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Abstract. The fourth deliverable D7.4 of Work Package WP7 of the
HYBRIDGE Project focuses on the detection of situation awareness er-
rors within a specific time horizon. In this report, the runway crossing
control problem is considered as a case study, in order to motivate the
extension of the notion of observability for hybrid systems to yield the
notion of critical observability. The hybrid model is improved with re-
spect to the one proposed in Deliverable 7.3 and is now more realistic.
Five agents are present; four are humans, modelled as hybrid systems,
subject to situation awareness errors that could lead to dangerous situ-
ations. The problem is to detect the errors immediately to prevent them
to cause catastrophic events. Hence, the classical notions of observability
for hybrid systems need to be extended to consider critical observabil-
ity, whereby hazardous states have to be detected in one step of the
Finite–State Machine component of the hybrid system. Conditions for
the existence of an observer for critical states are also given and a pro-
cedure for its computation presented.
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1 Introduction

In an Air Traffic Management (ATM) closed–loop system with mixed computer–
controlled and human–controlled subsystems, recovery from non–nominal situa-
tions implies the existence of an outer control loop which has to identify these
situations and act accordingly to prevent them to evolve into accidents. The
purpose of Work Package WP7, “Error Evolution Control”, of the HYBRIDGE
project is to develop algorithms with guaranteed performances for assisting hu-
man operators in detecting critical situation and avoiding the propagation of
errors and other non–nominal events. Estimation methods and observer design
techniques are essential in this regard for the design of a control strategy for
error propagation avoidance and/or error recovery.

Various aspects need to be taken into account in the study of error detection
for ATM:

1. Psychological models which can be used for the study of ATM;
2. Stochastic hybrid models describing the dynamics involved in error evolution

control, capturing the essential features of ATM;
3. Observability and observer design for these hybrid models;
4. The applicability of theoretical results on observers to a realistic ATM situ-

ation.

In the first three tasks of WP7, the following objectives related to the first
three aspects were met:

(i) Task 7.1: we dealt with a review of some of the psychological models that
are in use for the study of air traffic management.

(ii) Task 7.2: we identified, in collaboration with University of Cambridge, a
stochastic hybrid model to describe the dynamics involved in error evolution
control and capture the essential features studied in Task 7.1 (see Deliverable
1.2 [2]). We also addressed the issue of observability and observer design for
hybrid systems. In Public Deliverable 7.2 [4], we reviewed the literature on
observability and observers for hybrid systems as a first step in our quest for
a general hybrid system observer. We then illustrated a synthesis method
for hybrid observers [1].

(iii) Task 7.3: we investigated the applicability of the theoretical results on ob-
servers obtained in Deliverable 7.2 to a realistic ATM situation, the active
runway crossing control problem, for the detection of situation awareness
errors (see Deliverable 7.3 [5]). The resulting observer works well for this ap-
plication: an alarm is generated when a critical situation occurs, for example
whenever an aircraft is about to cross the runway when another aircraft is
taking off.

The work carried out in Deliverable 7.3 [5] also shows that some new theoret-
ical investigation turns out to be necessary to represent the error detection prob-
lem better. In fact, the observer construction methods proposed in Deliverable
7.2 and applied in Deliverable 7.3 are based on the notion of K–current–state
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observability [1]. A hybrid system is K–current–state observable if any discrete
location of the hybrid system can be identified by the use of the discrete outputs,
after a finite number K > 0 of discrete transitions. In this definition, the number
K is generic. However, in our application, it is necessary to immediately identify
those discrete locations – that we may call critical – that correspond to dan-
gerous situations. If a critical state occurs before K transitions take place, then
the corresponding critical situation is not identified even though the system is
current–state observable. In the case of the runway crossing example, the theory
applies well because, after the signatures generation, the hybrid system model is
current–state observable with K = 1. However, this is not necessarily the case.
It is therefore necessary to extend the definition of observability to a subset of
critical states of the agent hybrid system, and to design an observer based on
this definition to verify the observability of critical states. This will answer the
objective of Task 7.4, i.e.

Fault and error detection in prescribed time horizon. Time delay in fault or
error detection and identification is critical and no results are available in the lit-
erature on this particular problem for hybrid systems. Our objective is to extend
previous results in order to assess fault detection within a given maximal interval
of time and to design a fault/error–tolerant control strategy. Specific commu-
nication network related air traffic management problems will be considered in
this study.

To solve the problem of critical observability, we build on the work presented
in [1], and the one on fault and error detection in prescribed time horizon [9],
[13]. To do so, we extend the definition of observability to a subset of critical
states of the agent hybrid system to yield the concept of critical observability.
We then present how to design an observer based on this definition to verify the
observability of critical states.

The report is organized as follows. In Section 2, we formulate the problem
and we review results on observability for hybrid systems. In Section 3, we intro-
duce the notion of critical observer and we offer conditions under which critical
observers may be designed. In Section 4, we apply these results to the runway
crossing problem and we show experimental results based on extensive Matlab
simulation. In Section 5, we offer some concluding remarks.

