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Abstract—In this paper we study the problem of the Minimizing a cost such as (1) over the set of candidate
identification of a hybrid model for a nonlinear system, based predictors (i.e. the set of candidate laws mapping the past
on input-output data measurements. We consider in particular  opsepyations in the output prediction) returns a predictor. If
the identification of piecewise affine models of nonlinear single- h di derived f del
input/single-output systems through the prediction error min- the predictor set was e_rlve rom a model set, One can go
imization approach. The objective of this work is to analyze @ Step back and determine the model corresponding to that
the performance of the identified model as the number of predictor.
data used in the identification procedure grows to infinity. We To simplify the identification procedure, it is convenient
consider a stochastic setting where the input and output signals to describe the candidate models class through a finite

are strictly stationary stochastic processes. Under suitable di . | t t 4 that del i
ergodicity assumptions, we show that the identified model is Imensional parameter vector, sy so that a moael 1S

asymptotically optimal. The adopted approach is based on Selected by picking up a parameter value oin some
recent developments in statistical learning theory, and appears set of admissible value®. This parameterization in some

promising for studying the finite-sample properties of the cases is artificially introduced, whereas in some other cases
identified model. has a physical interpretation and naturally derives from the
. INTRODUCTION problem description. . .
_ _ - ~Ifthe candidate models set is parameterized lay©, we
We consider a system identification problem consistingan, denote the prediction of. associated to the model with

in building a mathematical model of a single-input/singlg,arameter asj,(6), and define the functiod, : © — R
output (SISO) discrete time nonlinear system based on

H t
input-output data measurements. 1 . 5
The standard approach to system identification consists in Ji(0) = n Z(yk — 0 (9))%, @
a two-step procedure: i) select a class of candidate models, h=1 N
and ii) choose the “best” model in the candidate model¢hich maps eacld € © to a positive real number repre-

class according to a certain criterion. senting the value taken by the cost function (1) when the

In the Prediction Error Minimization (PEM) approach, themodel with parameteff is used for predicting the output of

goal is determining a law to predict the future values ofhe system.

the system output from previous observations. A predictor The problem of identifying a model for the system is

is associated to each candidate model and the quality #fen reduced to that of solving the following parameter

a model is evaluated in terms of the performance of th@Ptimization problem:

associqtgd predictor on the coIIe(;ted input-output data. Determined, such that/; (6;) = min J(0). 3)
Specifically, letu andy be the input and output of the 90

system under study. Denote bj; the prediction of the  The desired property of the identified model with pa-

outputy of the system at time:, based on the observed rameterd, is that the accuracy of the associated predictor

input and output data up to time— 1 for some candidate does not deteriorate when it is used for predicting output

predictor. Suppose that the values of the prediction errorgjata different from those used in the identification process,

though generated under the same operating conditgeTs (

eralization property.

can be computed for already seen system outputs at everyDepending on the excitation properties of the input

€k = Yk — Uk,

time £ = 1,...,t. Then, a standard criterion used tothe identified model could be useful not only for prediction,
quantify the accuracy of the predictor under consideratiobut also for other purposes (control, estimation, simulation,
is the quadratic cost: etc.). A discussion on this latter aspect goes beyond the
. scope of this paper. The interested reader is referred to [1]
}Z e ) for experiment d_eS|gn in a linear setting. _
t Here we consider the problem of evaluating the general-

k=1

ization property of the model identified based on the PEM
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generalization properties of the model with paramétean Moreover, some nonlinear functions can be approximated

be measured through with arbitrary accuracy by piecewise affine functions [7], so
- that analysis and control design methodologies developed
_ ~ 2
J(0) = El(yr — 9(6))7); ) for piecewise affine systems can be applied also to these

where the expectation is taken with respect to the joirffonlinear systems [8].
probability distribution of the random variableg, and Various contributions on the identification of PWARX

