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Abstract— In this paper we study the problem of the
identification of a hybrid model for a nonlinear system, based
on input-output data measurements. We consider in particular
the identification of piecewise affine models of nonlinear single-
input/single-output systems through the prediction error min-
imization approach. The objective of this work is to analyze
the performance of the identified model as the number of
data used in the identification procedure grows to infinity. We
consider a stochastic setting where the input and output signals
are strictly stationary stochastic processes. Under suitable
ergodicity assumptions, we show that the identified model is
asymptotically optimal. The adopted approach is based on
recent developments in statistical learning theory, and appears
promising for studying the finite-sample properties of the
identified model.

I. INTRODUCTION

We consider a system identification problem consisting
in building a mathematical model of a single-input/single
output (SISO) discrete time nonlinear system based on
input-output data measurements.

The standard approach to system identification consists in
a two-step procedure: i) select a class of candidate models,
and ii) choose the “best” model in the candidate models
class according to a certain criterion.
In the Prediction Error Minimization (PEM) approach, the
goal is determining a law to predict the future values of
the system output from previous observations. A predictor
is associated to each candidate model and the quality of
a model is evaluated in terms of the performance of the
associated predictor on the collected input-output data.

Specifically, letu and y be the input and output of the
system under study. Denote bŷyk the prediction of the
output y of the system at timek, based on the observed
input and output data up to timek − 1 for some candidate
predictor. Suppose that the values of the prediction errors

εk := yk − ŷk,

can be computed for already seen system outputs at every
time k = 1, . . . , t. Then, a standard criterion used to
quantify the accuracy of the predictor under consideration
is the quadratic cost:

1
t

t∑
k=1

ε2k. (1)
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Minimizing a cost such as (1) over the set of candidate
predictors (i.e. the set of candidate laws mapping the past
observations in the output prediction) returns a predictor. If
the predictor set was derived from a model set, one can go
a step back and determine the model corresponding to that
predictor.

To simplify the identification procedure, it is convenient
to describe the candidate models class through a finite
dimensional parameter vector, sayθ, so that a model is
selected by picking up a parameter value forθ in some
set of admissible valuesΘ. This parameterization in some
cases is artificially introduced, whereas in some other cases
has a physical interpretation and naturally derives from the
problem description.

If the candidate models set is parameterized byθ ∈ Θ, we
can denote the prediction ofyk associated to the model with
parameterθ as ŷk(θ), and define the functionJt : Θ → <

Jt(θ) =
1
t

t∑
k=1

(yk − ŷk(θ))2, (2)

which maps eachθ ∈ Θ to a positive real number repre-
senting the value taken by the cost function (1) when the
model with parameterθ is used for predicting the output of
the system.

The problem of identifying a model for the system is
then reduced to that of solving the following parameter
optimization problem:

Determineθ̂t such thatJt(θ̂t) = min
θ∈Θ

Jt(θ). (3)

The desired property of the identified model with pa-
rameterθ̂t is that the accuracy of the associated predictor
does not deteriorate when it is used for predicting output
data different from those used in the identification process,
though generated under the same operating conditions (gen-
eralization property).

Depending on the excitation properties of the inputu,
the identified model could be useful not only for prediction,
but also for other purposes (control, estimation, simulation,
etc.). A discussion on this latter aspect goes beyond the
scope of this paper. The interested reader is referred to [1]
for experiment design in a linear setting.

Here we consider the problem of evaluating the general-
ization property of the model identified based on the PEM
approach with quadratic cost in a stationary environment.

PEM methods can be given a very meaningful interpreta-
tion when used in a stationary environment. If the input and
the output of the system are strictly stationary processes, the



generalization properties of the model with parameterθ can
be measured through

J̄(θ) = E[(yk − ŷk(θ))2], (4)

where the expectation is taken with respect to the joint
probability distribution of the random variablesyk and
ŷk(θ), which are, respectively, the output and its prediction
at a generic time instantk.
J̄(θ̂t) represents the average prediction performance when
the model identified based on the input-output data collected
up to time t is used to predict unobserved output data
generated by the system in the same stationary conditions.
For this reasonJ̄(θ̂t) is also calledgeneralization error.

The best achievable performance for a predictor belong-
ing to the candidate set is given by

J̄? = inf
θ∈Θ

J̄(θ). (5)

The empirical costJt(θ) in (2) represents an estimate of
the theoretical costJ̄(θ) in (4), which in fact cannot be
computed because the joint probability distribution ofyk

and ŷk(θ) is not known. According to this interpretation,
by minimizingJt(θ) one actually aims at minimizinḡJ(θ).

