This implies
(2.5b). Equation (2.5c) is obtained using (2.3). Next, (2.5f) is implied by Gn = πW G̃n, while
(2.5g) is implied by (c4) and (c6). Finally, (2.5h) is implied by (c3), and due to (2.2c) zn+1

is not restricted, since any zn+1 such that (wn+1, zn+1) ∈ Bp(ln+1) will satisfy (2.5h). This
guarantees that the whole argument can be established iteratively, starting with n = 0. Given
the existence of such (τ, ξ̃) ∈ Q(l, l), it follows that (τ, ξ) ∈ (πW ◦ πP)Q(l, l). Hence we have
that

S(l) ⊂ (πW ◦ πP)Q(l, l). (2.6)

3Please see [29, 28] for a proof.
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To show the converse, take any (τ, ξ) ∈ (πW ◦ πP)Q(l, l). We shall show that (τ, ξ) ∈ S(l).
Again, we let τ = {Ii}N

i=0. Since (τ, ξ) ∈ (πW ◦ πP)Q(l, l), there is a (τ, ξ̃) ∈ Q(l, l) such that
for all N ≥ n ≥ 0, (2.5a)-(2.5h) hold. The reasoning is as follows. The controller C(l) has
only passive transitions, therefore any transition in (P ‖Z C) (l, l) must be a synchronization
between a passive transition of C and an active transition of P. Using (c5) and the definition
of partial interconnection, we can infer (2.5b). This equation then implies (2.5c). Further,
(2.5b) and the definition of πW imply (2.5d), (2.5e), (2.5f), (2.5g), and (2.5h). Again, due to
(2.2c) zn+1 is not restricted, therefore ensuring that the whole argument can be established
iteratively. Now we shall prove that (τ, ξ) ∈ S(l) by showing that (2.4a) - (2.4f) hold. First,
(2.4b) is implied by (2.3), then (c3) and (2.5e) imply (2.4c), (2.4d) and (2.4f). Finally, (2.4e)
is implied by (c4). Now, we have established that

S(l) ⊃ (πW ◦ πP)Q(l, l), (2.7)

and hence completed the proof. �

Let us now discuss the conditions posed in the theorem, i.e. (c1) - (c6). The first two
conditions arise as sufficient conditions to guarantee that we can establish (2.3). These con-
ditions are adopted from [29, 28]. In the same reference, some variants of the conditions
are also presented. Conditions (c3) - (c5) are essential, because of the passive nature of the
controller. Since the controller only has passive transitions, it cannot be used to influence the
active transitions in the plant, hence (c3) and (c4). Condition (c5) is there to guarantee that
the location of the controller can accurately follow that of the plant, without any possibility
of being misleaded due to some nondeterminism. Finally, condition (c6) is there to guarantee
that the choice for zn does not influence the choice for zn+1. As explained above, this in turn
guarantees that the whole reasoning can be done iteratively (interval wise).

2.5 HBA and CPDP

The connection between HBA and CPDP is that they are both automata frameworks using
active/passive transitions. The differences are: HBA is not stochastic (i.e. there are are no
spontaneous transitions and the reset maps are non-stochastic). Except for the stochastic as-
pects, HBA is a more general framework than CPDP: instead of the differential equations in
CPDP, HBA uses the more general behavioral approach and instead of letting the reset map
depend on the current state only, the HBA reset maps may depend on the entire trajectory
in the current location.

The objective of the control problem, treated in this chapter, is to control the continuous
dynamics in each location. This means that in fact each location has its own control objec-
tive. In order to achieve this control objective, the controller needs to know at all times in
which location the process is. This is where the active/passive framework is used: as soon as
the process switches to another location with an active transition labelled a, the controller
observes this switch via a passive transition labelled ā.

The extension of this control problem to a stochastic hybrid system context is, although
promising, a non-trivial one. One problem is that in the current framework of CPDPs in-
teraction of the continuous dynamics with a controller dynamics is not possible. However,
since the interconnection of plant and continuous controller will normally result in ordinary
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closed-loop differential equations, such an extension is perfectly allowable from a PDP point
of view. Thus allowing these kinds of continuous interactions for CPDP opens possibilities to
treat the control problem of this chapter also in the CPDP context.
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Chapter 3

Value-passing CPDPs

In the CPDP-model as it is defined in [33], it is not possible that one component can inform
another component about the value of its continuous state. In Dynamically Colored Petri
Nets, this is possible (see [9]) and later in this chapter we will see an example where this
feature is used. In this chapter we introduce a new CPDP-model (see [34]), in which this
feature is also present. We chose to follow a standard method of data-communication, called
value-passing. Value-passing has been defined for different models like LOTOS ([18]). Value-
passing can be seen as a natural extension to (the standard) communication through shared
events because it is also expressed through ”shared events”/”synchronization of transitions”.

3.1 Definition of the value-passing CPDP

We introduce a new definition for CPDP, where communication of data is possible. A CPDP
is a tuple (L, V,W, v, w, F,G,Σ, A, P, S), where

• L is a countable set of locations

• V is a set of state variables. With d(y) for y ∈ V we denote the dimension of variable
y. y ∈ V takes its values in Rd(y).

• W is a set of output variables. With d(y) for y ∈W we denote the dimension of variable
y. y ∈W takes its values in Rd(y).

• v : L → 2V maps each location to a subset of V , which is the set of state variables of
the corresponding location

• w : L → 2W maps each location to a subset of W , which is the set of output variables
of the corresponding location

• F assigns to each location l and each y ∈ v(l) a mapping from Rd(y) to Rd(y), i.e.
F (l, y) : Rd(y) → Rd(y).

• G assigns to each location l and each y ∈ w(l) a mapping from Rd(x1)+···+d(xm) to Rd(y),
where x1 till xm are the state variables of location l.

• Σ is the set of communication labels. Σ̄ denotes the ’passive’ mirror of Σ and is defined
as Σ̄ := {ā|a ∈ Σ}.
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• A is a finite set of active transitions and consists of 5-tuples (l, a, l′, G,R) and 6-tuples
(l, a, l′, G,R, val), denoting a transition from location l ∈ L to location l′ ∈ L with com-
munication label a ∈ Σ, guard G, reset map R and (if present) value-passing identifier
val. G is a subset of the active output variable space. val can be equal to either !Y or
?Y . For the case !Y , Y is a subset of w(l), meaning that this transition can pass the
values of the variables from Y to other transitions in other components. For the case
?Y , Y ⊂ Rn for some n ∈ N, meaning that this transition asks for inputs with values
in Rn (which should be passed/offered by other transitions in other components). Only
inputs that are in Y are accepted. The reset map R assigns to each point in G×Y (for
the case (l, a, l′, G, ?Y )) or to each point in G (for all other cases) for each state variable
y ∈ v(l′) a probability measure on the invariant (and its Borel sets) of y for location l′.

• P is a finite set of passive transitions of the form (l, ā, l′, R). R is defined on all interior
points.

• S is a finite set of spontaneous (also called Poisson) transitions and consists of 5-tuples
(l, λ, a, l′, R), denoting a transition from location l ∈ L to location l′ ∈ L with com-
munication label a ∈ Σ, jump-rate function λ and reset map R. The jump rate λ is
a mapping from Invl to R+. R is defined on all interior points of l as it is done for
spontaneous transitions.

Composition is defined via the following composition rules. Rule r1data is concerned with
value-passing, the other rules are not.

r1data.
l1

a,G1,R1,v1−→ l′1, l2
a,G2,R2,v2−→ l′2

l1|PA|l2
a,G1|G2,R1×R2,v1|v2−→ l′1|PA|l′2

(a ∈ A, v1|v2 6= ⊥).

Here, v1|v2 is defined as: v1|v2 :=!Y if v1 =!Y and v2 :=?Y ′ or if v2 =!Y and v1 :=?Y ′

(with dim(Y ′)=dim(Y )); v1|v2 :=?(Y1 ∩ Y2) if v1 =?Y1 and v2 =?Y2 and dim(Y1)=dim(Y2);
v1|v2 := ⊥ otherwise. ⊥ here means that v1 and v2 are not compatible. G1|G2 is defined as
follows: G1|G2 := (G1 ∩ Y ) ×G2 if v1 =!Y ′ and v2 =?Y ; G1|G2 := G1 × (G2 ∩ Y ) if v1 =?Y
and v2 =!Y ′; G1|G2 := G1 × G2 if v1 =?Y1 and v2 =?Y2. Here, G ∩ Y , which is abuse of
notation, means {y ∈ G|y ↓z∈ Y }, where z is the set of variables received by the ?Y transition.