x(0), which are, respectively, the output and its predictiofnodels have been presented in the literature, see e.g.
at a generic time instarit. [9]-[12]. These papers are concerned with the issue of
J(,) represents the average prediction performance whélgveloping efficient algorithms for solving the optimization
the model identified based on the input-output data collectéfoblem (3). The present paper addresses the issue of
up to timet is used to predict unobserved output data@ssessing the identified model quality, and as such should
generated by the system in the same stationary conditiod® seen as complementary to these contributions. The
For this reasor/(6,) is also calledgeneralization error ~ Methodology adopted is inspired by ideas from statistical
The best achievable performance for a predictor bemnéeaming theory and stochastic processes analysis. Statistical

ing to the candidate set is given by learning theory provides useful tools for convergence
_ oL analysis in system identification, allowing to extend the
J* = inf J(9). (5)  asymptotic results in [13], [1] to a more general setting.

o ) ) In [14], a converge result for PEM methods is proven in

The empirical cost/;(¢) in (2) represents an estimate of 5 parameter-free context by using thenet concept as
the theoretical costJ(#) in (4), which in fact cannot be complexity measure for the models class ([15]). Here, we
computed because the joint probability distributionygf  concentrate on the identification of parameterized PWARX
and gx(¢) is not known. According to this interpretation, nodels for nonlinear systems and prove asymptotic
by minimizing J;(¢) one actually aims at minimizing(#).  gptimality based on a different complexity measure known
In general, we cannot expect that the predictor witys pojard-dimension. A general picture on the application

parameter; —obtained by minimizing the empirical Cost of statistical learning theory to system identification is
based on a finite number of observed data— is optimayiven in [16], [17].

i.e., J(0,) = J* with t < co. Our best expectation is that

the predictor with parameté}, becomes optimal asymptot-  The rest of the paper is organized as follows. In Section
ically, when the number of data used in the identificationy e precisely formulate the identification problem that
procedure tends to infinity, i.e/(0;) — J*, ast —oco.  we are studying, whereas Section Il is devoted to the
Since the value taken b, ¢ > 1, depends on the realiza- gpgysis of the asymptotic performance of the identified
tion of the u and y processes used for the identification,,,gdel. Some conclusions are drawn in Section IV.

there might be some “bad” realizations of theand y

processes such that asymptotic optimality is not achieved. I1. MATHEMATICAL FRAMEWORK

For this reason, we relax our requirement on asymptotic Suppose that we want to identify a model for describing
optimality by admitting that bad realizations might occur, g5 system with input. and outputy, based on the

but with zero probability. This can be formalized as fOHOWSinput-output data collected up to tinte

J(0,) — J*, ast — oo, a.s. (almost surely).  (6) For this purpose we consider as candidate models class
the set of PWARX models described by

In this paper, we study the asymptotic performance of
the PEM method when the model to be identified is a yr = f(Pr-1;0) + ex, (7)
Nonlinear AutoRegressive eXogenous (NARX) model withh T

: : . ere ¢op—1 = [Yk—1s-->Ykon>Uk—1,---Uk—m] €
a piecewise aff|r_1e structure (PWARX model). . R"*+™ is the regression vector containing past samples of

Piecewise affine systems are a class of hybrid systerﬂ§e outputy and inputu, and functionf (-; 6) : R™ ™ — R
which has been studied extensively in the literature. Thi ' '

. . ) o ) Ras the following piecewise linear structure:
is partly due to their modeling capabilities, since they are

an equivalent representation for different hybrid systems P
(linear complementary systems [2], systems obtained by the F(#:8) = 70 + 0o + Z i |vi + aidl, (8)
combination of linear systems and finite automata [3], and =1

hybrid systems in the mixed logic dynamical form [4]). wheref = [yo ao 11 71 @1 ... M Vp @) belongs to some

In principle, one can exploit the “simple” structure of acompact se® C RP+1(ntm+2)=1,
piecewise affine system —characterized by affine dynamics As for {e, }, it is a scalar white process with zero mean,
pieced together— to develop analysis and control designdependent of u;}, and not directly measurable.
methodologies inspired by linear systems theory. Results Function (8) has been largely studied in the literature
that confirm this intuition can actually be found in [4]-[6], on nonlinear function approximation and circuit analysis,
just to name a few. and in these two contexts is known under the name of



hinging hyperplanes function ([7]) and Chua’s canonicathrough the concept of beta-mixing process, which is briefly
representation ([18]), respectively. explained hereafter (see e.g. [20]).