2 Problem Setting

We consider a hybrid system H with N locations q1, · · · , qN . Each location iden-
tifies the continuous dynamics described by the equations

ẋ = Aix + Biu, y = Cix, i = 1, · · · , N (1)

with Ai ∈ IRn×n, Bi ∈ IRn×m, Ci ∈ IRp×n, x ∈ X ⊆ IRn the continuous state,
y ∈ Y ⊆ IRp the continuous output, and u ∈ U ⊆ IRm the system input. As
in [1], we suppose here that systems (1) are observable, although this assumption
may be relaxed.
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The discrete event dynamics are given by a nondeterministic generator of
formal language [17]

q(k + 1) ∈ δ(q(k), σ(k + 1))

σ(k + 1) ∈ φ(q(k))

ψ(k) = η(σ(k))

(2)

with q(k) ∈ Q the discrete location, ψ(k) ∈ Ψ the output symbol, σ(k) ∈ Σ the
kth input symbol, which takes place at time tk and forces the discrete evolution.
Here Q =

{
q1, · · · , qN

}
, Σ =

{
σ1, · · · , σs

}
, Ψ =

{
ε, ψ1, · · · , ψr

}
, with ε the null

event, are the finite sets of locations, input and output symbols. Moreover,

δ:Q×Σ → 2Q, φ:Q → 2Σ , η: Σ → Ψ

are the transition, the input, and the output functions (in general these are par-
tial functions). The function φ specifies the possible input events σ. The functions
δ, η can be extended in the usual way to accept sequences sk = σ1 · · ·σk−1σk ∈
Σ∗, with Σ∗ the monoid on Σ [17]:

δ(q, σ1 · · ·σk−1σk) =
⋃

q′
δ
(
q′, σk

)

for q′ ∈ δ(q, σ1 · · ·σk−1) and δ(q′, σk)! (“!” indicates that the partial function is
defined for the given arguments). If sm = σ1σ2 · · ·σm is an input sequence of
lenght m, the measured output is pm̄ = ψ1ψ2 · · ·ψm̄, where m̄ ≤ m since some
ψi can be the null event ε.

Some authors consider the output function η depending also on the state.
This allows to consider different outputs for the same input σ defined for different
states q ∈ Q. However, by renaming σ as different inputs, one can define a new
output function depending only on the input event.

The hybrid system H considered here is described by systems (1), (2). The
action of the discrete dynamics on the continuous ones is the change of the
equations (1) when a location transition takes place. On the other hand, the
action of the continuous dynamics on the discrete ones is the change of location
when the continuous state x and/or the continuous control u belong to some
region or when the system trajectory hits some boundary.

The event σ can be a disturbance (the corresponding transition is then called
switching transition) or may be generated when some invariant condition on the
continuous state x is no more satisfied (invariant transition). Switching and
invariant transitions are uncontrollable. Therefore, the switching times at which
the input events occur, are unknown a priori.

The output sequence ψ1ψ2 · · ·ψk of H can be used to determine the current
discrete state q at intermittent time instants (possibly not at each time instant).
In the following definition | · | denotes the set cardinality. A prefix of length l of
a sequence σ1σ2 · · ·σl · · ·σm is the sequence σ1σ2 · · ·σl of the first l events.

The definition of observability proposed in [15] states that for long enough
input sequences sm = slσl+1 · · ·σm generable from q, there exists a shorter input
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sequence sl = σ1 · · ·σl (a prefix) that takes q to a unique state δ(q, sl) and the
length of σl+1 · · ·σm is bounded. Moreover, if another sequence s̄l̄ = σ̄1 · · · σ̄l̄

from some q̄ has the same output, then s̄l̄ has to bring q̄ to the same state to
which sl takes q. More formally,

Definition 1. [15] The discrete state of H is observable if

1. There exists some integer k such that for all q ∈ Q and for all the se-
quences sm = σ1 · · ·σl · · ·σm generable from q there exists a prefix sequence
sl = σ1 · · ·σl, with η(σl) 6= ε and m− l ≤ k, such that |δ(q, sl)| = 1, and

2. For each q̄ ∈ Q and for each sequence s̄l̄ = σ̄1 · · · σ̄l̄, with η(σ̄l̄) 6= ε, generable
from q̄ and such that η(sl) = η(sl̄), then δ(q, sl) = δ(q̄, s̄l̄).

In [15] a procedure is proposed for the construction of a finite state machine
O that, under appropriate conditions, allows the observation of the discrete state
of H according to Definition 1. In ATM, an intermittent detection of the discrete
state is not acceptable. Thus, we propose a construction procedure (analogous
to the one used in [1], [6] and [7]) of a finite state machine O and give conditions
under which O is an observer, i.e. is able to detect the discrete state q(k) of H
for each k greater than a positive integer K.

The procedure is based on the iterative construction of O = {Q̂, Σ̂, Ψ̂ , δ̂, φ̂, η̂},
where Σ̂ = Ψ \ {ε} is the set of inputs (namely the outputs of H). We define the
input function of O as

φ̂(q̂):=
{

ψ ∈ Σ̂: ∃ q̄ ∈ q̂, σ ∈ Σ:σ ∈ φ(q̂) and η(σ) = ψ
}

and the transition function as

δ̂(q̂, ψ): =
{

q ∈ Q:∃ q̄ ∈ q̂, s ∈ Σ∗: q ∈ δ(q̄, s)! and η(s) ∈ ψε∗
}

where ψε∗ = {ψ, ψε, ψεε, · · ·}. We recall that [15] assumes that it is not
possible for H to generate arbitrarily long sequences of ε outputs, thus ψε∗ is a
finite string. The output set Ψ̂ and the output function η̂ are trivially defined
such that the output of O is the current state q̂ ∈ Q̂. Furthermore, let

Q̂0 = Q0

⋃{
q ∈ Q: ∃ q̄ ∈ Q0, s ∈ Σ∗: q ∈ δ(q̄, s)! and η(s) ∈ ε∗

}

be the initial state q̂(0) of O, where Q0 is the set of possible initial states of H
and ε∗ = {ε, εε, εεε, · · ·}.