In general, we cannot expect that the predictor with
parameter̂θt —obtained by minimizing the empirical cost
based on a finite number of observed data— is optimal,
i.e., J̄(θ̂t) = J̄? with t < ∞. Our best expectation is that
the predictor with parameter̂θt becomes optimal asymptot-
ically, when the number of data used in the identification
procedure tends to infinity, i.e.,̄J(θ̂t) → J̄?, ast →∞.
Since the value taken bŷθt, t ≥ 1, depends on the realiza-
tion of the u and y processes used for the identification,
there might be some “bad” realizations of theu and y
processes such that asymptotic optimality is not achieved.
For this reason, we relax our requirement on asymptotic
optimality by admitting that bad realizations might occur
but with zero probability. This can be formalized as follows:

J̄(θ̂t) → J̄?, as t →∞, a.s. (almost surely). (6)

In this paper, we study the asymptotic performance of
the PEM method when the model to be identified is a
Nonlinear AutoRegressive eXogenous (NARX) model with
a piecewise affine structure (PWARX model).

Piecewise affine systems are a class of hybrid systems
which has been studied extensively in the literature. This
is partly due to their modeling capabilities, since they are
an equivalent representation for different hybrid systems
(linear complementary systems [2], systems obtained by the
combination of linear systems and finite automata [3], and
hybrid systems in the mixed logic dynamical form [4]).

In principle, one can exploit the “simple” structure of a
piecewise affine system —characterized by affine dynamics
pieced together— to develop analysis and control design
methodologies inspired by linear systems theory. Results
that confirm this intuition can actually be found in [4]-[6],
just to name a few.

Moreover, some nonlinear functions can be approximated
with arbitrary accuracy by piecewise affine functions [7], so
that analysis and control design methodologies developed
for piecewise affine systems can be applied also to these
nonlinear systems [8].

Various contributions on the identification of PWARX
models have been presented in the literature, see e.g.
[9]-[12]. These papers are concerned with the issue of
developing efficient algorithms for solving the optimization
problem (3). The present paper addresses the issue of
assessing the identified model quality, and as such should
be seen as complementary to these contributions. The
methodology adopted is inspired by ideas from statistical
learning theory and stochastic processes analysis. Statistical
learning theory provides useful tools for convergence
analysis in system identification, allowing to extend the
asymptotic results in [13], [1] to a more general setting.
In [14], a converge result for PEM methods is proven in
a parameter-free context by using theε-net concept as
complexity measure for the models class ([15]). Here, we
concentrate on the identification of parameterized PWARX
models for nonlinear systems and prove asymptotic
optimality based on a different complexity measure known
as Pollard-dimension. A general picture on the application
of statistical learning theory to system identification is
given in [16], [17].

The rest of the paper is organized as follows. In Section
II we precisely formulate the identification problem that
we are studying, whereas Section III is devoted to the
analysis of the asymptotic performance of the identified
model. Some conclusions are drawn in Section IV.

II. MATHEMATICAL FRAMEWORK

Suppose that we want to identify a model for describing
a SISO system with inputu and outputy, based on the
input-output data collected up to timet.

For this purpose we consider as candidate models class
the set of PWARX models described by

yk = f(φk−1; θ) + ek, (7)

where φk−1 = [yk−1, . . . , yk−n, uk−1, . . . , uk−m]T ∈
<n+m is the regression vector containing past samples of
the outputy and inputu, and functionf(·; θ) : <n+m → <
has the following piecewise linear structure:

f(φ; θ) = γ0 + α0φ +
p∑

i=1

ηi |γi + αiφ| , (8)

whereθ = [γ0 α0 η1 γ1 α1 . . . ηp γp αp] belongs to some
compact setΘ ⊂ <(p+1)(n+m+2)−1.

As for {ek}, it is a scalar white process with zero mean,
independent of{uk}, and not directly measurable.

Function (8) has been largely studied in the literature
on nonlinear function approximation and circuit analysis,
and in these two contexts is known under the name of



hinging hyperplanes function ([7]) and Chua’s canonical
representation ([18]), respectively.

Remark 1:Note that there are some redundancies in the
parameterization of the candidate models. For instance,

ηi |γi + αiφ| =
ηi

a
|aγi + aαiφ| , ∀a > 0.