Remark 1:Note that there are some redundancies in the Let us consider a strictly stationary proces,} with
parameterization of the candidate models. For instance, probability distributionP. The beta-mixing coefficients of
{s} are defined as:

= sup {|P(A) — (P°_ x P®)(A
Also, the value of functionf does not change if we & Ae(Iy)t{| (4) = (P Al

change the ordering of the terms in the summation in _ _ o ) _

(8). These redundancies cause the map associating tgvhere P2, and Pre are the semi-infinite marginals a?,
parametep a model to be not bijective, hencestiuctural  @ndo: denotes ther-algebra generated by the sets of ran-
identifiability problem This problem can be alleviated by d0m variables{s;, k < 0} and {s, k > t}. The sequence
considering suitable constraints on the admissiblelues /¢ = 1} is bounded below by zero and not increasing

ni Vi + gl = % lavy; + aci;¢|, Va > 0.

when defining the se® ([9]). O becauseri i C oy, Vt. Therefore = lim; o 3, exists
The predictor associated to model (7) with paraméter @nd isg = 0. If 5 =0, then{sy } is a beta-mixing process.
is given by: We are now in a position to formulate our assumption.
We require that
Gk (0) = f(dr-1:0). Assumption 2:The process{(yx, ¢x_1)} iS geometri-

cally beta-mixing, i.e., its beta-coefficients satisfy:< p?,

Correspondingly, the empirical cost (2) and the theoretgt for somep < 1 0

cal cost (4) takes respectively the form

1< ) [Il. ASYMPTOTIC OPTIMALITY OF THE
Ji(0) =D (k= f(ér-1;0)) ©) IDENTIFIED MODEL
k=1
J(0) = Ep[(yx — f(dr_1:0))?], (10) In this section we prove that the asymptotic result (6)

holds in our setting, i.e., when the classical PEM method
where P is the joint probability distribution of the random with quadratic cost function is used to identify a PWARX
variablesy;, and ¢, 1, and Ep is used to denote the model based on input-output data collected in a stationary
expected value with respect 0. environment, where Assumptions 1 and 2 are satisfied.

In the next section, we study the asymptotic properties We start by making some preliminary observations.
of the identified model. We shall prove that the optimality Fix 9 ¢ ©. The procesguv; ()} defined by

result (6) holds in our setting under some assumptions on
the stochastic processés,} and {y;} that are described vp(0) = (yr — f(Pr_1;0))*
below.

Assumption 1:{u;} and{y,} are strictly stationary pro- is strictly stationary with mead (6). J;(6) is the empirical
cesses taking values in some compact Betc % and estimate of the mean of proce@s; (¢)} based ort samples.

Y C R, respectively. O Under suitable ergodicity assumptions, by the strong law of

The assumption that the input and output processes taldge numbers one can prove that
values in compact sets is quite technical, and is required .
for ensuring _that the prediction errgy; f_f(¢>k._1;o) is Ji(0) = Eka(G) — J(0) = E[ur(0)], a.s.
bounded. This allows the use of certain results of the Rt
statistical learning theory for analyzing the identified model.