To complete the construction of O, we determine the state set Q̂ via the
following algorithm, where A,B ⊂ 2Q:
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set A = Q̂ = 6 ◦;
add Q̂0 to A and to Q̂;
do until A = 6 ◦
{

B = 6 ◦;
for each q̂ ∈ A do
{

for each ψ ∈ φ̂(q̂) do
{

if δ̂(q̂, ψ) /∈ Q̂ then

add state {δ̂(q̂, ψ)} to B and to Q̂;
}

}
A = B;

}

Our observation problem is as follows:

Definition 2. Given a hybrid system H, the system O is said to be an observer
for the discrete states of H if there exists an integer K such that

q̂(k) = {q} if q(k) = q, ∀k ≥ K (3)

for every initial state (q0, x0) ∈ Q×X of the hybrid system H, every continuous
input function u, every discrete input sk = σ1, · · · , σk.

To state the conditions under which O is an observer for H, i.e. is able to
detect the discrete state q(k) for k greater than a positive integer, K we need
the following definition.

Definition 3. [15] A given subset E ⊂ Q is invariant with respect to a function
δ: Q×Σ → 2Q if δ(q, σ) ⊆ E for all q ∈ E and σ ∈ φ(q). Moreover, a state q ∈ Q
is E–prestable if every trajectory starting from q passes through E in a finite
number of transitions. The state q ∈ Q is E–stable if every state reachable from
x is E–prestable. A discrete event dynamic system is E–stable if every q ∈ Q is
E–stable.

Let Q̃: =
{
{q} : q ∈ Q

}
∩ Q̂ be the set of singleton states of O:

Proposition 1. O is an observer for the discrete states of H if and only if

1. ∃E ⊆ Q̃ non–empty and invariant with respect to the dynamics of δ̂;
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2. O is E–stable.

The conditions above are quite intuitive: the first one requires that O has a
subset of singleton states (namely states with cardinality equal to one), and that
the discrete event dynamics do not drive the state out of this set; the second one
requires that any discrete evolution drives the state to the set E in finite time.
These conditions are necessary and sufficient for determining, after a transient,
the precise discrete state of H.

When the conditions given in Proposition 1 are violated, it is not possible
to determine the discrete state of H for k greater than a certain positive integer
K, at least with a pure discrete event–driven observer. This is due to the fact
that either an invariant set E ⊆ Q̃ does not exist, namely δ̂ drives to a state
q̂ = {qi1 , · · · , qir

} with cardinality greater than 1, or the evolution of H does not
drive the observer discrete state in the invariant set of singletons E in finite time.
In this case, as proposed in [1], one can exploit the knowledge coming from the
continuous dynamics to create further discrete signals (called “signatures”) that
provide additional information to discriminate the discrete locations. Clearly,
this extra information must be “rich enough” to determine an observer that
satisfies the conditions of Proposition 1.

This idea is carried out in [1] as follows: appropriate Luenberger’s observers
are designed for each of the continuous dynamics (1). Then, the signatures
ψ̄1, · · · , ψ̄s are obtained by feeding the observer outputs into a decision function
block. Each label ψ̄ ∈ Ψ̄ = {ψ̄1, · · · , ψ̄s} is characteritics of a specific location q
and is added as output to the arcs entering q. With this change in H one can
obtain a finite state machine O that satisfies Proposition 1.

The task of the signature generator is similar to that of a fault detection
algorithm and is not discussed here (see [13] for a tutorial). The key point from
the observability point of view is that signatures have to be generated before the
system leaves the discrete state. In [1], it is shown how the observer’s gains have
to be chosen so that the signatures are generated within a finite and fixed time,
namely the so–called minimum dwell–time.

To define formally the dwell–time, we recall [12] that a hybrid time basis
τ = {Ij} ∈ T , j ∈ INI, of H is a finite or infinite sequence of intervals Ij = [tj , t′j ]
such that

1. Ij is closed if τ is infinite; Ij might be right–open if it is the last interval of
a finite sequence τ ;

2. tj ≤ t′j for all j ∈ INI and t′j−1 ≤ tj for j > 0.

The length of the hybrid time basis is |τ |.
Given a hybrid system H and a time basis τ , we suppose that for each state

q ∈ Q, there exists a minimum dwell time ∆m(q) such that

0 < ∆m(q) ≤ t′j − tj , ∀j ∈ [
0, |τ | − 1

]

with q(Ij) = q, q(Ij+1) 6= q, where, with abuse of notation, q(Ij) is the state
for t ∈ Ij . Roughly speaking, The minimum dwell time for H is the minimum
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time elapsed between two consecutive transitions, namely the minimum time of
permanence in a given state of H.

Our point of view on the signature generation mechanism is slightly different
from [1]: instead of associating signatures to the transitions, we associate to each
state q ∈ Q an additional output value ψ̄ = h(q) ∈ Ψ̄ depending on the state
q and we suppose that ψ̄ is generated within the minimum dwell–time ∆m(q).
In this way the generation dynamics is “hidden” inside the delay necessary to
generate ψ̄ = h(q), and we can neglect the signatures generator dynamics.