In these definitions of v1|v2 and G1|G2 we see an interplay between the output guards
G1,G2 and the input guards Y1,Y2: In the synchronization of an (l1, a, l

′
1, G1, R1, !z) transition

with a (l2, a, l
′
2, G2, R2, ?Y ) transition, Y restricts the guard G1 such that the z-part of G1

lies within Y . This restriction can not be coded in v1|v2 (as it is done in the ?Y1-?Y2-case),
therefore we need to code it in the output guards. The composition rules that do not concern
value passing are as follows.

r1.
l1

a,G1,R1−→ l′1, l2
a,G2,R2−→ l′2

l1|PA|l2
a,G1×G2,R1×R2−→ l′1|PA|l′2

(a ∈ A),

r2.
l1

a,G1,R1−→ l′1, l2
ā,R2−→ l′2

l1|PA|l2
a,G1×Id,R1×R2−→ l′1|PA|l′2

(a 6∈ A),
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r3.
l1

a,G1,R1−→ l′1, l2 6 ā−→
l1|PA|l2

a,G1×Id,R1×Id−→ l′1|PA|l2
(a 6∈ A).

r4.
l1

ā,R1−→ l′1

l1|PA|l2
ā,R1×Id−→ l′1|PA|l2

(ā 6∈ P ).

r5.
l1

ā,R1−→ l′1, l2
ā,R2−→ l′2

l1|PA|l2
ā,R1×R2−→ l′1|PA|l′2

(ā ∈ P ),

r6.
l1

ā,R1−→ l′1, l2 6 ā−→
l1|PA|l2

ā,R1×Id−→ l′1|PA|l2
(ā ∈ P )

r7.
l1

λ,a,R1−→ l′1

l1|PA|l2
λ̂,a,R1×Id−→ l′1|PA|l2

,

where for ξ = (ξ1, ξ2), λ̂(ξ) = λ(ξ1). For an explanation of the communication possibilities
(and the composition rules) of the |PA| operator, we refer to [33].

We chose to define a guard (of an active transition) as a subset of the output space. On
the one hand, this can be seen as a restriction with respect to state-guards (although we
can always make output-copies of state variables). On the other hand, the notion of output-
guards might be more appropriate when dealing with equivalences that depend on external
behaviors (like bisimulation).

We chose not to assigns guards or value-passing to passive transitions. This is to keep
things as simple as possible. Technically it is possible to assigns guards to passive transitions,
but this will blow up the number of composition rules and the number of transitions in the
composite system: Two passive transitions with shared event ā and with guards G1 and G2

will result in three transitions with guards G1×G2, G1×¬G2 and ¬G1×G2. Synchronization
of two active transitions with guards always results in only one transition. A similar thing
happens if we assign value-passing to passive transitions. We might consider using (output)
value passing for spontaneous transitions.

3.2 Free Flight in air traffic example

In this section we give a CPDP model for a part of the Pilot-flying-DCPN model. See [25]
and [10] for more information about this model and its broader context. This model consists
of several local Petri nets (LPNs). We concentrate on one local Petri net called Current goal.
This LPN interacts with several other LPNs from Pilot-flying and also with LPNs outside
Pilot-flying (for example with the LPN HMI PF from the DCPN called ACCMS). We chose
for concentrating on current goal because there are interesting interactions present in this
LPN and the question is whether we can model these interactions as well in CPDP or not.
In our CPDP model we model the component current goal almost as detailed as the DCPN
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model. For the rest, we only model LPNs that are connected to the current goal. These
components will be modelled very abstractly (only the parts that are interesting as far as
current goal is concerned).

3.2.1 System description

We describe component Current goal detailed and we describe components Task performance,
Memory, Audio alert and HMI-PF abstractly. We start with the abstract components and
end with Current goal.

Component HMI-PF is a failure-indicator. There are five systems that can fail: Engine,
navigation, ASAS, ADS-B Rec, ADS-B Transm. The HMI-PF system itself can also fail, then
we say that it is in non-working mode (otherwise it is in working mode). If one (or more) of
the five systems fail, this can be seen by the pilot from this HMI-PF component.

Component Audio alert sends a signal as soon as there is an alert. In the signal is coded
which goal needs to be achieved by the pilot: C1 - collision avoidance, C2 - emergency actions,
C3 - conflict resolution, C4 - navigation vertical, C5 - navigation horizontal, C6 - preparation
route change, C7 - miscellaneous. In case of C2, it is also specified which failure causes the
emergency (this can be one of the five systems indicated by HMI-PF or failure number six:
other emergency).

Component Memory memorizes which goals need to be achieved. If the pilot is busy
achieving a goal while Audio alert signals that another goal (with lower priority than the
current goal) needs to be achieved, then this new goal can be stored in the memory. As soon
as the pilot is ready with the current goal, he can retrieve from the memory which subset of
C1 till C7 needs to be done (and in case C2 which failure is present).

Component Task performance is the largest LPN of the DCPN Pilot flying, it monitors
which task is being performed by the pilot. It has many interactions with other LPNs (inside
and outside Pilot flying). We only describe it abstractly. In order to achieve one goal, the
pilot needs to perform six tasks: T1 - monitoring, T2 - monitoring and decision, T3 - coor-
dination, T4 - execution, T5 - execution monitoring, T6 - monitoring and goal prioritization.
For reasons of convenience we say that when the pilot is ready with the six tasks (and waiting
for the next goal to be achieved) he is performing task T7 - end task. Because there are seven
goals, each consisting of seven tasks, it is clear why this component has a large state space
and many interactions. In our CPDP-model we abstract the seven times seven states back to
two states: A endtask-state (the pilot is not performing a task) and a task-state (the pilot is
performing some task for some goal).

Component Current goal monitors which goal (C1 - C7) is now being achieved by the
pilot. This component has interaction with (and only with) the four components described
above. Thus, the four components described above form (abstractly) the entire interaction-
environment of current goal. The state of current goal reflects the current goal which is one
of C1 - C7 and in case C2 it also reflects the failure that is currently being resolved. The
state of this component can be changed in two ways:
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1. A signal is received from component Audio alert : If the goal that is coded in this signal
has higher priority (C1 is highest, C7 is lowest) than the goal that is currently worked
on, then the pilot will stop achieving the current goal and will switch to the new goal
from Audio alert. If the goal from the signal has lower priority than the current goal,
then the pilot will not switch and the new goal from Audio alert will be stored in
memory.

2. The pilot is ready for achieving a new goal (i.e. Task performance is in state endtask):
Then, if HMI-PF is indicating that there are no failures, the pilot can read the memory
to see if there are goals on stack that need to be achieved. If this stack is not empty,
the pilot chooses a goal from this stack randomly (if there is more than one goal in the
stack).

If the Current goal state changes, then this needs to be communicated to the component
Task performance which has then to jump to the first task of the new goal. If we sum up
the interactions of component Current goal, then, at the abstraction level of our model, this
component receives information from components HMI-PF (are there some indicators on?),
Audio alert (is there an alert signal?), Memory (what is on stack?) and Task performance
(are we in state endtask and thus ready for a new goal?). And component Current goal sends
information to the components Memory (if a signal with lower priority is received from Audio
alert) and Task performance (if the Current goal state has changed and new tasks need to be
performed).

3.2.2 The CPDP model

We model component Current goal and its abstracted interaction-environment as five value-
passing CPDPs which we interconnect via composition operators of the |PA| type. The graph-
ical representation of the five CPDPs can be seen in Figure 3.1. We now specify the CPDPs
HMI-PF, Audio alert, Memory, Task performance and Current goal, which are interconnected
as follows:

((CurrentGoal||A1AudioAlert)||A2Memory)||A3TaskPerformance,

with A1 := {alert}, A2 := {getmem, storemem} and A3 := {alertchng,memchng}.

