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Abstract. A method for modelling the evolution of multiple flights from
the point of view of an air traffic controller is developed. The model
is multi-agent, hybrid and stochastic. It consists of many instances of
flights, each with different aircraft dynamics, flight plan and flight man-
agement system. The motions of different flights are coupled through the
effect of the wind, which is modelled as a random field. Estimates of the
statistical properties of the wind field (variance and spatio-temporal cor-
relation structure) are extracted from publicly available weather data.
The model is coded in Java, so that it can be simulated to generate
realistic data for validating conflict detection and resolution algorithms.

1 Introduction

1.1 Air Traffic Management Context

The Air Traffic Management (ATM) system has operated reliably in its present
form for many years. The increasing demand for air travel is stressing it to its
limits, however. Projections of air traffic levels range from an increase of 50%
to 200% over the next 10 years [5]. This increase could lead to both safety and
performance degradation in the near future, and place an additional burden on
the already overloaded human operators. It is believed, for example, that it is
one of the major causes that contributed to a 33% increase in air traffic controller
error over the period 1996-2000 [1].

One of the most promising solutions for this problem is increasing the level
of automation. It is believed that by doing this, the efficiency of ATM can be im-
proved and the tasks of human operators can be simplified. This may allow them
to handle the increased demand in air traffic in a more reliable way, enhancing
the level of safety over the current system. A number of different approaches to
increasing the level of automation in the ATM process have been proposed in
the literature (see, for example, [7, 14, 2, 8, 17, 9, 10]).

Separation assurance forms a major part of the current Air Traffic Control
(ATC) workload. If the level of automation in the ATM process increases, some
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of the separation assurance tasks can be transferred to the automated system.
One approach for doing this is to rely on Conflict Detection and Resolution
(CDR) strategies to assist ATC. CDR strategies try to predict the trajectory
of aircraft within the managed airspace, analyse these trajectories to decide if
there is a substantial possibility of loss of separation (conflict detection) and, if
there is, issue advisories to the ATC and/or pilots on how to resolve the problem
(conflict resolution).

1.2 Model Based CDR

Models of the ATM process are needed in different phases of the development
of CDR strategies.

Conflict Prediction. Models are needed to predict the “future” of an encounter
to determine whether it is likely to lead to a conflict or not.

Conflict Resolution. Models are also useful for conflict resolution. In the sim-
plest case, possible resolution manoeuvres can be analysed in an “if-then” man-
ner, with the model being used to predict the implications of each one. Moreover,
most of the conflict resolution strategies based on control theoretic and path
planning methods rely on an underlying model to generate the manoeuvres and
analyse their performance.

Validation. Validation is a crucial step in the development of CDR algorithms.
Eventually the algorithms will have to be validated in field trials involving air
traffic controllers. This type of validation is likely to be very costly and time
consuming. An alternative may be to try to validate the algorithms on real data.
This approach is appealing, but suffers from a number of drawbacks. For ex-
ample, flight track data is difficult to obtain (usually proprietary); conflict data
is of course particularly sensitive! Moreover, conflict situations are (thankfully)
extremely rare. Track data includes implicitly the actions of the air traffic con-
trollers, whose job is precisely to prevent conflicts from occurring. To validate
our algorithms, on the other hand, we would like to identify situations that would
result in a conflict if ATC were to take no action. We would then notify ATC if
one of these situations arises to ensure that they do take action.

A promising alternative is to validate the algorithms on synthetic data. The
idea here is to simulate a realistic model of the aircraft and weather conditions
and use the data generated by the model as the “real world”. This approach
does not suffer from any of the disadvantages listed above. However, it requires
one to develop and tune a realistic model of how aircraft fly (from the point of
view of ATC) as well as the uncertainty that enters into the process (due to a
large extend to wind, but possibly also to under-modelling and other factors).

In this paper we take a first step in this direction. We develop a multi-aircraft
model that allows us to capture

– Continuous dynamics, arising from the physical motion of the aircraft.

– Discrete dynamics, arising mainly because of the flight plan and the logic
embedded in the Flight Management System (FMS).
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Fig. 1. Block diagram of multi-aircraft model components

– Stochastic dynamics, arising primarily because of the effect of wind on the
aircraft tracks3.