We need also to make some ergodicity assumption dRr every ¢ € © (point-wise convergence). However, we
the {ux} and{y,} processes for the asymptotic optimalityneed a stronger property than point-wise convergence to
result (6) to holdd, appearing in (6) is the minimizer of the Prove that the minimum of the empirical cost converges to
empirical cost (9). Intuitively, the correlation in time of thethe minimum of the theoretical cost:

ug + and{y,} processes has to decay at a sufficiently fast . o
;{ate}for thEa einpirical cost (9) to converge to the theoretical J(O) — J* = ;gg J(0), ast — oo, as.  (11)
cost (10) ag tends to infinity. ) i

In a linear setting, this directly translates into the requirel € following lemma shows that uniform convergence of
ment that the system under study is asymptotically stabld:(?) 10 J/(¢) is & sufficient condition for (11) to hold.
In a nonlinear setting, it is difficult to translate the needed
ergodicity assumption in stability-like requirements on the Leémma 1:Suppose that
data generation mechanism. This characterization is in fact =
the subject of ongoing research activities [19]. o [71(6) = J(0)] — 0, ast — oo, as. (12)
Here, we limit ourselves to express it directly in terms
of correlation properties of the input and output processekhen, J(0;) — infsco J(6), ast — oo, a.s..



Proof. Observe that the following chain of inequalitiesrandom variables, and ii) the function to approximate is
holds: bounded or takes a finite number of values.
. A . A As for condition ii), due to the continuity of function
J(0) = Jt(?t)+(J(9t{_Jf(9t)) f in (8), the fact that® is compact, and Assumption
< Jy(0;) + sup | J(6) — J.(0)] 1, M = maxyew,eco h(w; ) exists and is finite, and,
. _ veo - - therefore,h(-;0) : W — [0, M], VO € ©.
inf [J(0) + (J:(0) — T (9))] +238|J(9) — J:(0)| As for the i.i.d. assumption, it is not verified in our
- = setting since we are trying to identify a dynamical system.
= euel(fa JO)+ 2?28 |7(6) = 7:(6)] Nevertheless, we shall first study the i.i.d. case. Based on
the results obtained in this case, we shall then prove that the

Therefore, ASCEM property holds in the case of interest, whéug, }
inf J(0) < J(6;) < inf J(0) + 2sup |.J(0) — J,(0)|. is a strictly stationary process with geometric beta-mixing
€0 =)

0o properties.
The thesis then immediately follows from the assumptiorA. ASCEM property in the i.i.d. case
thatsupgeg |J:(0) — J(0)] — 0, ast — oo, a.s.. ) . i
Lemma 1 is instrumental to our derivations, and is of SUPPOse thalwy} is a sequence of i.i.d. random vari-
general use. It actually proved to be useful in context@PleS taking values in the compact $&t each one with
different from identification, such as adaptive and robu € same d|str|bu.t|orP (equal to the joint distribution of
control ([21], [22]), where the problem to be solved wa/k and¢k—1). Define
replacing the minimization of the expected value of some (¢, ¢) := P{(wy,...,w;) : sup [J,(0) — J(0)| > €},
control cost with the minimization of its empirical mean, 0€o
which is much easier to compute. (13)
Our objective now is showing that the uniform converwhere the product probabilit* = Px P x---x P, t times,
gence property (12) is satisfied in our setting. represents the joint probability distribution of the i.i.d. ran-
Remark 2:The problem of uniform convergence of em-dom variablegws, . .., w;), andJ;(0) := 1 3, _, h(wy;0)
pirical means has been studied in various contexts and, & the empirical cost obtained from samples, k& =
particular, in the econometric literature. In [23] conditions], . ... ¢, independently extracted frofi/ with the same
are given under which point-wise convergence implies undistribution P.
form convergence. The interesting feature of the approachlf ¢(t,e) — 0, ast — oo, Ve > 0, then,supyce |J:(0) —
for proving uniform convergence adopted in the presenf(9)| — 0 in probability, or, equivalently{h(-; ), 6 € ©}
paper is that, in contrast with the approach in [23], it ishas the uniform convergence of empirical means property
based on results and bounds that hold true for an arbitraify probability (UCEM property) with respect to the i.i.d.
finite number of data. These intermediate results coulprocess{wy}.
be useful for analyzing finite-sample property of PEM In the last two decades, the UCEM property for general

methods. O  classes of functions has been largely studied in the statistical
Define learning literature. General conditions for this property to
hold are now available (see e.g. [24]-[28]). For our purposes
Y e (o . 2
h(w; 0) := (2 = f(2:0))%, the main result is tha{h(;6) : W — [0,M], 6 € O}