CPDP HMI-PF has one location with one variable named CHMI . The value of this vari-
able indicates whether there is a failure in one of the five systems (indicated by HMI-PF ).
CHMI consists of five components Ci

HMI (i = 1, 2, 3, 4, 5) which all have either value true
or false (with true indicating a failure for the corresponding system). There is only one
transition which is an unguarded active transition from the only location to itself with label
getHMI and with output CHMI . This transition is used only to send the state information
to the component Current goal, therefore the reset map of this transition does not change the
state CHMI . Note that for the CPDPs in this ATM-example, we do not define output vari-
ables. We assume that for every state variable used in active transitions we have an output
variable copy defined.

CPDP Audio alert has one location with two variables named k and q. k ∈ {1, 2, 3, 4, 5, 6}
and q ∈ {1, 2, 3, 4, 5, 6}. These values represent the interrupt goal (and failure in case k = 2).
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Figure 3.1: CPDP pilot flying model

There is one active transition with label alert and with outputs k and q. This transition
should normally be guarded (where the guard is satisfied as soon as an alert signal should be
sent), but at the abstraction level of our model we do not model this. Also the reset map of
this transition is not specified here.

CPDP Memory has one location with two variables named m and qmem. m is a variable
with seven components (m1 till m7 for the goals C1 till C7) which can have value ON and
OFF . (In the DCPN there is also the value LATER for m4 and m5 which we do not consider
in the CPDP). qmem is a variable with six components (for the six failures) taking values in
{0, 1}. There are two active transitions. The unguarded transition with label getmem and
output m and qmem is used to send information to Current goal, therefore the reset map
leaves the state unaltered. The unguarded transition with label storemem and input k and
q is used by Current goal to change the memory state. (Note that we write ?(k, q) to denote
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inputs of the combined state-space of k and q which is ?R2 because k, q ∈ R). The reset map
Rstmem of this transition changes mk (with k the received input) to ON and changes qq

mem

(with q the received input) to 1.

CPDP Task performance has two locations, Idle and Busy, both without variables. When
the system switches from Busy to Idle, the active transition with label endtask is executed.
The system can switch from Idle to Busy via two transitions: 1. Via the active input tran-
sition with label alertchng and inputs k and q. This happens when Current goal executes
an active output transition with label alertchng due to having received a signal from Audio
alert. (Normally Task performance should use the information from the inputs k and q via
the reset map of the transition, but we do not model that at our level of abstraction). 2.
Via the active input transition with label memchng and inputs k and q. This happens when
Current goal executes an active output transition with label memchng due to the situation
where the pilot is idling and a new goal is retrieved by Current goal from the memory.

CPDP Current goal is the only CPDP that we have modelled in detail. Current goal has
six locations, named l1 till l6. We will now describe each location:

• Location l1 has two variables named kc and qc. The process is in this location when one
of the goals is being achieved (i.e. Task performance is in location Busy) and the values
of kc and qc represent the current goal and (in case kc = 2) current failure. There are
two outgoing transitions: 1. An unguarded active input transition to l2 labelled alert

with inputs k and q, synchronizing on an alert signal from Audio alert, with reset map

R1 :=

{
kc := k, qc := q, switch := true if k < kc

kc := kc, qc := qc.switch := false else.

2. A passive transition to l3 labelled endtask, synchronizing on an endtask signal from
Task performance.

• The process is in location l2 if (1) after having received the alert signal, the current goal
needs to be changed (according to the alert signal) or (2) the interrupt goal (from the
alert signal) needs to be stored in memory. (1) is the case when switch = true, (2) is the
case when switch = false. Therefore, G1 := {(kc, qc, switch)|switch = true}, G2 :=
{(kc, qc, switch)|switch = false}, with G1 the guard of the active output transition
labelled alertchng with outputs kc and qc and reset map R2 and with G2 the guard of
the active output transition labelled storemem with outputs kc and qc and reset map
R3. R2 and R3 are the same and do the following reset: kc := kc, qc := qc. Note that,
under maximal progress, the process jumps immediately to location l1 as soon as it
arrives in location l2, causing also a synchronizing transition in either Task performance
(with label alertchng) or Memory (with label storemem).

• The process arrives in location l3 after the endtask signal, which means that the pilot
should check the memory whether there are other goals that need to be achieved. With
the unguarded active input transition with label getmem and inputs m and q and reset
map R4, the process jumps to location l4 while retrieving the memory state (m, q). The
reset map R4 stores this (m, q) in (m̃, q̃).

20



• Before executing a goal from the memory, the pilot should first check HMI-PF to see
whether there are indications for failing devices. This happens in the transition to l5
on the label getHMI while retrieving the HMI-PF state CHMI . The reset R5 stores
CHMI together with m̃ and q̃ in the state of l5.

• From location l5 there is an active transition to l6 with label τ and guard G12 :=
{(m̃, q̃, C̃HMI)| C̃i

HMI = true for some i = 1, 2, 3, 4, 5 or m̃i = ON for some i < 7}.
Under maximal progress, this τ -transition is taken immediately after arriving in l5 when
the Memory and HMI-PF states give reason to work on a new goal. The reset map
R10 resets kc := 2, qc := r if S := {i|i ≤ 5, C̃i

HMI = true} 6= ∅, where r is randomly
chosen from the set S, otherwise R10 resets kc := min{i|mi = ON}, qc := 0. If the
guard G12 is not satisfied in l5, then this means that the pilot should wait until an
alert signal is received or until either the Memory state or the HMI-PF state changes
such that the pilot should work on a new goal. On an alert signal from Audio alert
the transition to l2 is taken where R9 is equal to R1. The active input transition to
l6 labelled getmem waits till the Memory state has changed such that the input-guard
G4 is satisfied, where G4 := {(m, q)|mi = ON for some 2 6= i < 7}. The reset map
R7 resets kc := min{i|mi = ON}, qc := 0. The active input transition to l6 labelled
getHMI waits till the HMI-PF state has changed such that the input-guard G3 is
satisfied, where G3 := {CHMI |Ci

HMI = true for some i = 1, 2, 3, 4, 5}. The reset map
R6 resets kc := 2, qc := r with r randomly chosen from S := {i|i ≤ 5, C̃i

HMI = true} 6= ∅.

• If the process arrives in location l6, then this means that the state of l6 represents the
goal that should immediately be worked on by the pilot. Therefore, the unguarded active
transition to l1 labelled memchng is taken immediately (under maximal progress). The
outputs kc and qc are accepted by the memchng transition in Task performance. The
reset map of the output memchng transition copies the state of l6 to the state of l1.

3.2.3 Discussion

We now discuss the CPDP ’pilot flying’ model. We compare it to the DCPN model and
we discuss the suitability of the value-passing concept for the kinds of interactions that are
present in the DCPN model.

Besides mere sending and receiving of data, a value-passing transition in one component
can also be used to put guards on the outputs of other components. These guards are called
input-guards. In Figure 3.1 the input-guards are G3 and G4. The transition with G3 can
only be taken if a process in some other component satisfies guard G3. (In this case the
other component is HMI-PF ). One could question whether it is possible to specify location l5
(and its outgoing transitions) if we are not allowed to use input-guards: If we are not allowed
to use input-guards, then the guard G3 should be modelled within the component HMI-PF
such that as soon as guard G3 switches from not-satisfied to satisfied (or vice versa) an ac-
tive signal should be broadcast by HMI-PF. This signal can then be received via a passive
(or active) transition by Current goal who then knows that guard G3 has become satisfied.
There seems to be a trade-off here. If we allow input-guards in the CPDP-framework, then
modelling becomes easier (we need less transitions) but the CPDP-language becomes more
complex which might be disadvantageous for (compositional) analysis of CPDP processes.
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If we compare the Current goal CPDP with the Current goal LPN then we can roughly say

that the Ginterrupt transition in the LPN corresponds to the CPDP cycles l1
alert−→ l2

alertchng−→ l1

and l1
alert−→ l2

storemem−→ l1. while the Gsubsequent transition in the LPN corresponds to the

cycles l1
endtask−→ l3

getmem−→ l4
getHMI−→ l5

α−→ l6
memchng−→ l1, where α ∈ {τ, getmem, getHMI}.