The hypothesis of generating a signature within the maximum dwell time
∆m(q) for each state q is quite strong. We can relax it, by considering a “nonzero”
signature only when it is strictly necessary for the design of the observer. This
means that some signatures could possibly be the null event ε. For instance, if
the conditions of Proposition 1 are satisfied without generating any signature,
one has h(q) = ε for all q ∈ Q.

¿From the previous discussion, we can redefine the discrete output (2) of H
as follows

ψ(k) =
{

η(σ(k)) if h(q(k)) = ε

h(q(k)) otherwise

enlarging Ψ to contain Ψ̄ .
The point of view adopted here for the signatures allows us to consider into

the same framework definitions such as the co–observability [16], also called
eventual observability in [14].

3 Critical Observers

As already pointed out, the notion of observability introduced in the previous
section does not capture the urgency of a dangerous situation that may be cre-
ated by an error in an ATM system. In this case, we need to identify the states
corresponding to these errors immediately, i.e., K must be 1. Consider the dis-
crete event system H and the corresponding observer O of Figure 1. The arcs of
H are labelled by the output symbols (“ε” denotes the “null” output), while the
arcs of O are labelled by the input symbols. Suppose that q1is the initial state
of H and that q3 is a critical state (i.e. q3 corresponds to a dangerous situation).
It is clear from the structure of O that it is possible to determine the current
state of the system only after K = 2 state transitions but not for K = 1. In this
section, we give conditions for the existence of hybrid observers that guarantee
observability with K = 1. Similar results are presented in [14], where a definition
of immediate observability is introduced, and necessary and sufficient conditions
are given to satisfy this property. Our results differ in two aspects: (i) Immedi-
ate observability is required for all the states of the system, while here we are
looking for milder conditions regarding the observability of those discrete states
marked as “critical”, namely connected with a possible hazardous situation for
the process the system is modelling. (ii) More than on the analysis of a given
system, we are interested in the extra information needed to make the property
of critical observability hold.
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Fig. 1. H and the corresponding observer O : critical states are filled in grey

A state qc ∈ Q is said to be critical for a hybrid system H if it corresponds
to a hazardous operation. Let Qc be the set of critical states for H.

Definition 4. Given a hybrid system H and a subset Qc ⊆ Q, the system O is
said to be a critical observer for H with respect to the set of states Qc if

q̂(Ik) = {q} ∀q ∈ Qc, ∀Ik: q(Ik) = q, (4)

for every initial state (q0, x0) ∈ Q×X of the hybrid system H, every continuous
input function u, every discrete input sk = σ1, · · · , σk.

A critical state for H induces the notion of critical states for the observer O
as follows. Consider the system O = {Q̂, Σ̂, Ψ̂ , δ̂, φ̂, η̂} as defined in the previous
section. We recall that each discrete state q̂ ∈ Q̂ of O is a non–empty set of
states qj1 , · · · , qjr of H.

Definition 5. A state q̂ ∈ Q̂ is critical for O if q̂ ∩Qc 6= 6 ◦ and |q̂| > 1.

where |q̂| denotes the cardinality of q̂ ∈ 2Q as a subset of Q.
Let Q̂c ⊆ Q̂ be the set of the induced critical states for O. As a consequence

of the definition above, O is a critical observer forH with respect to a set Qc ⊂ Q
if Q̂c = 6 ◦.

The observation problem clearly arises when Q̂c 6= 6 ◦ and O is in a critical
state q̂c = {qj1 , · · · , qjr} ∈ Q̂c. In fact, in this case we need to discriminate among
the states qj1 , · · · , qjr to determine if the hybrid system is in a critical state of
Qc or not. The following proposition gives a condition under which the observer
obtained using the constructive procedure illustrated in the previous section is
critical.

Proposition 2. O is a critical observer for H with respect to a set Qc ⊂ Q if
for each qc ∈ Qc and each induced critical state q̂c ∈ Q̂c such that qc ∈ q̂c

h(qc) 6= h(q̄) ∀q̄ ∈ q̂c, q̄ 6= qc
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Proof. By construction of O.
The result above will be used in the following section for the design of a

critical observer for the runway crossing system.

4 A Case Study: the Active Runway Crossing System

In this section, we review the runway crossing example analyzed in Public De-
liverable D7.3 [18], that was modified following the suggestions and comments
by Ted Lewis (BAE Systems) and Derek Jordan (BAE Systems). The purpose
is to illustrate the results of our work on the observability theory with the help
of a model of a realistic problem, without claiming that the model is close to
reality.

With respect to the model proposed in D7.3, we introduced two main dif-
ferences: first, the taking off aircraft can be authorized to execute power up
and takeoff without stopping at holding. Thus, the observer must detect if a
power up and takeoff without stopping is due to a situation awareness error or
to a command of the Tower Controller. Second, the crossing grant is given by
the Ground Controller, and not by the Tower Controller as in Deliverable D7.3.
Thus, a situation awareness error of one of the two controllers could lead to si-
multaneous takeoff and crossing grants. These differences make the observability
problem more complex to solve, and justify the introduction of new theoretical
elements, such as the new definition of critical observability and the introduction
of the shuffle product between two discrete event systems. In this section, agents
will be formalized by hybrid systems or DEDS, and the observability problem
will be analyzed using the techniques introduced in the previous Chapter. The
active runway crossing will be decomposed into a set of subsystems, each with
hybrid dynamics modeling its specific operations.