Also, the value of functionf does not change if we
change the ordering of the terms in the summation in
(8). These redundancies cause the map associating to a
parameterθ a model to be not bijective, hence, astructural
identifiability problem. This problem can be alleviated by
considering suitable constraints on the admissibleθ values
when defining the setΘ ([9]). �

The predictor associated to model (7) with parameterθ
is given by:

ŷk(θ) = f(φk−1; θ).

Correspondingly, the empirical cost (2) and the theoreti-
cal cost (4) takes respectively the form

Jt(θ) =
1
t

t∑
k=1

(yk − f(φk−1; θ))2 (9)

J̄(θ) = EP [(yk − f(φk−1; θ))2], (10)

whereP is the joint probability distribution of the random
variables yk and φk−1, and EP is used to denote the
expected value with respect toP .

In the next section, we study the asymptotic properties
of the identified model. We shall prove that the optimality
result (6) holds in our setting under some assumptions on
the stochastic processes{uk} and {yk} that are described
below.

Assumption 1:{uk} and{yk} are strictly stationary pro-
cesses taking values in some compact setU ⊂ < and
Y ⊂ <, respectively. �

The assumption that the input and output processes take
values in compact sets is quite technical, and is required
for ensuring that the prediction erroryk − f(φk−1; θ) is
bounded. This allows the use of certain results of the
statistical learning theory for analyzing the identified model.

We need also to make some ergodicity assumption on
the {uk} and{yk} processes for the asymptotic optimality
result (6) to hold.̂θt appearing in (6) is the minimizer of the
empirical cost (9). Intuitively, the correlation in time of the
{uk} and{yk} processes has to decay at a sufficiently fast
rate for the empirical cost (9) to converge to the theoretical
cost (10) ast tends to infinity.

In a linear setting, this directly translates into the require-
ment that the system under study is asymptotically stable.
In a nonlinear setting, it is difficult to translate the needed
ergodicity assumption in stability-like requirements on the
data generation mechanism. This characterization is in fact
the subject of ongoing research activities [19].
Here, we limit ourselves to express it directly in terms
of correlation properties of the input and output processes

through the concept of beta-mixing process, which is briefly
explained hereafter (see e.g. [20]).

Let us consider a strictly stationary process{sk} with
probability distributionP̄ . The beta-mixing coefficients of
{sk} are defined as:

βt = sup
A∈σt

{|P̄ (A)− (P̄ 0
−∞ × P̄∞1 )(A)|}

whereP̄ 0
−∞ and P̄∞1 are the semi-infinite marginals of̄P ,

andσt denotes theσ-algebra generated by the sets of ran-
dom variables{sk, k ≤ 0} and{sk, k ≥ t}. The sequence
{βt, t ≥ 1} is bounded below by zero and not increasing
becauseσt+1 ⊆ σt, ∀t. Thereforeβ̄ = limt→∞ βt exists
and isβ̄ ≥ 0. If β̄ = 0, then{sk} is a beta-mixing process.

We are now in a position to formulate our assumption.
We require that

Assumption 2:The process{(yk, φk−1)} is geometri-
cally beta-mixing, i.e., its beta-coefficients satisfy:βt ≤ ρt,
∀t, for someρ < 1. �

III. ASYMPTOTIC OPTIMALITY OF THE
IDENTIFIED MODEL

In this section we prove that the asymptotic result (6)
holds in our setting, i.e., when the classical PEM method
with quadratic cost function is used to identify a PWARX
model based on input-output data collected in a stationary
environment, where Assumptions 1 and 2 are satisfied.

We start by making some preliminary observations.
Fix θ ∈ Θ. The process{vk(θ)} defined by

vk(θ) = (yk − f(φk−1; θ))2

is strictly stationary with mean̄J(θ). Jt(θ) is the empirical
estimate of the mean of process{vk(θ)} based ont samples.
Under suitable ergodicity assumptions, by the strong law of
large numbers one can prove that

Jt(θ) =
1
t

t∑
k=1

vk(θ) → J̄(θ) = E[vk(θ)], a.s.

for every θ ∈ Θ (point-wise convergence). However, we
need a stronger property than point-wise convergence to
prove that the minimum of the empirical cost converges to
the minimum of the theoretical cost:

J̄(θ̂t) → J̄? = inf
θ∈Θ

J̄(θ), as t →∞, a.s. (11)

The following lemma shows that uniform convergence of
Jt(θ) to J̄(θ) is a sufficient condition for (11) to hold.