The model described here was implemented in a Java based object oriented
simulator. To demonstrate possible applications of this work, we use Monte-
Carlo simulation to perform a numerical study of the effect of the spatio-temporal
correlation of wind on the probability of conflict. Other possible applications of
the model include randomized conflict detection algorithms based on particle
filter methods (as outlined, for example, in [19]).

1.3 Model Overview

Our main aim is to develop a model that does not necessarily reproduce ex-
actly the systems used in commercial aircraft, but adequately simulates their
behaviour from the point of view of an Air Traffic Controller (ATC), while
maintaining a workable degree of simplicity. Our model is, however, intended to
be more accurate than the simplified models used by most conflict detection and
resolution approaches to predict the future motion of aircraft.

The model allows one to capture many flights taking place at the same time.
In the simulation, each flight is represented by an instance of the class Aircraft.
With each Aircraft we associate the following model components:

– The flight plan.

3 The model also allows one to include uncertainty about some of the actions of the
air traffic controller, for example the time at which they order an aircraft to begin
its final descent. The air traffic controller is not modelled in detail however; for work
in this direction see [6] and the references therein.



– The aircraft dynamics.

– The flight management system.

A separate instance of each of these components is generated for each Aircraft.
In the notation used in this report, however, we will drop the dependence of
these components on Aircraft for simplicity.

The evolution of flights is also affected by the weather. The only element
of weather present in our model is wind speed. We model the wind speed as a
stochastic quantity, correlated in space and time. Therefore, the evolutions of
different flights are coupled to one another through

– The wind model.

The relations between these components are summarised in Figure 1. The
component labelled ATC in the figure is not part of our model. Our model only
provides a few functions to allow one to capture some rudimentary aspects of
controller behaviour, such as uncertainty about the timing of commands.

Our multi-aircraft model contains a number of parameters, such as the masses
of aircraft, their aerodynamic coefficients, the gains of the controllers used to
model the FMS, the variance and spatio-temporal correlation of the wind, etc.
We obtain typical values for many of these parameters (aircraft masses, aerody-
namic coefficients) from Eurocontrol’s Base of Aircraft Data (BADA) database [4].
We also use flight plans based on real flight data provided by Eurocontrol’s Cen-
tral Flow Management Unit (CFMU). For the remaining parameters (FMS gains,
wind statistics), one would ideally like to determine values through formal system
identification experiments. However, for reasons highlighted in [3] (unavailabil-
ity of data, multiple time scales, etc.), this approach may be unrealistic. Instead
we adopt a more heuristic approach. We first estimate the wind statistics from
publicly available weather data. We then run Monte-Carlo simulations of our
multi-aircraft model driven by random wind with the computed statistics, com-
pare the results to earlier studies on the deviation of aircraft from their flight
plan, and tune the values of the FMS gains to get the results of the simulations
to match the observations in these studies.

1.4 Paper Overview

The rest of this paper provides some details of the models developed for each one
of the components listed in Figure 1 and clarifies the nature of the interactions
between them. The flight plan is discussed in Section 2, the model for the aircraft
dynamics in Section 3, the model for the FMS in Section 4 and the basics of
the model for the wind in Section 5. Section 6 presents the tuning of the model
parameters, based on publicly available weather data and Monte-Carlo simula-
tion of the model itself. Section 7 describes a numerical case study on the effect
of wind correlation on the probability of conflict carried out using the simulator
presented in this paper.
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Fig. 2. Top view of a typical flight plan showing way-points and angles

2 Flight Plan

The flight plan consists of a sequence of way-points, {O(i)}M
i=0 in three dimen-

sions, O(i) ∈ R
3. Each way-point is time stamped with an expected time of

arrival, {t(i)}M
i=0. The way point data used in our simulations corresponds to

real flights and comes from Eurocontrol’s CFMU.

The sequence of way points defines a sequence of straight lines joining each
way point to the next. We refer to this sequence of straight lines as the reference

path. For each way point, O(i), we also define the reference heading, Ψ(i), as the
angle that the line segment joining O(i) to O(i + 1) makes with the X-axis of
the frame in which the way point coordinates are given (Figure 2).

In our implementation the expected times of arrival are ignored. Instead we
assume that the speed when flying between two way-points is dictated by the
speed profiles provided by BADA. This approach is sometimes referred to as a
3D way-point model. An alternative to our approach would be a 4D way-point

model. This would require one to add a system for either assigning different
speeds depending on the arrival times, or assigning different climb and descent
profiles, e.g. staying longer at high altitude and then descending faster to produce
a faster but less efficient flight path. [18] provides an example of trajectory
synthesis using the 4D approach.