The active runway crossing environment consists of a runway A (with hold-
ings, crossings and exits), a maintenance area and aprons. The crossings enable
traffic between the aprons and the maintenance area. Crossings (on both sides)
and holdings have remotely controlled stopbars to access the runway, and each
exit has a fixed stopbar (see Figure 2).

The following relevant areas can be defined

ΩAp = {(x, y) | x > a4, y ∈ [b1, b6]}
ΩAW1 = {(x, y) | x ∈ [a3, a4], y ∈ [b1, b2]}
ΩAW2 = {(x, y) | x ∈ [a3, a4], y ∈ [b3, b4]}
ΩAW3 = {(x, y) | x ∈ [a3, a4], y ∈ [b5, b6]}

ΩS1 = {(x, y) | x ∈ [a2, a3], y ∈ [b1, b2]}
ΩS2 = {(x, y) | x ∈ [a2, a3], y ∈ [b3, b4]}
ΩS3 = {(x, y) | x ∈ [a2, a3], y ∈ [b5, b6]}
ΩH1 = {(x, y) | x ∈ [a1, a2], y ∈ [b1, b2]}
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Fig. 2. Airport configuration

ΩH2 = {(x, y) | x ∈ [a1, a2], y ∈ [b5, b6]}
ΩC1 = {(x, y) | x ∈ [a1, a2], y ∈ [b3, b4]}

ΩRWA
= {(x, y) | x ∈ [a1, a2], y ∈ [b1, b6]}

ΩM = {(x, y) | x < a1, y ∈ [b3, b4]}
where “Ap” stands for aprons, “AW” for airport way, “S” for stopbar, “H” for
holding, “C” for crossing, “RWA” for runway A and “M” for maintenance area.
One of the key problems in distributed safety critical systems is that humans
can have errors in their “Situation Awareness” (SA) [8], [18], and these errors
can then evolve into the system and create safety critical situations. Situation
Awareness may be defined as follows.

Definition 6. Situation Awareness (SA) is the perception of elements in the
environment within a volume of time and space, the comprehension of their
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meaning, and the projection of their status in the near future. The projection
in the near future of the perception of the actual environment is referred to as
intent SA.

Within the ATM system, Stroeve et al. [18] define an agent as an entity, such
as a human operator or a technical system, which is characterized by its SA of
the environment. Similar as in [18], in [8], SA can be incomplete or inaccurate,
due to three different situations: an entity may

1. wrongly perceive task–relevant information or miss them completely;
2. wrongly interpret the perceived information;
3. wrongly predict a future status.

An important source of error that has to be considered when analyzing multi–
agent environments is the propagation of erroneous situation awareness due to
agents interactions, e.g. via VHF communication.

4.1 Agents in an active runway crossing

The runway crossing operation consists of

1. a pilot flying (Pt) directed to RWA to perform a take off operation;
2. a pilot flying (Pc) directed to the M , taxing through AW2 and the runway

crossing C1;
3. a ground controller (Cg);
4. a tower controller (Ct);
5. the airport technical support system (ATS).

The pilot Pt proceeds towards the holding area (regular taxiway) with the
intent of completing a take off operation, while the pilot Pc is approaching the
crossing area. The tower controller Ct and ground controller Cg, with the aid
of visual observation of the runway and VHF communication, respectively, are
responsible of granting take off and crossing, avoiding the use of the runway by
two aircrafts simultaneously. Technical support systems help the pilots and the
controllers to communicate (VHF) and detect dangerous situations (alerts).

The specific behavior of these agents in the runway crossing operation may
be described as follows

1. Pilot flying of taking off aircraft Pt. Initially Pt executes boarding and waits
for start up grant by Cg. He begins taxiing on AW1, stops at stopbar S1

and communicates with the Ct at the reserved frequency to obtain take off
grant. Depending on the response, Pt waits for grant or executes take off
immediately. Because of a SA error, the take off could be initiated without
grant. For simplicity, we will not consider this kind of error in this work.
When the aircraft is airborne, he confirms the take off has been completed
to Ct. During take off operations, Pt monitors the traffic situation on the
runway visually and via VHF. If a crossing aircraft is observed or in reaction
to an emergency braking command by the controller the Pt starts a braking
action and so take off is rejected.
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2. Pilot Flying of crossing aircraft Pc. When start up is granted by Cg, the
Pc proceeds on the AW2 and stops at stopbar S2. He asks to Cg crossing
permission and crosses when granted. While proceeding towards the AW , he
may have the intent SA that the next AW point is either a regular taxiway
(erroneous intent SA) or a runway crossing. In the first case, Pc enters RWA

without waiting for crossing permission. In the second case, Pc could have
the SA that crossing is allowed while it is not. Then, he would enter the
runway performing an unauthorized runway crossing. The reaction of Pc to
the detection of a collision risk, due to visual observation or a tower controller
call, is an emergency braking action.

3. Ground Controller Cg. Cg is a human operator supported by visual obser-
vation and by the ATS system. He grants start up to both to Pt and Pc,
and handles crossing operations on RWA. If Cg has SA of a collision risk,
Cg specifies an emergency braking action to the crossing aircraft.

4. Tower Controller Ct. Ct is a human operator supported by visual observation
and by the ATS system. The Ct handles take off operations on RWA. If the
Ct has SA of a collision risk, he specifies an emergency braking action to the
taking off aircraft.

5. ATS system. This is the technical system supporting the decisions of the
controllers, and consists of a communication system, a runway incursion
alert and a stopbar violation alert.