Lemma 1:Suppose that

sup
θ∈Θ

|Jt(θ)− J̄(θ)| → 0, as t →∞, a.s. (12)

Then, J̄(θ̂t) → infθ∈Θ J̄(θ), ast →∞, a.s..



Proof. Observe that the following chain of inequalities
holds:

J̄(θ̂t) = Jt(θ̂t) + (J̄(θ̂t)− Jt(θ̂t))

≤ Jt(θ̂t) + sup
θ∈Θ

∣∣J̄(θ)− Jt(θ)
∣∣

= inf
θ∈Θ

[
J̄(θ) +

(
Jt(θ)− J̄(θ)

)]
+sup

θ∈Θ

∣∣J̄(θ)− Jt(θ)
∣∣

≤ inf
θ∈Θ

J̄(θ) + 2 sup
θ∈Θ

∣∣J̄(θ)− Jt(θ)
∣∣ .

Therefore,

inf
θ∈Θ

J̄(θ) ≤ J̄(θ̂t) ≤ inf
θ∈Θ

J̄(θ) + 2 sup
θ∈Θ

∣∣J̄(θ)− Jt(θ)
∣∣ .

The thesis then immediately follows from the assumption
that supθ∈Θ |Jt(θ)− J̄(θ)| → 0, ast →∞, a.s.. �

Lemma 1 is instrumental to our derivations, and is of
general use. It actually proved to be useful in contexts
different from identification, such as adaptive and robust
control ([21], [22]), where the problem to be solved was
replacing the minimization of the expected value of some
control cost with the minimization of its empirical mean,
which is much easier to compute.

Our objective now is showing that the uniform conver-
gence property (12) is satisfied in our setting.

Remark 2:The problem of uniform convergence of em-
pirical means has been studied in various contexts and, in
particular, in the econometric literature. In [23] conditions
are given under which point-wise convergence implies uni-
form convergence. The interesting feature of the approach
for proving uniform convergence adopted in the present
paper is that, in contrast with the approach in [23], it is
based on results and bounds that hold true for an arbitrary
finite number of data. These intermediate results could
be useful for analyzing finite-sample property of PEM
methods. �

Define

h(w; θ) := (z − f(x; θ))2,

wherew = (z, x) ∈ W := Y ×X, with X := Y n × Um.
The empirical cost (9) and the theoretical cost (10) can

be expressed in terms of functionh(·; θ) as

Jt(θ) =
1
t

t∑
k=1

h((yk, φk−1); θ)

J̄(θ) = EP [h((yk, φk−1); θ)].

Property (12) is then the almost sure convergence of empir-
ical means (ASCEM) property for the family of functions
{h(·; θ) : W → <+, θ ∈ Θ} (here θ is regarded as a
parameter which identifies a single functionh(·, θ) from
W to <+) with respect to the process{wk = (yk, φk−1)}
([24]).

The ASCEM property of a family of function has been
studied mainly with reference to function approximation
and classification problems, where i) the process{wk} is a
sequence of independent and identically distributed (i.i.d.)

random variables, and ii) the function to approximate is
bounded or takes a finite number of values.

As for condition ii), due to the continuity of function
f in (8), the fact thatΘ is compact, and Assumption
1, M := maxw∈W,θ∈Θ h(w; θ) exists and is finite, and,
therefore,h(·; θ) : W → [0,M ], ∀θ ∈ Θ.

As for the i.i.d. assumption, it is not verified in our
setting since we are trying to identify a dynamical system.
Nevertheless, we shall first study the i.i.d. case. Based on
the results obtained in this case, we shall then prove that the
ASCEM property holds in the case of interest, where{wk}
is a strictly stationary process with geometric beta-mixing
properties.

A. ASCEM property in the i.i.d. case

Suppose that{wk} is a sequence of i.i.d. random vari-
ables taking values in the compact setW , each one with
the same distributionP (equal to the joint distribution of
yk andφk−1). Define

q(t, ε) := P t{(w1, . . . , wt) : sup
θ∈Θ

|J̃t(θ)− J̄(θ)| > ε},

(13)

where the product probabilityP t = P×P×· · ·×P , t times,
represents the joint probability distribution of the i.i.d. ran-
dom variables(w1, . . . , wt), andJ̃t(θ) := 1

t

∑t
k=1 h(wk; θ)

is the empirical cost obtained from sampleswk, k =
1, . . . , t, independently extracted fromW with the same
distributionP .