3 Aircraft Dynamics

From the point of view of ATC an aircraft can be adequately modelled using a
Point Mass Model (PMM), which can be easily derived from basic aerodynamics
(Figure 3). After some simplifying assumptions (appropriate for airliners which
normally execute only benign manoeuvres) the model can be described as a
control system with six states: the horizontal position (x1 and x2) and altitude
(x3) of the aircraft, the true airspeed (x4), the heading angle (x5) and the mass
of the aircraft (x6). The control inputs are the engine thrust (u1), the bank angle
(u2) and the flight path angle (u3). The movement of the aircraft is also affected
by the wind, which acts as a disturbance. We will model the wind through its
speed W = (w1, w2, w3) ∈ R

3. After some algebra (omitted in the interest of
space), the equations simplify to
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Here CL and CD are aerodynamic lift and drag coefficients, S is the total wing
surface area, ρ(x3) is air density and η is a coefficient relating thrust to fuel
consumption.

In addition to its continuous state, each Aircraft has associated with it a
discrete aircraft type (e.g. Airbus A330, Boeing 737, etc.) We use a discrete
parameter Aircraft Type to store this; the (many) possible values that the pa-
rameter Aircraft Type can take are listed in the BADA documentation. In our
simulator Aircraft Type is used to retrieve values from the BADA database for
parameters such as drag coefficients, bounds on the mass, bounds on speed, etc.
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Fig. 3. Forces acting on an aircraft.



4 Flight Management System

4.1 Continuous Control

The FMS can be thought of as a controller that measures the state of the aircraft
dynamics, x, and uses it together with the flight plan information to determine
the values for the inputs, u.

In our model we assume that aircraft control their horizontal position using
exclusively the bank angle input (u2). This is done by first controlling the heading
angle (x5) through the equation

ẋ5 =
CLSρ(x3)

2

x4

x6
sin(u2).

x5 can then be used to control the horizontal position of the aircraft (x1, x2)
through the equations4

ẋ1 = x4 cos(x5) cos(u3) + w1

ẋ2 = x4 sin(x5) cos(u3) + w2.

Our model assumes that the FMS sets the bank angle based on the heading
error and the cross track deviation from the reference path (Figure 2). The
controller operates in continuous time and consists of a linear feedback part

φ1(t) = k1δ(t) + k2θ(t).

followed by non-linearities to ensure that the behaviour is reasonable even with
extreme inputs. Such extreme inputs may arise in sharp turns dictated by the
flight plan, especially in the interactive version of the simulator, where the op-
erator can move the way points at will. Methods for setting the values of the
gains k1 and k2 are discussed in subsequent sections; for more details see [11].

The thrust u1 and flight path angle u3 are used to set the speed and the
Rate of Climb/Descent (ROCD). At the moment, our model assumes that the
FMS always tries to track a desired speed, Vnom. Vnom depends on altitude and
aircraft type and is set according to a lookup table, based on data contained
in BADA. When cruising at a constant altitude, the FMS sets the flight path
angle to zero, hence achieving zero ROCD. The thrust is then used to control
the speed through the equation

ẋ4 = −
CDSρ(x3)

2

x2
4

x6
+

1

x6
u1. (2)

4 Notice that the other two inputs (thrust u1 and flight path angle u3) also affect
horizontal position, either directly (u3 also appears in the above equations) or in-
directly (through the speed, x4). The direct effect of u3 is clearly small: it enters
through cos(u3) which is second order in u3 and positive for realistic values of u3.
The effect of x4 can be substantial; it appears, however, that with 3D FMS (the cur-
rent standard, see also Section 2) x4 is set independently of the aircraft’s horizontal
position. This is clearly something that will have to be changed in our model if 4D
FMS become more common in the future.



When climbing or descending, on the other hand, the thrust is set to a fixed value.
The flight path angle is then adjusted to control the speed through equation (2).
The FMS accepts whatever ROCD is obtained from

ẋ3 = x4 sin(u3) + w3.