Here we see the same kind of trade-off that we saw with the input-guards: To model the
complex DCPN transition Gsubsequent in CPDP, we need transitions like endtask, getmem
and getHMI to gather specific information from other components, while in the DCPN, this
information is immediately available (via enabling arcs) to the transition (without using extra
transitions). The more complex and more expressive interaction possibilities in DCPN make
easy modelling (with less transitions) while the restricted interaction possibilities of CPDP
make modelling less easy (although possible) but makes compositional analysis easier.

An automata-analogy of the direct access to state (or output) values of other components
present in DCPN transitions is the idea of input/output variables (as for example in [20]).
If we then connect two automata where X is an input variable of the first automaton and
an output variable of the second automaton, then the first automaton has direct access to
the values of X in the other automaton. If we import this idea into CPDP and make m,
qmem and CHMI input variables of Current goal, then Current goal always knows the values
of these variables, and transitions used for gathering information (like the ones with getmem
and getHMI between l3 and l5) are not necessary anymore. Thus, importing this idea into
CPDP makes modelling of certain types of interaction much easier. The question is however,
what price do we have to pay for importing such a strong/expressive interaction-mechanism?
We think that such a strong mechanism is to strong to allow development of compositional
analysis techniques. To make the mechanism less strong we could restrict the possibilities of
using the data of input variables. For example, if we allow that input-data is used in guards
and reset maps but we do not allow that input-data is used in the differential equations, then
the expressiveness of the mechanism is decreased in a significant way which perhaps makes
the trade-off question interesting again?

If we use input/output variables in CPDP, then the component Current goal of Figure
3.1 could be modelled as simple as it is pictured in Figure 3.2 (where we assume that Current
goal has access to the variables m and qmem and CHMI). Then R1 resets kc := 7. kc = 7 is
then part of G1. The rest of G1 are conditions on the variables m, qmem and CHMI such that
a new goal can be started. Then R2 resets kc and qc according to the new goal. Thus, by
using input/output variables, the transition structure of Current goal can be much simplified,
but in order to do that, we need to allow communication/interaction outside the transition
structures (i.e. in value-passing, we keep the communication restricted to the synchronization
of transitions).

3.3 Value-passing CPDPs and PDPs

Value-passing CPDPs exhibit non-determinism. There are two sources for this non-determinism.
The first source are the guards. A guard says when a transition may be taken, but it does
not say when it has to be taken. By using the maximal progress strategy, we can resolve the
non-determinism caused by the guards. The second source is the fact that multiple transitions
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Figure 3.2: Current goal with input/output variables

may be enabled at the same state (also in case of using maximal progress). To resolve this
non-determinism we could use an ’adversary’ which probabilistically chooses a transition at
any state of jumping. More formally said, an adversary assigns to each state a probability
measure on the set of enabled active transitions of that state. (The choice function as defined
in CPDP (without value-passing) is an adversary).

Does, under maximal progress, a closed value-passing CPDP with adversary behave like
a PDP? We claim that, for CPDPs that have no spontaneous transitions, this is the case if
the following two conditions are satisfied

1. There are no input-transitions

2. There exists an N ∈ N such that each multi-step transition consists of less than N single
transitions.

Note that the paths of a CPDP have the cadlag-property: if there is multi-step transition,
then the value of the path at that time instant is the target state after the last transition. Is
there a way to automatically check the second condition? We now give an algorithm which
can check this claim and which also shows that under this condition (assumed that there are
no input-transitions) the CPDP exhibits a PDP behavior. (It is clear that if one of the two
conditions above is not satisfied, the CPDP does not exhibit a PDP behavior).

Suppose we have a CPDP X with location set L and active transition set T . The CPDP
operates under maximal progress and under adversary A. We write Ax(α) for the probability
that active transition α is taken when an active transition is executed at state x. We assume
that the CPDP has no spontaneous transitions. The case ’with spontaneous transitions’ is
treated at the and of this section. For any n ∈ N we now define Tn

s and Tn
u . Tn

s is a set of
stable transitions of multiplicity n and Tn

u is a set of unstable transitions of multiplicity n.
A stable transition is a transition that always jumps to the stable state-space of the target
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location. The stable state-space is the part of the state-space where no guards are satisfied.
An unstable transition always jumps to the unstable state-space (which is the complement
of the stable state-space). We show that any transition (of any multiplicity) can be split up
into stable and unstable transitions (without changing the stochastic behavior).

We introduce the concept of total reset map. Rtot(B, x) denotes the probability of jumping
into B ∈ B(E) when an active jump takes place at state x. We have that

Rtot(B, x) =
∑

α∈{lx→}

[Ax(α)Rα(B ∩ Inv(l′α), x)],

where {lx →} is the set of all active transitions that leave the location of x. We split Rtot

up into the stable total reset map Rtot,s and the unstable total reset map Rtot,u, where
Rtot,s(B, x) = Rtot(B ∩ Es, x) and Rtot,u(B, x) = Rtot(B ∩ Eu, x), where Es and Eu denote
respectively the stable and unstable state-spaces of the state-space E of X.

Take any α ∈ T . We define Gαs as the set of all x ∈ Gα such that Rα(Invs(l
′
α), x) 6= 0,

where Invs(l
′
α) is the stable part of the invariant of the target location of α. Then for all

x ∈ Gαs we define

Rαs(B, x) :=
Rα(B ∩ Invs(l

′
α), x)

Rα(Invs(l′α), x)
,

Ax(αs) := Ax(α)Rα(Invs(l
′
α), x).

If Gαs 6= ∅, then we add transition αs with guard Gαs and reset map Rαs to T 1
s . The adver-

sary works on αs as Ax(αs) (as defined above).

We define Gαu as the set of all x ∈ Gα such that Rα(Invu(l′α), x) 6= 0. For all x ∈ Gαu we
define

Rαu(B, x) :=
Rα(B ∩ Invu(l′α), x)

Rα(Invu(l′α), x)
,

Ax(αs) := Ax(α)Rα(Invu(l′α), x).

If Gαu 6= ∅, then we add transition αu with guard Gαu and reset map Rαu to T 1
u . The adver-

sary works on αu as Ax(αu) (as defined above). It can be easily seen that replacing α by αs

and αu, does not change the total stable and total unstable reset map. Then, the total stable
(unstable) reset map is constructed only from the stable (unstable) transitions.

We introduce the following notations. Px(B◦β◦α) denotes the probability that, given that
an active jump takes place at state x, transition α is executed followed directly by transition
β jumping into the set B ∈ B(Inv(l′β)). It can be seen that we then have

Px(B ◦ β ◦ α) = Ax(α)

∫

x̂∈Gβ

Ax̂(β)Rβ(B, x̂)dRα(x̂, x).

We will now inductively determine the sets Tn
s and Tn

u . Suppose the sets Tn−1
s and Tn−1

u

and T 1
s and T 1

u are given. Now, for any α ∈ Tn−1
u , β ∈ T 1

s ∪ T 1
u such that l′α = lβ , we define

Gβ◦α as all x ∈ Gα such that Rα(Gβ , x) 6= 0. Then, for all x ∈ Gβ◦α we define

Ax(β ◦ α) := Px(Inv(l′β) ◦ β ◦ α),
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Rβ◦α(B, x) :=
Px(B ◦ β ◦ α)

Ax(β ◦ α)
.

If Gβ◦α 6= ∅ and β ∈ T 1
s then we add transition β ◦ α, with guard, reset map and adversary

as above, to Tn
s . If Gβ◦α 6= ∅ and β ∈ T 1

u then we add transition β ◦α, with guard, reset map
and adversary as above, to Tn

u . If for z ∈ {s, u} we define

Rn
tot,z(B, x) :=

∑

α∈{lx→}∩T n
z

[Ax(α)Rα(B ∩ Inv(l′α), x)],

then it can be seen that for any n ∈ N we have

Rtot(B, x) =
n∑

i=1

[Ri
tot,s(B, x)] +Rn

u(B, x),

with other words, if Xn denotes a copy of CPDP X, except that the active transition set of
Xn equals T 1

s ∪ T 2
s ∪ · · · ∪ Tn

s ∪ Tn
u , then the total reset maps of Xn−1 and Xn are the same

for all n.