4.2 Pilot flying observation problem

In this section, we will solve the observation problem of a non–granted runway
crossing or take–off of the pilots. All the agents can be modelled either as hybrid
systems or as discrete event systems [5]. In particular, Pt can be modelled as a
hybrid system HPt with

– Q1 = {q1,1, q1,2, q1,3, q1,4, q1,5, q1,6, q1,7, q1,8} the set of discrete states with
q1,1 the Pt communicating with Cg and waiting for start up grant, q1,2 the
Pt taxiing on AW1, q1,3 the Pt aborting taxi, q1,4 the Pt at hold H1, q1,5

the Pt executing an authorized take off on RWA, q1,6 the Pt lined up and
waiting for take off grant, q1,7 the Pt executing an unauthorized take off on
RWA, q1,8 the Pt executing the initial climb, q1,9 the Pt aborting take off
(emergency braking);

– Σ1 = {σ1,1, σ1,2, σ1,3, σ1,4, σ1,5, σ1,6, σ1,7} the set of discrete inputs, where
σ1,1 models the start up clearance by Cg, σ1,2 the command for immediate
take off by Ct, σ1,3 the command to line up and wait by Ct, σ1,4 the take
off clearance by Ct, σ1,5 an emergency braking command by Ct, σ1,6 models
a situation awareness error as a disturbance that causes an ungranted take
off, and σ1,7 is a disturbance that causes a taxi abort;

– Ψ1 = {ψ1,1, ψ1,2, ψ1,3, ψ1,4, ψ1,5, ψ1,6, ψ1,7, ψ1,8} ∪ {ε} the set of discrete out-
puts, with ψ1,1 the start up confirmation to Cg, ψ1,2 the take off request, ψ1,3
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Fig. 3. Hybrid system HPt modelling Pt

the immediate take off confirmation, ψ1,4 the line–up and wait confirmation,
ψ1,5 the take off confirmation, ψ1,6 the emergency braking confirmation, ψ1,7

the airborne confirmation;

– X1 = {(s1, v1) : s1 ∈ IR2, v1 ∈ IR2}, is the set of the continuous state
values, where s1 indicates the position and v1 the velocity of the agent;

– U1 = IRm, is the set of the continuous input u1 values, D1 = IRp is that of
the continuous disturbance d1 values;

– SC1 = {fqj,1 : qj,1 ∈ Q1}, fqj,1 : X1×U1×D1 → TX1 , the sets of the continuous
(simplified) dynamics ṡ1 = v1, v̇1 = u1(t)+d1(t), where d1 represents possible
disturbance forces acting on the aircraft (e.g. wind);

– E1 the sets of discrete transitions, given by the graph in Figure 3;

– η1(·) the discrete output function, defined by the graph in Figure 3, where
the outputs corresponding to transitions due to situation awareness errors
(e1,7, e1,8 and e1,9) are null;
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– The invariant conditions are defined as

Iq1,1 = {(s1, v1): s1 ∈ ΩAp, ‖v1‖ = 0}
Iq1,2 = {(s1, v1): s1 ∈ ΩAW1 ∪ΩS1 , ‖v1‖ > 0}
Iq1,3 = {(s1, v1): s1 ∈ ΩAW1 ∪ΩS1 , ‖v1‖ = 0}
Iq1,4 = {(s1, v1): s1 ∈ ΩS1 , ‖v1‖ = 0}
Iq1,5 = {(s1, v1): s1 ∈ ΩRWA

, ‖v1‖ > 0}
Iq1,6 = {(s1, v1): s1 ∈ ΩH1 , ‖v1‖ ≥ 0}
Iq1,7 = {(s1, v1): s1 ∈ ΩRWA ∪ΩS1 , ‖v1‖ > 0}
Iq1,8 = {(s1, v1): s1 ∈ ΩRWA

, ‖v1‖ > vt}
Iq1,9 = {(s1, v1): s1 ∈ ΩRWA

, ‖v1‖ ≥ 0}
where vt is the takeoff velocity and Ω’s are defined by the airport configu-
ration geometry;

– R1(e, x, u, v) = x, ∀(e, x, u, v) ∈ E1 ×X1 × U1 ×D1 are the reset mappings;

– The guard conditions are

Ge1,3 = {(s1, v1): s1 ∈ S1, ‖v1‖ = 0}
Ge1,10 = Ge1,11 = {(s1, v1): s1 ∈ RWA, ‖v1‖ > vt}.

– The initial discrete state is q1,1

Analogously, Pc can be modelled by a hybrid system with

– Q2 = {q2,1, q2,2, q2,3, q2,4, q2,5, q2,6, q2,7}, are the sets of discrete states where
q2,1 corresponds to Pc communicating with Cg and waiting for start up grant,
q2,2 to Pc taxiing on AW2, q2,3to Pc waiting at stopbar S2, q2,4 to Pc exe-
cuting an authorized crossing of RWA, q2,5 to Pc executing an unauthorized
crossing of RWA, q2,6 to Pc crossing towards M , q2,7 to Pc performing an
emergency braking operation;

– Σ2 = {σ2,1, σ2,2, σ2,3, σ2,4, σ2,5}, is the set of discrete inputs, where σ2,1

models the start up clearance by the Cg, σ2,2 the command by Cg to wait
at stopbar S2, σ2,3 the crossing grant by Cg, σ2,4 the emergency braking
command by Cg, σ2,5 models situation awareness error as a disturbance
that causes an ungranted crossing;