This procedure for setting the thrust and flight path angle appears to be the most
commonly used, because it allows for efficient climbs and descents. An alternative
procedure where ROCD is explicitly controlled is usually only invoked by the
instruction of ATC. For landing controlled ROCD may have to be used to make
sure the aircraft hits the runway.

4.2 Discrete State

In our model, the values of the inputs u are determined to some extent by
conventional, continuous controllers. However, the parameters and set points
of this controller depend on a fairly complicated, logic based, decision making
process. We refer to the discrete quantities used in this decision making as the
discrete state of the FMS.

The discrete state of the FMS can be represented by 8 discrete variables: flight
level (FL), way-point index (WP), acceleration mode (AM), climb mode (CM),
speed hold mode (SHM), flight phase (FP), reduced power mode (RPM) and
troposphere mode (TrM). In the interest of space, we only provide some details
on the four most important discrete variables: flight level (FL), way-point index
(WP), acceleration mode (AM), climb mode (CM).

Flight Level. The discrete variable representing the flight level takes on values
representing the following altitude discretisation

{0ft, 500ft, 1000ft, 1500ft, 2000ft, 3000ft, 6000ft, 10000ft, 14000ft}

The value of FL is updated based exclusively on the continuous state x3. Among
other things, FL is used to set the nominal speed, Vnom; Vnom in turn determines
the settings for the trust through the discrete state AM. the discretization levels
of FL reflect the quantization of the lookup table used for setting Vnom.

Way Point Index. The discrete variable representing the way point index takes
integer values reflecting the number of waypoints in the flight plan,

WP ∈ {0, 1, . . . ,M}.

WP = i implies that the aircraft is on its way between the ith way-point at
position O(i) ∈ R

3 and the (i + 1)st way point at position O(i + 1) ∈ R
3.

The value of the way point is updated based on the horizontal position of the
aircraft, x1 and x2; the dynamics are summarised in Figure 4.2. To determine
the domain and guard of the automaton we assume that the aircraft performs
“fly-by” turns, i.e. turns from one segment of the flight plan to the next without
passing directly over the waypoint. We assume that the aircraft turns at constant
speed and at a fixed bank angle. A simple geometric calculation leads to a linear
condition for when the aircraft should begin its turn.



a(WP )T x ≥ b(WP )

a(WP )T x ≤ b(WP )

WPWP = 0

WP = WP + 1

Fig. 4. Finite State Machine for WP. a(WP ) is a matrix and b(WP ) is a vector and
together they determine the linear condition for where an aircraft should begin its turn.

Acceleration Mode. The discrete variable for the acceleration mode reflects
whether the aircraft is accelerating, decelerating or cruising at constant speed,

AM ∈ {A,D,C}.

The value is reset whenever the desired speed of the aircraft changes. This may
be the case, for example, when the aircraft changes flight level, or the climb mode
state changes. The state returns to C when the aircraft reaches the desired speed.
A buffer of 1ms−1 is introduced to prevent chattering.

Climb Mode. The climb mode reflects whether the aircraft is climbing, descend-
ing or flying level

CM ∈ {C,D,L}.

The value is reset whenever the aircraft starts a new segment of the reference
path. If WP = i and O(i + 1) = (x, y, z) the difference between the present
altitude, x3 and z is used to determine whether to climb (CM = C) or descent
(CM = D). The state returns to L when the aircraft reaches its desired altitude,
z. A buffer of 1m is introduced to prevent chattering. The state diagram for CM

is very similar to that of AM.
CM and AM together are used to set the thrust input, as discussed in the

previous section.

5 Wind Model

The wind is modelled as the sum of two components, nominal and stochastic.
The nominal wind will eventually be modelled as a look-up table, similar in
temporal and spatial resolution to meteorological data available to air traffic
controllers. At the moment, however, the nominal wind is assumed to be zero
and all wind is considered to be stochastic.