If q(t, ε) → 0, ast →∞, ∀ε > 0, then,supθ∈Θ |J̃t(θ)−
J̄(θ)| → 0 in probability, or, equivalently,{h(·; θ), θ ∈ Θ}
has the uniform convergence of empirical means property
in probability (UCEM property) with respect to the i.i.d.
process{wk}.

In the last two decades, the UCEM property for general
classes of functions has been largely studied in the statistical
learning literature. General conditions for this property to
hold are now available (see e.g. [24]-[28]). For our purposes
the main result is that{h(·; θ) : W → [0,M ], θ ∈ Θ}
has the UCEM property if its Pollard(P)-dimension (cf. [24,
pag.74]) is finite. Moreover, lettingd be the P-dimension,
q(M, ε) defined in (13) is upper bounded as follows ([24,
Theorem 7.1]):

q(t, ε) ≤ 8
(

16Me

ε
ln

16Me

ε

)d

exp
(
− tε2

32M2

)
. (14)

Then, if d is finite,
∑∞

t=1 q(t, ε) < ∞, ∀ε > 0, and,
by the Borel-Cantelli Lemma, the a.s. convergence of
supθ∈Θ |J̃t(θ)− J̄(θ)| to zero (or equivalently the ASCEM
property for{h(·; θ) : W → [0,M ], θ ∈ Θ} with respect
to the i.i.d. process{wk}) immediately follows from (14).

We next show that the P-dimension of{h(·, θ) : W →
[0,M ], θ ∈ Θ} is actually finite, thus concluding the proof
that {h(·, θ) : W → [0,M ], θ ∈ Θ} has the ASCEM
property in the i.i.d. case.

Reportedly, the computation of a P-dimension on the
basis of its definition is a hard task, and this has been



for long an important bottleneck in the application of the
theory of uniform convergence of empirical means. In
[26] and [27], a powerful technique for the evaluation
of the P-dimension of a function class satisfying general
conditions has been introduced. This technique is used for
proving the following result.

Proposition 1:

P-dimension({h(·, θ) : W → [0,M ], θ ∈ Θ}) < ∞ (15)

Proof. Consider the family of functions

H = {h(·, θ) : W → [0,M ], θ ∈ Θ},

whereW ⊂ <n+m+1 andΘ ⊂ <(p+1)(n+m+2)−1.
Given a functionh(·, θ) in H, let

g((w, c); θ) := H(h(w; θ)− c),

wherec ∈ [0,M ] is an additional variable andH(·) is the
Heaviside function (H(x) = 1, if x ≥ 0, H(x) = 0, if
x < 0). Also, let

G := {g((·, ·); θ) : W × [0,M ] → {0, 1}, θ ∈ Θ}.

Then, by [24, Lemma 10.1]

P-dimension(H) = VC-dimension(G)

(see e.g. [24, pag. 69] for the definition of the VC-
dimension). Thus, the original problem of computing the
P-dimension(H) is reduced to the one of computing the
VC-dimension(G). This computation can be carried out by
resorting to [24, Corollary 10.2] as explained next.
Given any setS, let IS be the indicator function ofS. We
prove below thatg((w, c); θ) can be written as

g((w, c); θ) = IS((w, c), θ), (16)

whereS ⊂ <n+m+1 × [0,M ]× <(p+1)(n+m+2)−1 is a set
with a particular structure. Precisely,

S = Boolean formula applied to{Si}2
p+p

i=1 ,

where Si, i = 1, . . . , 2p + p, are sets given bySi =
{τi((w, c), θ) > 0} with τi polynomials inθ whose largest
degree isv = 4 (a Boolean formula is any set expres-
sion containing union, intersection, and complementation).
Before proving (16), we note that the statement (15) can
be obtained from (16) by applying the bound on the
VC-dimension(G) in [24, Corollary 10.2], which, in our
notations, can be written as follows

VC-dimension(G) ≤ 2q log2(4ev(2p + p))
= 2q log2(16e(2p + p)),

whereq := (p + 1)(n + m + 2)− 1.
The proof is now completed by showing (16).