Theorem 2. Let Xn be derived from X as above. Let Rn
tot,s denote the total stable reset map

of Xn. X exhibits a PDP behavior if and only if R(E, x) := limn→∞Rn
tot,s(E, x) = 1 for all

x ∈ Eu. Then, the corresponding PDP of X has total reset map R.

Proof. From the text above, it is clear that if R(E, x) = 1 for all x, then this is the total reset
map of the PDP corresponding to X. If for some x ∈ E, R(E, x) < 1, then it can be seen
that this must mean that there exists an active transition α in X with multiplicity infinity
such that Ax(α) > 0. This means that (from x) there is a deadlock probability (i.e. time
does not progress anymore) greater than zero, which means that X does not exhibit a PDP
behavior. �

Corollary 1. If for some n ∈ N we have that Tn
u = ∅, then the multiplicity of the transitions

of X is bounded by n and X exhibits a PDP behavior, where the corresponding PDP is equal
to the corresponding PDP of Xn (which can be constructed because all transitions of Xn have
multiplicity one).

Now we can say a few things about the case that the CPDPX has spontaneous transitions.
Suppose that the multiplicity of the active transitions of X is bounded by n. Let X̂n be a copy
of Xn together with the following spontaneous transitions: For any spontaneous transition
(l, λ, l′, R) of X we add to X̂n the transition (l, λ, L, R̂), where, for B ∈ B(E),

R̂(B, x) := R(B ∩ Invs(l
′)) +

∑

α:l→

∫

x̂∈Gα

Ax̂(α)Rα(B ∩ Inv(l′α))dR(x̂, x),

where α : l → denotes the set of all active transitions of Xn that leave location l. Note
that (l, λ, L, R̂) is not a standard CPDP transition, but a transition that represents a Poisson
process in location l with jump-rate λ and with reset map R̂, which can jump to multiple
locations. Therefore we write L instead of l′ in the tuple of the transition. It can be seen
now that the corresponding PDP of X is the corresponding PDP of Xn together with these
non-standard spontaneous transitions.
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3.3.1 Examples of value-passing-CPDP to PDP conversion

We follow the algorithm written above to check whether the CPDP ATM-example of Section
3.2, which has no spontaneous transitions, can be converted to a PDP.

Example (ATM). We assume that the system is closed (i.e. no more components will be con-
nected). This means that we remove the passive transitions in the composite CPDP (which
are some endtask transitions). It can be seen that the composite CPDP does not have ac-
tive input-transitions. We assume that time will elapse in the locations of audioalert and
taskperformance. Both may have (different) extra dynamic of the form ẋ = f(x), then the
guards of transitions alert and endtask depend on x. We assume that the transitions alert,
alertchng and memchng are stable. Note that location l1 is stable, that locations l2,l3,l4 and
l6 are unstable and that location l5 has both a stable and an unstable state space.

First we look at T 1
s : the stable parts of the transitions of multiplicity one. For this example

we have
T 1

s = {storemem, alertchng,memchng, getHMIs,45},
where these names correspond to the transitions with the same label: storemem represents
the transition from l2 to l1 synchronized with the transition with the same label in component
memory. getHMIs,45 corresponds to the stable part, which is the part that does not jump
into guard G12, of the transition between l4 and l5 synchronizing with the transition in HMI-
PF, etc. Because R5 makes a copy of CHMI ,m and q, we get that the guard of getHMIs,45
equals Inv(l4)\G12 and the guard of getHMIu,45, the unstable part, equals G12. Furthermore,
we have for this example

T 1
u = {alert12, alert52, getmem34, getmem56, getHMIu,45, getHMI56, endtask},

T 2
s = {alertchng ◦ alert12, alertchng ◦ alert52, storemem ◦ alert12, storemem ◦ alert52,
memchng ◦ τ,memchng ◦ getHMI,memchng ◦ getmem, getHMIs ◦ getmem},

where getHMIs◦getmem denotes the transition with multiplicity two that consists of getmem
from l3 to l4 followed directly by the stable part of getHMI from l4 to l5, etc.

T 2
u = {getmem ◦ endtask, getHMIu ◦ getmem, τ ◦ getHMI},

T 3
s = {memchng ◦ τ ◦ getHMIu, getHMIs ◦ getmem ◦ endtask},
T 3

u = {getHMIu ◦ getmem ◦ endtask, τ ◦ getHMIu ◦ getmem},
T 4

s = {memchng ◦ τ ◦ getHMIu ◦ getmem},
T 4

u = {τ ◦ getHMIu ◦ getmem ◦ endtask}.
T 5

s = {memchng ◦ τ ◦ getHMIu ◦ getmem ◦ endtask},
T 5

u = ∅.
We see, when X denotes the composite CPDP, that X5 (i.e. the CPDP that has active

transitions (∪5
i=1T

i
s) ∪ T 5

u ) has no unstable transitions. This means that X5 can directly be
converted to a PDP, which then is the corresponding PDP of X.
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To prove that the composite CPDP of this ATM example can be converted to a PDP,
it would also have been enough to show that the CPDP does not have cycles such that the
locations of the cycle all have unstable parts. It is clear that a cycle in component Cur-
rent goal should include location l1, which is a stable location. It can easily be seen that
in the composite CPDP the two (product)locations that contain l1 are both stable and that
any cycle in the composite CPDP should contain one of these two locations. Therefore this
composite CPDP does not have transitions with multiplicity infinity and should therefore
be convertable to a PDP. (However, if we want to specify this PDP, we still have to do the
algorithm or something similar). �

Because the algorithm terminates on the ATM-example above, we know that the ATM-
example has a PDP behavior. However, it is possible that the algorithm does not terminate,
while the CPDP does exhibit a PDP behavior. We now give an example of this.

Example. Let CPDP X have one location, l1. The state-space of l1 is [0, 1], the continuous
dynamics of l1 is the clock dynamics, i.e. ẋ = 1. From l1 to l1 there is one active transitions
with guard G and reset map R. G = [12 , 1]. For x ∈ G, R({0}, x) = 1

2 and R(A, x) = |A∩[12 , 1]|
for A ∈ B([0, 1]\{0}). This means that from an x in G, the reset map jumps to 0 with
probability 1

2 and jumps uniformly into [12 , 1] with probability 1
2 . It can easily be seen that

for X we have that Tn
u 6= ∅ for all n ∈ N. This means that the algorithm explained above does

not terminate for this example. Still, according to Theorem 2, X expresses a PDP behavior,
because for x ∈ G, R([0, 1], x) = limn→∞Rn

tot,s([0, 1], x) = 1
2 + 1

2 · 1
2 + 1

2 · 1
2 · 1

2 + · · · = 1. �
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Chapter 4

Stability Analysis for Hybrid
Automata using Conservative Gains

4.1 Introduction

The study of hybrid systems, which are systems whose behavior can be seen as the result
of the interaction between discrete and continuous dynamics, has given rise to a wealth of
different models (see [31] for an overview). The hybrid automata model [2, 12] is an attractive
candidate as it is very general and can be seen as a straightforward extension of the timed
automata model [3] that has been extensively studied, especially in computer science, resulting
in a large body of results on (automated) analysis and design. A hybrid automaton consists of
an automaton with locations and transitions (or switches) between the transitions, together
with continuous dynamics in the locations (usually described by differential equations) and
constraints on both locations and transitions.

The question of stability for hybrid automata has been known to be nontrivial. It is
possible to find very simple examples (see e.g. [5]) that illustrate that even if the dynamics in
each location is stable, still the global behavior of the hybrid automaton may be unstable. By
now there are many results on the stability of hybrid systems (for an overview see [8, 16, 23]).
Many of these results address the question of the stability of a set of locations under arbitrary
switching between these locations [23, 39], for instance by checking the existence of a Lyapunov
function common to all locations [16, 1]. Such a criterion would be too strong in general for
hybrid automata, since there one is not interested in all possible switchings, but only in the
switchings allowed by the transitions of the automaton.