The stochastic wind component is modelled as a random field:

w : R × R
3 → R

3



x4 ≥ Vnom − 1ms−1

x4 ≤ Vnom + 1ms−1

x4 ≥ Vnom

x4 ≤ Vnom − 1ms−1
x4 ≥ Vnom + 1ms−1

x4 ≤ Vnom

|x4 − Vnom| ≤ 1ms−1

x4 ≤ Vnom x4 ≥ Vnom

AM = C

AM = DAM = A

Fig. 5. Finite State Machine for AM.

where w(t, P ) represents the wind at point P ∈ R
3 at time t ∈ R. We assume that

the wind field is jointly Gaussian, and that we know the correlation structure,
i.e. we know R(t, P, t′, P ′) = E[w(t, P )]E[w(t′, P ′)]T , for all t, t′ ∈ R, P, P ′ ∈ R

3.
The main problem from the point of view of simulation is to find a com-

putationally efficient method for generating a random field with the required
statistical structure. We developed a method for computing the wind in discrete
time and only at the positions of the aircraft5, a model-directed synthesis. The
algorithm is similar to a Cholesky decomposition, but is implemented progres-
sively because the positions at which the wind is calculated are dependent on the
aircraft positions, which in turn depend on the wind the aircraft experienced at
earlier times. The details are omitted in the interest of space, but can be found
in [11].

6 Tuning

The model presented above needs to be tuned to ensure that the trajectories it
generates are realistic. In particular, we need to select values for

– The control parameters k1 and k2

5 The alternative of gridding both in space and in time would be much more expensive
computationally.



– The wind parameters (mean, variance, covariance function).

To tune these parameters we made use of two sources of information:

– Experimental statistics of aircraft deviations from their flight plans [15, 13,
16, 12]

– Wind field data from Rapid Update Cycle (RUC).

To gain some insight into the correlation structure for the stochastic com-
ponent we started with the RUC wind data. This data is used in the USA and
is freely available over the Internet. First we found the mean and variance of
the wind from the RUCdata and verified that the along track aircraft deviation
statistics is consistent with these findings. We then estimated the values of k1

and k2 which give the correct cross-track deviation statistics. This can be done
using Monte-Carlo methods. Alternatively, if we assume that the wind is roughly
constant over periods of the order of a few minutes, we can derive an analytic
expression. If we assume the standard deviation of the cross track deviation is
2nmi, σ = 8ms−1 and v = 250ms−1 then

k2

k1
' E(y2

∞
)

(

v

wy

)2

= 115000m (3)

Here y∞ denotes the steady state cross track error.
More systematic methods for tuning the model (e.g. using techniques devel-

oped for random field identification) are a subject of ongoing work.

7 Simulation

The model presented here was coded in a Java object oriented simulator. A
graphical user interface was developed to allow visualizing the results and run-
ning the simulation in interactive mode (where the used can change flight plans
on-line, more or less as an air traffic controller would). Figure 6 shows the sim-
ulation of a simple 20 min, 4 waypoint flightplan.

To demonstrate possible uses of the model developed here we have conducted
a numerical study of the effect of correlation in the wind on the probability that
aircraft will come dangerously close to one another (conflict probability). This is
a topic of contention among researchers and practitioners in the field of air traffic
management. Some authors believe that correlation is important and must be
accounted for, while others believe that correlation is unimportant and can be
ignored; both classes provide heuristic arguments that support their view!

Our simulator can be used to quantify this effect. We conducted a number
of simulations of a pair of aircraft both following a simple flight plan. We find
the probability distribution of the aircraft separation after 20 min. This will
give an idea of the chance of the aircraft coming into conflict. In the first set of
simulations we do not have correlation between the aircraft. In the second we
do.



Figures 7, 8 show the results of the two experiments. When there is correla-
tion between the two aircraft the variance of the separation is very small (the
standard deviation is 305m vs 5000m without separation). This suggests that
conflict detection probes that ignore correlation would be too conservative in this
case. Interestingly, the variance of the average position is larger (the standard
deviation is 7120m vs 5250m). This suggests that although a conflict could be
predicted more accurately if correlation is included, the prediction of the actual
position of the conflict would be more variable.

These results allow one to draw some interesting conclusions. Clearly correla-
tion between aircraft makes a difference to the statistics of the positions of each
aircraft and hence the probability of conflict. Generally speaking the variance
of the separation between aircraft will be less with correlation, although this is
dependent on the geometry of the flightplans. This will lead to the probability of
conflict being lower for situations where the aircraft do not nominally come into
conflict, and higher for situations in which they do nominally come into conflict.
The fact that the position of conflict is less well known will not make a large
difference to the accuracy of conflict probes. In summary the effect of ignoring
correlation in conflict probes will be to create an unnecessary number of false
alerts, so it is important to develop methods that can account for correlation.
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