Let us recall that

h(w; θ) := (z − f(x; θ))2, w = (z, x) ∈ W,

wheref has the following piecewise linear structure:

f(x; θ) = γ0 + α0x +
p∑

i=1

ηi |γi + αix| ,

beingθ = [γ0 α0 η1 γ1 α1 . . . ηp γp αp].
Consider the setI of all subsets of setK = {1, 2, . . . , p}.

Let as denote the elements ofI asI1, I2, . . . , I2p .
For everyi = 1, . . . , 2p, define

Si = {τi((w, c), θ) > 0}, i = 1, . . . , 2p,

with

τi(((z, x), c), θ) =−
[
z −

(
γ0 + α0x +

∑
k∈Ii

(ηkαk + ηkγkx))

−
∑

k∈K\Ii

(ηkαk + ηkγkx)
)]2 + c.

Definep additional sets as follows:

Si = {τi((w, c), θ) > 0}, i = 2p + 1, . . . , 2p + p,

where

τi((w, c), θ) = αi + γix, i = 2p + 1, . . . , 2p + p.

If we set

S = ∪2p

i=1

(
S̄i ∩

(
(∪k∈IiS2p+k) ∩ (∪k∈K\Ii

S̄2p+k)
))

,

then (16) follows. �

B. ASCEM property in the beta-mixing case

Consider the strictly stationary stochastic process{wk =
(yk, φk−1)} satisfying the beta-mixing Assumption 2. Each
random variablewk takes values over the compact setW
and has probability distributionP .

Similarly to the i.i.d. case, we define

qmix(t, ε) := Pt{(w1, . . . , wt) : sup
θ∈Θ

|Jt(θ)− J̄(θ)| > ε},

where Pt denotes the joint probability distribution of the
random variables(w1, . . . , wt), andJt(θ) and J̄(θ) are the
empirical and theoretical costs defined in (9) and (10).

By the same line of reasoning as in the i.i.d. case, if
we can show thatqmix(t, ε) tends to zero ast → ∞ at a
sufficiently fast rate,∀ε > 0, then the ASCEM property
for the family of functions{h(·; θ) : W → [0,M ], θ ∈ Θ}
with respect to the process{wk = (yk, φk−1)} follows from
the Borel-Cantelli Lemma. The asymptotic optimality result
(6) is then an immediate consequence of Lemma 1.

We next show thatqmix(t, ε) tends to zero ast → ∞ at
a faster rate than1t2 , ∀ε > 0, thus concluding the proof of
asymptotic optimality. The following result proven in [20,
Theorem 2] is fundamental for this.

Proposition 2 ([20, Theorem 2]):Fix a sequence of in-
tegers{kt} such thatkt ≤ t, ∀t. Then,

qmix(t, ε) ≤ tβkt
+ kt max{q(lt + 1, ε), q(lt, ε)}, (17)



where lt = bt/ktc denotes the integer part oft/kt and
q(k, ε) is defined in (13). �

Proposition 3:

qmix(t, ε) = o(1/t2), ∀ε > 0

Proof. By plugging in (17) the bounds onβt and q(t, ε)
respectively given in Assumption 2 and (14), we get

qmix(t, ε) ≤ tρkt + ktc(ε)ρ̄(ε)lt

where we setc(ε) := 8
(

16Me
ε ln 16Me

ε

)d
and ρ̄(ε) :=

exp
(
− ε2

32M2

)
. If we define

ν(ε) := max{ρ, ρ̄(ε)}(< 1)

and choosekt = b
√

t + 1c, then, it is easily seen that, for
all t ≥ 3,

qmix(t, ε) ≤ tν(ε)
√

t + (
√

t + 1)c(ε)ν̄(ε)
√

t−2.

Since the right-hand-side of this equation is ao(1/t2), this
concludes the proof. �

IV. CONCLUSIONS

In this paper we adopted a statistical learning theory
approach for the analysis of the asymptotic learning ca-
pability of a PEM identification method, when the model
to be identified is piecewise affine and the input-output
data are collected from the system operating in stationary
conditions. We showed that if the input-output processes are
geometrically beta-mixing, then, the model with the best
prediction performance is identified asymptotically. This
result is proven with reference to single-input/single-output
systems affine systems, but it can be generalized to the
multiple-input/multiple-output case.

The adopted methodology could be useful for studying
the case when the model to be identified belongs to a more
general class of hybrid systems. Also, some of the inter-
mediate results obtained in this paper are not asymptotic,
hence, they could be a good starting point for assessing the
quality of models identified based on a finite number of
data. This is an interesting direction of research.
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