– Ψ2 = {ψ2,1, ψ2,2, ψ2,3, ψ2,4, ψ2,5} ∪ {ε}, is the set of discrete outputs, with
ψ2,1 the start up confirmation, ψ2,2 the crossing request, ψ2,3 the RWA

crossing grant confirmation, ψ2,4 the crossing complete confirmation, ψ2,5

the emergency braking confirmation;

– X2 = {(s2, v2): s2 ∈ IR2, v2 ∈ IR2}, is the set of the continuous state values,
where s2 indicates the position and v2 the velocity of the agent;

– U2 = IRm, is the set of the continuous input u2 values, V2 = IRp is that of
the continuous disturbance d2 values;
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Fig. 4. Hybrid system HPc modelling Pc

– SC2 = {fqj,2 : qj,2 ∈ Q2}, fqj,2 : X2 × U2 × V2 → TX2 , j = 1, 2, are the sets
of the continuous (simplified) dynamics ṡ2 = v2, v̇2 = u2(t) + d2(t), and d2

represents possible disturbance forces acting on the aircraft (e.g. wind);

– E2 the sets of discrete transitions, given by the graph in Figure 4;

– η2(·) the discrete output function, defined by the graph in Figure 4, where
the outputs corresponding to transitions due to situation awareness errors
(e2,4 and e2,5) are empty and are the source of the observability problems
that we need to address.

– The invariant conditions are defined as follows

Iq2,1 = {(s2, v2): s2 ∈ ΩAp, ‖v2‖ = 0}
Iq2,2 = {(s2, v2): s2 ∈ ΩAW ∪ΩS2 , ‖v2‖ > 0}
Iq2,3 = {(s2, v2): s2 ∈ ΩS2 , ‖v2‖ = 0}
Iq2,4 = {(s2, v2): s2 ∈ ΩC1 , ‖v2‖ > 0}
Iq2,5 = {(s2, v2): s2 ∈ ΩS2 ∪ΩC1 , ‖v2‖ > 0}
Iq2,6 = {(s2, v2): s2 ∈ ΩM , ‖v2‖ > 0}
Iq2,7 = {(s2, v2): s2 ∈ ΩC1 , ‖v2‖ ≥ 0}

18



fq
2,2
,q

2,5
g

fq
2,1
g

fq
2,3
,q

2,5
g

fq
2,4
g

fq
2,6
g

fq
2,7
g

fq
1,1
g

fq
1,6
,q

1,7
g

fq
1,2
,q

1,3
,q

1,7
g

fq
1,4
,q

1,7
g

fq
1,5
g

fq
1,8
g

fq
1,9
g

fq
2,5
gfq

1,7
g

Ã2,1

Ã2,2

Ã2,5

Ã2,3

Ã2,5

Ã2,5

Ã2,4

Ã2,4

Ã2,4

Ã2,4

Ã2,5

r2,1

r2,2

Ã1,1

Ã1,3Ã1,4

Ã1,6

Ã1,2

Ã1,5

Ã1,7
Ã1,7

Ã1,7

Ã1,7

Ã1,6

Ã1,6

Ã1,6

Ã1,7

Ã1,6

r1,1

r1,2

r1,3

Fig. 5. Observers O1 and O2

– R2(e, x, u, v) = x, ∀(e, x, u, v) ∈ E2 ×X2 × U2 ×D2 are the reset mappings;

– The guard conditions are

Ge2,6 = Ge2,7 = {(s2, v2): s2 ∈ M, ‖v2‖ > 0}.

– The initial discrete state is q2,1

The simple model presented above does not consider an unsafe situation in-
volving an emergency braking action that could result into a halt of the aircraft
on the runway. However, the methods developed to solve the observability prob-
lem may be applied to complex discrete event systems that model all unsafe
situations.

The critical situations for Pt, Pc, which we wish to detect, are related to
the states q1,7 and q2,5 that represent respectively unauthorized take off and
unauthorized crossing operations.

Consider now the observers O1 and O2 for HPt and HPc , shown in Figure
5, and constructed using the discrete output information. Consider the critical
observer state {q1,2, q1,3, q1,7} of O1. If s1 ∈ ΩRWA , a signature r1,1 may be
generated to distinguish q1,7 from q1,2 and q1,3. In a similar way, for the other
critcal states, we generate the signatures r1,2 if s1 ∈ ΩRWA

, r1,3 if s1 ∈ ΩRWA
\

ΩH1 , r2,1 and r2,2 if s1 ∈ ΩC1 . Then, the condition of Proposition 3 is satisfied
for all critical states, and O1 and O2 are critical observers for HPt and HPc w.r.t.
the critical states {q1,7} and {q2,5}. The discrete outputs of the observers α1 and
α2 are alarm signals. This shows how we can solve the problem of the detection
of the current location for the two pilots. In a similar way, one may solve the
critical observability problem for the two pilots acting together, by considering
the shuffle product of the single models HPt and HPc [10], and determine the
induced critical states on this new system H.