A more suitable criterion for our purposes is that of multiple Lyapunov functions [5, 6, 16].
Here one assumes the existence of a Lyapunov function in each location, together with the
so-called non-increasing sequence property: if a location is visited again, the value of the
Lyapunov function should be less than it was at the previous time the location was entered.
This is a sufficient condition for the stability of a hybrid automaton. However, the problem is
that is not clear how the non-increasing sequence can be effectively checked in general, since
it would in principle require checking all possible behaviors of a hybrid system.

Therefore we take another approach that exploits the automaton structure of the hybrid
automaton while taking advantage of the existence of a Lyapunov function in each location.
In Section 4.2 we give some basic definitions about hybrid automata and stability, and define
the class of hybrid automata that we study. In Section 4.3 we show how to calculate a
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conservative estimate of the gain using Lyapunov functions. It is shown how an optimal
Lyapunov function can be chosen. In Section 4.4 we show how to use conservative gains in
constructing an automaton that is used in an algorithm that detects non-contractive cycles
in a hybrid automaton. The absence of such non-contractive cycles is a sufficient condition
for the stability of the hybrid automaton.

4.2 Hybrid automata and stability

The hybrid automaton model [2, 12] extends the classical notion of automaton by incorpo-
rating continuous dynamics in the locations, together with constraints at both locations and
transitions.

Definition 4.2.1. A hybrid automaton is a tupleH = (X,L, Init, Inv, f, E,Guard,Assign,Σ)
where:

• X ⊆ Rn is the continuous state space ranged over by the state vector x.

• L is a finite set of locations.

• Init ⊆ L× Rn is a set of initial location state pairs.

• Inv : L→ 2X assigns to each location ` an invariant to be satisfied by state x while in
location `.

• f : L→ (X → Rn) assigns to each location ` a continuous vector field f` such that the
state x should satisfy d

dtx = f`(x).

• E ⊆ L× L is the set of transitions, also called switches.

• Guard : E → 2X assigns to each transition a guard that has to be satisfied by state x
if the transition is taken.

• Assign : E → (X → X) assigns to each transition an assignment that may alter state
x when the transition is taken.

• Σ a set of transition labels. We assume a labeling function lab : E → Σ and refer to
transitions by their labels (assuming uniqueness).

We make a few additional assumptions:

• We assume that Init = L′ × Rn for a set L′ ⊆ L of initial locations, so that for a
given initial location we can start with any state (which is technically convenient when
studying stability).

• We assume that there are no invariants, i.e., Inv maps each location to the trivial
condition true. This means that transitions are never forced, and it is possible to
remain in a location forever.

• we assume that the dynamics in each location is linear, so d
dtx = f`(x) = Alx, A` ∈

Rn×n.
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• We assume that for each transition e the guard is a hyperplane defined by an equation
of the form vT

e x = 0 for some ve ∈ Rn.

• We assume that the state is left unchanged by transitions (also called continuous switch-
ing), so for each transition e, Assigne(x) = x.

We call a hybrid automaton that satisfies these assumptions a Linear Continuous Hyperplane
(LCH) hybrid automaton.

Example 4.2.2. Consider the hybrid automaton consisting of four locations, `1, . . . , `4. The
dynamics in location `i is given by d

dtx = A`i
x, A`i

∈ R2×2, i = 1, . . . 4. The following events
can occur: E = {(`1, `2), (`1, `4), (`2, `1), (`2, `3), (`3, `4), (`4, `2)}, to
which correspond labels a to f respectively. To each event there corresponds a switching line
Lij . For instance if the automaton is in location `2 there are two possible transitions: to `1
and to `3. The transition to `1 is enabled if and only if x ∈ L21, whereas the transition to `3
is possible when x ∈ L23.

Definition 4.2.3. A hybrid trace of an LCH hybrid automaton is a finite or infinite sequence
of the form σ = x1e1x2e2 . . . xm−1em−1xm, with an associated monotonically increasing timing
sequence τ0τ1...τm (with τ0 = 0, τi ∈ R ∪ {∞}), such that

• each ei is a transition from location `i to location `i+1

• each xi is a mapping from [τi−1, τi] to Rn satisfying d
dtxi = A`i

xi

• initial and switching constraints and assignments are respected, so (`1, x1(0)) ∈ Init,
and for all 1 ≤ i ≤ m− 1: vT

ei
xi(τi) = 0 and xi(τi) = xi+1(τi).

Notice that in our setting Zeno behavior cannot occur. The reason for this is that tran-
sitions from one location to the other are enabled only if the state has progressed from one
hyperplane to the other. The amount of time that this takes is invariant under scaling and
is completely determined by the angle between the hyperplanes and the dynamics in the lo-
cation. Since the number of locations and the number of transition enabling hyperplanes is
finite it follows that there is a uniform minimal dwell time.

Definition 4.2.4. An LCH hybrid automaton is stable iff ∀ε > 0 ∃δ > 0 : ‖x0‖ < δ ⇒ for all
hybrid traces x1e1x2e2 . . . with x1(0) = x0 and ∀i∀t ∈ [τi−1, τi] : ‖xi(t)‖ < ε. An automaton
that is not stable is called unstable.

It is well known that even if for each location ` the dynamics is stable, so the matrix
A` is stable (i.e., all eigenvalues have nonnegative real part, and eigenvalues with zero real
part are semisimple, see [27]), still the hybrid automaton can be unstable (see e.g. [5] for a
simple example). We say that a hybrid automaton has stable locations if for each location `

the matrix A` is stable. Now our problem is the following: find sufficient conditions for the
stability of an LCH hybrid automaton with stable locations.

4.3 Conservative estimate of gains via Lyapunov functions

Suppose a location ` is entered via a transition a with a state vector xa and is left via a
transition b with a state vector xb. An indication as to how the location contributes to the

30



Lin

Lout

vin

vout

x1

x2

Figure 4.1: Switching lines in a location

stability or instability is the ratio of the norm of the outbound state and the inbound state.
A ratio below one is in favor of stability whereas a ratio above one points at instability. Of
course, since the ratio depends on the actual trace and state trajectory it does not provide
a feasible stability indicator. Therefore we propose to use an upperbound that only depends
on the particular location and its corresponding inbound and outbound transitions.

Definition 4.3.1. Consider an LCH hybrid automaton H with stable locations. With each
location ` we associate a symmetric positive definite matrix P` such that AT

` P`+P`A` ≤ 0. Let
ein represent a transition to ` and eout a transition from ` and let Lin, given by vT

inx = 0, and
Lout, given by vT

outx = 0, denote the corresponding switching hyperplanes. Define ellipsoids
Ein and Eout as Ein = {x ∈ Lin | xTP`x = 1} and Eout = {x ∈ Lout | xTP`x = 1}. The
corresponding gain αin/out is defined as

αin/out = max
xi∈Ein,xo∈Eout

xT
o xo

xT
i xi

(4.1)

Obviously, since V (x) = xTP`x is a Lyapunov function for d
dtx = A`x we have that any

trajectory that enters the location through Lin and leaves it through Lout has the property
that the ratio of the norms of outbound and inbound states is upperbounded by

√
αin/out.

Two questions arise. Firstly, given P` how can we calculate αin/out? Secondly, it appears
that the choice of P` affects αin/out. How to choose P` such that αin/out is minimal? The
latter question is treated in Section 4.3.2.

4.3.1 Calculation of the gains

Let us explain how the calculation for given P` works. For ease of exposition we treat the two
dimensional case first, see Figure 4.1.

The switching lines are given by vT
inx = 0 and vT

outx = 0 respectively. Let ṽin and ṽout be
orthogonal to vin and vout respectively. Then it is not difficult to verify that

αin/out =
ṽT
outṽout

ṽT
inṽin

ṽT
inP`ṽin

ṽT
outP`ṽout

. (4.2)
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If we choose ṽin and ṽout both on the same level curve, then (4.2) reduces to
ṽT
outṽout

ṽT
inṽin

.

For dimensions n > 2 the situation is a bit more complicated since the maximization in
(4.2) comes into play.