4.3 Controller observation problem

Consider now the observation problem of the controllers.
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The ground controller Cg can be modelled by a discrete event dynamic sys-
tems (DEDS) DCg where:

– Q3 = {q3,1, q3,2, q3,3} is the set of discrete states, with q3,1 corresponding
to Cg in miscellaneous monitoring operations, q3,2 to Cg having granted
crossing, q3,3 to an emergency braking action on the runway;

– Σ3 = {σ3,1, σ3,2, σ3,3, σ3,4, σ3,5} is the finite set of input events, with σ3,1

the decision to give a crossing grant, σ3,2 = ψ2,4 the crossing completed
confirmation, σ3,3 the stopbar violation alarm on, σ3,4 the decision to give a
start up, σ3,5 = ψ2,2 the crossing request;

– Ψ3 = {ψ3,1, ψ3,2, ψ3,3, ψ3,4} ∪ {ε} is the set of discrete outputs, with ψ3,1 =
σ2,3 the crossing grant, ψ3,2 = σ2,4 the emergency braking command, ψ3,3 =
σ1,1 = σ2,1 the start up grant, ψ3,4 = σ2,2 the command to wait for crossing
grant at stopbar S2;

– The input, transition and output functions φ3, δ3 and η3 are defined by the
graph in Figure 6;

The tower controller Ct can also be modelled by a DEDS DCt where:

– Q4 = {q4,1, q4,2, q4,3} is the set of discrete states, with q4,1 corresponding to
Ct in miscellaneous operations, q4,2 to Ct having granted take off, q4,3 an
emergency braking action on the runway;

– Σ4 = {σ4,1, σ4,2, σ4,3} is the finite set of input events, with σ4,1 = ψ1,2 the
take off request, σ4,2 = ψ1,7 the take off completed confirmation, σ4,3 the
runway incursion alert on;

– Ψ4 = {ψ4,1, ψ4,2} ∪ {ε} is the set of discrete outputs, with ψ4,1 = σ1,2 the
take off grant, ψ4,2 = σ1,5 emergency braking command;

– The input, transition and output functions φ4, δ4 and η4 are defined by the
graph in Figure 6;
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The hazardous situation of a crossing grant given by Cg and a take off grant
simultaneously given by Ct should be detected. However, the discrete event dy-
namic systems DCg and HCt have no critical states, because the hazardous sit-
uation arise when a crossing grant is given by Cg simultaneously with a take off
grant given by Ct. Hence, it is necessary to apply the observation problem has
to be applied to the shuffle product of DCg and DCt and represented in Figure
7.

The state q̄5 = {q3,2, q4,2} that corresponds to simultaneous crossing grant
and take off grant, is critical. The observer for this system is illustrated in Figure
8. One can see that additional information is needed in order to detect the critical
state q̄5.

However, in a discrete event system, no continuous information is available
for the generation of signatures. Hence, the only way for solving the critical state
observability problem is to introduce new discrete outputs, for example, in this
case, the confirmation that crossing (ψ̄3) or take off (ψ̄4) are completed. The
system modified with the addition of the new discrete outputs is represented in
Figure 9. This action corresponds to a change in the procedure the controllers
have to follow.
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Fig. 8. Controller observer

After the addition of the new outputs, the observer of the shuffle product
satisfies the critical observability condition with respect to the critical state
q̄5, since it has no critical states. This observer is represented in Figure 10. In
this case, the observer coincides with the discrete event system to be observed,
because every transition has a non–null discrete output.

4.4 Simulation

Starting from Matlab executions of the mathematical models previously de-
scribed, we developed a framework for generating an animated simulation of the
runway crossing. The tools used to realize a graphical environment are Matlab
and Visual Nastran. This choice is justified by the idea to develop separately
the generation of data relative to aircraft position and dynamics (Matlab) and
the visualization of the graphical output (Visual Nastran). More precisely, the
choice of Matlab is motivated by the fact that all previous simulations of the Ac-
tive Runway Crossing procedure were developed using ”State Flow”, a Matlab
tool useful to model automata. Visual Nastran was chosen for two reasons: first,
its graphical capabilities are superior with respect to the graphical environment
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included in Matlab; second, it may be easily interfaced with Matlab, using a
proprietary interface data file.

Once created a Matlab simulation of the Runway Crossing agents, an inter-
face between Matlab simulation data and Visual Nastran graphical generation
was defined. Then, the following steps were necessary to produce an AVI graph-
ical simulation of a Matlab system execution: first, the construction of the static
model to animate, where a solid model of an aircraft (Figure 11) and of the
runway configuration (see Figure 12) were generated, and each solid model of
the aircraft was associated to a dynamic; thus, the animation of the static model
according to the Matlab simulation. Once all these steps are executed, it is pos-
sible to analyze the simulation step by step, and to generate the animation of
the Runway Crossing Procedure as an AVI file.

5 Conclusions

In this Deliverable D7.4, we introduced the notion of critical observability for hy-
brid systems to solve the problem of error detection in prescribed time-horizon.
In particular, we gave conditions for the existence of a hybrid observer for criti-
cal states corresponding to hazardous situations. We showed how critical observ-
ability could be used in the runway crossing problem where four human agents
interact in a system consisting of five subsystems. The human agents are subject
to errors that may lead to catastrophic situations and are modeled as hybrid
systems. We developed a hybrid observer to detect the hazardous situations cor-
responding to critical states and demonstrated its use with extensive Matlab
simulations.

Given the relative simplicity of the case study involving the runway crossing
example, the results seem rather obvious. We used this example to illustrate and
verify our methodology (indeed it worked as expected). In a more complex case,
intuition would not have helped: errors that we try to prevent often originate
from interactions among distributed systems that, albeit simple, can create risky
situations that are difficult to discern without the help of automation. Several
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failures of complex systems can be traced back to unforeseen circumstances that
are trivial to analyze after they become visible. We are now investigating some
more complex ATM cases to demonstrate how difficult it is to enumerate the
corner cases of real applications.
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