First notice that

αin/out =
maxxo∈Eout x

T
o xo

minxi∈Ein x
T
i xi

. (4.3)

Next, e.g., the numerator of (4.3) can easily be calculated as follows. First assume that vout has
norm one (otherwise normalize), then determine an orthogonal matrix Vout such that the first
column of Vout is vout. Define Pout = V T

outP`Vout and Ẽout = {z ∈ Rn | z1 = 0, zTPoutz = 1}.
Then

max
x∈Eout

xTx = max
z∈Ẽout

zTz =
1

λmin(P̃out)
, (4.4)

where P̃out is obtained from Pout by deleting the first row and and the first column. Further-
more λmin(P ) denotes the smallest eigenvalue of matrix P . In a similar way the denominator
of (4.3) is obtained, resulting in

αin/out =
λmax(P̃in)

λmin(P̃out)
. (4.5)

4.3.2 Optimizing the choice of Lyapunov function

The gains that provide a (conservative) stability indicator obviously depend on the Lyapunov
functions in each location. Loosely, the fit of the level curves with respect to the trajectories
determines the amount of conservatism. The better the fit, the less conservative the gain.
Since Lyapunov functions are not unique, this suggests that we might be able to choose in
each location a Lyapunov function that is optimal with respect to the switching planes. In this
section we explain how this can indeed be done. We confine ourselves to quadratic Lyapunov
functions. We show that for a given stable matrix A the set of quadratic Lyapunov functions is
convex and compact. Furthermore the stability gain corresponding to A and given switching
hyperplanes depends continuously on the Lyapunov function so that at least the optimum
exists. We illustrate the effectiveness of these results by means of a two dimensional example.

Let A ∈ Rn×n be a stable matrix. We are interested in the set of quadratic Lyapunov
functions, or, more precisely, the set of level curves corresponding to quadratic Lyapunov
functions. To enable the comparison of different Lyapunov functions we choose a nonzero
x0 ∈ Rn and define the set

Ωx0 = {P ∈ Rn×n | ATP + PA ≤ 0, xT
0 Px0 = 1}.

In fact, Ωx0 is a parametrization of the level curves corresponding to quadratic Lyapunov
functions and level unity.

Lemma 4.3.2. Let A ∈ Rn×n and let x0 ∈ R be a nonzero vector that does not belong to an
A-invariant subspace of dimension at most n − 1. Let U be an open neighborhood of 0 ∈ R.
Then span

t∈U
(exp(At))x0 = Rn.

Proof. Assume the contrary. Then there exists nonzero z ∈ Rn such that zT exp(At)x0 = 0
for all t ∈ U . Repeated differentiation and substituting t = 0 then yields

zTAkx0 = 0 k ≥ 0. (4.6)
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Define V = span
k≥0

{Akx0}. Obviously, V is an A-invariant subspace. Moreover zTV = 0 and

therefore dimV ≤ n− 1. This is a contradiction and the statement follows.

Lemma 4.3.3. Let v1, . . . , vn be a basis of Rn and let c ∈ R be a positive constant. Define
Ω =

{
P = P T ≥ 0 | vT

i Pvi ≤ c, i = 1, . . . , n
}
. Then Ω is bounded.

Proof. It suffices to prove that there exists a constant M > 0 such that for all x ∈ Rn with

x =
n∑

j=1
λivi and

n∑

j=1
λ2

j = 1 we have that xTPx ≤ M , that is the quadratic forms xTPx are

uniformly (with respect to Ω) bounded on the unit sphere. Choose any such x. Then

xTPx = (
n∑

i=1

λivi)
TP (

n∑

i=1

λivi) =
n∑

i=1

λ2
i v

T
i Pvi +

∑

i6=j

λiλjv
T
i Pvj (4.7)

≤ c

n∑

i=1

λ2
i +

1

2

∑

i6=j

λiλj(v
T
i Pvi + vT

j Pvj) ≤ c+ c
∑

i6=j

λiλj (4.8)

≤ c+
1

2
c
∑

i6=j

(λ2
i + λ2

j ) = c+ c(n− 1) = cn. (4.9)

Where we used that for any two vectors v, w: vTPw + wTPv ≤ vTPv + wTPw.

Theorem 4.3.4. Let A ∈ Rn×n be a stable matrix and let x0 ∈ R be a nonzero vector. Define
Ω = {P ∈ Rn×n | ATP + PA ≤ 0 and xT

0 Px0 = 1}.
1. If x0 does not belong to a proper A-invariant subspace then Ω is compact.
2. Every P ∈ Ω is positive semi-definite.
3. Ω is convex.

Proof. Notice that since A is stable the set Ω is non-empty. Choose any P ∈ Ω. Due to the

condition on x0 the trajectory x(t) = exp(At)x0 spans Rn. Since x satisfies
d

dt
x = Ax it

follows that
x(t)TPx(t) ≤ xT

0 Px0 = 1 ∀t ≥ 0. (4.10)

Choose time instants t1, . . . , tn such that span(x(t1), . . . , x(tn)) = Rn. It follows from Lemma
4.3.3 (with c = 1) that Ω is bounded.

To see that Ω is closed, choose a sequence Pk ∈ Ω such that limk→∞ Pk = P . Then

ATP + PA = lim
k→∞

ATPk + PkA =: −Qk. (4.11)

By assumption Qk ≥ 0 and therefore also limk→∞Qk =: Q ≥ 0. We conclude that P ∈ Ω.
This proves the first statement.

The second and the third part are obvious.

Example 4.3.5. Let the dynamics in a given location be given by d
dtx = Ax with

A =

[
0 1
−2 −3

]
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The switching lines are given by

Lin = λ

[
0
1

]

︸︷︷︸

ain

Lout = λ

[
1
0

]

︸︷︷︸

aout

(4.12)

As explained in Section 4.3.1, for a given Lyapunov function V (x) = xTPx the gain is defined
as

αP =
aT

outaout

aT
inain

aT
inPain

aT
outPaout

=
p22

p11
(4.13)

The set Ωain is depicted in Figure 4.2. To find the optimal Lyapunov function we want

3

2

1

0
2 4 8 10 126

p11

p12

Ω

Figure 4.2: The set Ωain of all Lyapunov functions.

to minimize αP over Ωain . For this example this amounts to the minimization of 1
p11

or,
equivalently, the maximization of p11. Theorem 4.3.4 guarantees the optimum exists. Using
Maple we found two extreme Lyapunov functions. One that minimizes αP and one that
maximizes αP :

Pmin =

[
12.70 2.59
2.59 1

]

Pmax =

[
.32 .41
.41 1

]

(4.14)

The corresponding minimum and maximum values of the gains are

αmin ≈ 0.38 αmax ≈ 2.61 (4.15)

In Figure 4.3 the level curves of the two Lyapunov functions are drawn together with the
phase portrait of d

dtx = Ax. This clearly shows the benefit of using the non-uniqueness of
Lyapunov function. The one that minimizes α is obviously dramatically less conservative
than the one that maximizes α.

Remark 4.3.6. In higher dimensions the minimization of the gain may be cumbersome to
perform. Indeed, the expression in (4.5) is a non-convex function of P . Notice, however, that
λmax(P ) is convex and λmin(P ) is concave. A suboptimal solution is therefore obtained by
disregarding either the numerator or the denominator in (4.5).

4.4 Gain automata and detection of non-contractive cycles

Suppose we have a hybrid automaton with stable locations. If for each location that can
be visited more than once the conservative gain is ≤ 1, then it can be seen that the hybrid
automaton is stable: since the number of locations in a trace that are visited only once (seen
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Figure 4.3: Level curves of the extreme Lyapunov functions

as a function of a trace) is bounded, there is a bound to the gains corresponding to the
traces. However, such a condition is unnecessarily restrictive as it does not take into account
situations where a higher gain in one location is compensated by a lower gain in another
location. So we need a more sophisticated condition.

Definition 4.4.1. Let H be a hybrid automaton, then a contractive cycle of H is a sequence
of transitions e1e2 . . . em such that each ei is a transition from `i to `i+1, with `1 = `m+1, and
αe1e2 · αe2e3 · . . . · αeme1 ≤ 1.

Theorem 4.4.2. Let H be an LCH hybrid automaton with stable locations. Then: H is
unstable ⇒ H has a non-contractive cycle.

Proof. Seeking a contradiction, assume that all cycles are contractive. Choose ε > 0 and
let δk > 0 be such that limk→∞ δk = 0. Assume that for every k there exists a trace σk =
x1,ke1,kx2,k · · · eM−k−1kxmk,k, with

‖x1,k(0)‖ < δk ‖xmk,k(tk)‖ ≥ ε (4.16)

Remove from each trace σk all cycles to obtain σ̃k. Denote by η̃k the event sequence corre-
sponding to σ̃k. Since the number of events is finite and since σ̃k does not contain cycles, it
follows that there exist an infinite number σ̃ki

s and an event sequence η̃ such that for all i:

η̃ki
= η̃ = e1 e2 · · · eM−1 (4.17)

Hence every σ̃ki
is of the form

σ̃ki
= xki

1 e1x
ki

2 e2 · · ·xki

M−1eM−1x
ki

M (4.18)

with
xki

j :
[
τki,j , τ

′
ki,j

]
→ Rn
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trajectories in location `j . If for some j τ ′ki,j
< τki,j+1, then a cycle has been removed in

between. Since all cycles are contractive in the sense of Definition 4.4.1 we conclude that

‖x(τki,j+1)‖ ≤ ‖x(τ ′ki,j
)‖. (4.19)

Of course, if τ ′ki,j
= τki,j+1, then (4.19) is trivially satisfied. Notice that since ‖xmk,k(tk)‖ ≥ ε

and ‖xk(0)‖ < δk we also have that

‖xki

M (τ ′ki,M
)‖ ≥ ε ‖xki

1 (τki,1)‖ < δki
(4.20)

Now, choose δ̃M > 0 such that for any trajectory x in location `M we have

‖x(0)‖ < δ̃M ⇒ ‖x(t)‖ < ε. (4.21)

Assume that δ̃j has been defined. Choose δ̃j−1 such that for every trajectory x in location `j
we have

‖x(0)‖ < δ̃j−1 ⇒ ‖x(t)‖ < δ̃j . (4.22)

Take i such that δki
< δ̃1. It follows that

‖xki

1 (τ ′ki,1
)‖ < δ̃2

from which we conclude
‖xki

2 (τ ′ki,2
)‖ < δ̃3.

Repeating this argument we finally get:

‖xki

M (τ ′ki,M
)‖ < ε. (4.23)

This contradicts the first inequality in (4.20) and therefore not all cycles of H can be con-
tractive. This concludes the proof.

Theorem 4.4.2 provides us with a sufficient condition for stability, namely the absence
of non-contractive cycles. In order to check for non-contractive cycles we first transform a
hybrid automaton into another type of automaton.

Definition 4.4.3. A gain automaton is a tuple GA = (S, S0, G) where

• S is the set of nodes,

• S0 is the set of initial nodes,

• G ⊆ S × R+ × S is the set of edges labeled with gains.

Definition 4.4.4. Let H be a hybrid automaton, then the gain automaton for H is defined
by GA(H) = (SH , S

0
H , GH) where

• The nodes of the gain automaton are the transitions of H, so SH = E.

• The initial nodes S0
H are the transitions from an initial location of H.

• For each pair of transitions e, e′ in H such that
e−→ l

e′−→ there is an edge e
αee′−→ e′ in

GH .
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Figure 4.4: Example of a gain automaton

Example 4.4.5. Let H be the hybrid automata of Example 4.2.2, then the gain automaton
GA(H) is given in Figure 4.4.

We define an algorithm on the gain automaton of a hybrid automaton for the detection
of non-contractive cycles. This algorithm is inspired by the well-known algorithm for trans-
forming an automaton into an equivalent regular expression (see e.g.[13, 17]). It works by
successively deleting nodes of the gain automaton, while transforming the edges. The basic
steps of the algorithm are:

Node elimination: a node is eliminated. Each possible pair of an incoming and outgoing
edge of this node leads to a new edge, labeled with the product of the gains, as illustrated
in Figure 4.5(a).

Double edge elimination: if two edges have the same initial and final node they are trans-
formed into a single edge, labeled with the maximum of the gains, as illustrated in
Figure 4.5(c).

Loop edge analysis: it is possible that deleting a node creates a loop edge, as illustrated
in Figure 4.5(b). If the gain of such a loop edge is > 1 (we call this a non-contractive
loop edge) the algorithm is terminated. Otherwise, the loop edge is removed.

Algorithm 4.4.6. Input: a gain automaton GA.
check all loop edges;

if a non-contractive loop edge is found
then terminate;

remove all loop edges;
repeat

eliminate a state;
eliminate all resulting double edges;
analyze all resulting loop edges;
if a non-contractive loop edge is found

then terminate;
remove all loop edges

until there is only one state

Theorem 4.4.7. Let H be an LCH hybrid automaton with stable locations. Then: Algorithm
4.4.6 detects a non-contractive loop edge in GA(H) ⇔ H contains a non-contractive cycle.
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Figure 4.5: Basic steps of the algorithm

Proof. ⇒: trivial since each non-contractive loop edge corresponds to a non-contractive cycle.
⇐: suppose there is a non-contractive cycle in H. This means that in the gain automaton

there is a cycle where the product of the gain labels is bigger than 1; call such a cycle a
non-contractive gain cycle.

Now each removal step in the algorithm preserves the existence of a non-contractive gain
cycle: this is immediately clear for node elimination and double edge elimination. For loop
edge elimination it also holds, since if a non-contractive gain cycle contains a contractive loop
edge, then the gain cycle without the contractive loop edge remains non-contractive.

So at each step of the algorithm the presence of a non-contractive gain cycle is unaltered.
Suppose there is a non-contractive gain cycle. If it were not detected by a non-contractive
loop edge detection then the algorithm would yield a gain automaton with a single state
and no transitions, so not containing a non-contractive gain cycle, which contradicts the fact
that at each step the presence of a non-contractive gain cycle is unaltered. So if H has a
non-contractive cycle it will be detected by detecting a non-contractive loop edge.

The number of nodes in GA(H) is quadratic in the number of nodes of H, and the
complexity of Algorithm 4.4.6 is linear in the number of nodes of GA, so the complexity of
Algorithm 4.4.6 is quadratic in the number of nodes of H. This means we have a compu-
tationally efficient way of checking the sufficiency condition for stability, viz. the absence of
non-contractive cycles.

Remark 4.4.8. Our analysis applies, mutatis mutandis equally well to asymptotic stability.
If the dynamics in each location is asymptotically stable then the hybrid automaton is asymp-
totically stable if all cycle are strictly contractive, i.e., if the product of all gains along the
cycle is strictly smaller than one.
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Chapter 5

Overview of the results of WP4

In WP4 of the Hybridge project we have developed an automaton framework called CPDP
for compositional specification and analysis of stochastic hybrid systems. A CPDP is a PDP-
type system which means that it is a mixture of deterministic motion (determined by ordinary
differential equations) and random jumps. Besides random jumps (spontaneous transitions
in CPDP terminology) there are also active and passive transitions. These transitions are
labelled with discrete events and are used for interaction between different CPDPs. We have
defined a set of composition operators |PA|. Different types of interaction can be expressed
using different sets A and P . We have given an operational semantics for |PA| and the result
of composing two CPDPs is again a CPDP. This means that the behavior of multiple CPDPs
running in parallel and interacting via active and passive events can be expressed as a single
CPDP and therefore theory for CPDPs will also apply to composition of CPDPs. The latest
developments within the CPDP framework are as follows.

• The framework has been extended with value-passing which allows that interacting
CPDPs can send/receive data of the continuous process to each other. We have shown
that this type of interaction can be expressed by adding a few composition rules to the
parallel composition operator |PA|.

• In [35] an algorithm is given for determining the maximal bisimulation of a CPDP. With
this algorithm the state space of a CPDP can be reduced in an optimal way such that
analysis of the original CPDP can be done on the state reduced CPCP. Bisimulation
can be done in a compositional way by finding bisimilar state reduced components and
placing back the state reduced components in the composition. Bisimulation, which is
a tool that makes analysis easier, can be done on the level of the components and is
therefore a compositional analysis technique.

The direction we want to point out for future research on CPDP is: compositional anal-
ysis. One form of compositional analysis is formed by bisimulation techniques. It would be
interesting to find subclasses of CPDPs that on the one hand are broad enough to contain
many interesting complex systems and on the other hand are such that the computation of
the bisimulation algorithm of [35] is decidable.
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