wherew = (z,2) e W:=Y x X, with X :=Y" x U™. has the UCEM property if its Pollard(P)-dimension (cf. [24,
The empirical cost (9) and the theoretical cost (10) capag.74]) is finite. Moreover, letting be the P-dimension,

be expressed in terms of functidr-; 9) as q(M,e) defined in (13) is upper bounded as follows ([24,
‘ Theorem 7.1)):
1
Ji(0) = 2> hl(yk, d6-1);0) 16Me . 16Me\* te2
13 < —— .
i 1 q(t,e) <8 < . In . > exp < 32M2> (14)

T0) = Ep[h{(yx; -1); 0)] Then, if d is finite, >.;°, q(t,e) < oo, Ve > 0, and,

Property (12) is then the almost sure convergence of emplsy the Borel-Cantelli Lemma, the a.s. convergence of
ical means (ASCEM) property for the family of functionssup, |J:(6) — J(0)| to zero (or equivalently the ASCEM
{h(;0) : W — R,, 6 € ©} (hered is regarded as a property for{h(-;0) : W — [0, M], 6 € ©} with respect
parameter which identifies a single functiér-,#) from to the i.i.d. procesgwy}) immediately follows from (14).
W to %) with respect to the processv, = (yx, dr_1)} We next show that the P-dimension §k(-,0) : W —
([24)). [0, M], 6 € ©} is actually finite, thus concluding the proof

The ASCEM property of a family of function has beenthat {i(-,0) : W — [0, M], # € ©} has the ASCEM
studied mainly with reference to function approximatiorproperty in the i.i.d. case.
and classification problems, where i) the procgsg} is a Reportedly, the computation of a P-dimension on the
sequence of independent and identically distributed (i.i.dhasis of its definition is a hard task, and this has been



for long an important bottleneck in the application of thewhere f has the following piecewise linear structure:
theory of uniform convergence of empirical means. In »

[26] and [27], a powerful technique for the evaluation f(x:0) :70+040I+Zm lvi 4+ izl

of the P-dimension of a function class satisfying general =1

conditions has been introduced. This technique is used fB

r.
proving the following result. eingd = [yo ao 1 71 a1 - T Yp ).

Consider the sef of all subsets of sek” = {1,2,...,p}.
Let as denote the elements Bfas iy, I, ..., Is».
For everyi = 1,...,27, define

S; = {ri((w,c),0) >0}, i=1,...,27,

Proposition 1:
P-dimensiof{i(-,0) : W — [0, M], 8 € ©}) < 0o (15)

Proof. Consider the family of functions h
Wi

H={h(-,0): W — [0,M],0 € O},
Ti(((z7x)ac)79) = [Z_(’YO + apx +Z (UkOék +77k’kaU))
whereW ¢ R**™m+1 and @ ¢ R+ (tm+2)—1 kel;
Given a functionh(-,0) in H, let B Z (v + nk%x))f te
9((w, ¢);0) := H(h(w; 0) —c), kEK\L

wherec € [0, M] is an additional variable anff(-) is the Definep additional sets as follows:

Heaviside function H(z) = 1, if « > 0, H(z) = 0, if S; = {1i((w,¢),0) >0}, i=2P+1,...,2" +p,
x < 0). Also, let

G :={g((-,-);0) : W x [0, M] — {0,1},0 € ©}.
Then, by [24, Lemma 10.1]

where
Ti((wﬂc)79):ai+7i$7 Z:2P+1,’2P+p

If we set

S =0, (SN ((Uner, Sar+x) N (Ukerr 1 S2v41))) 5
(see e.qg. [24, pag. 69] for the definition of the VC-
dimension). Thus, the original problem of computing théhen (16) follows. =
P-dimensiorif{) is reduced to the one of computing theg, ASCEM property in the beta-mixing case
VC-dimension@). This computation can be carried out by
resorting to [24, Corollary 10.2] as explained next.
Given any setS, let Is be the indicator function of. We
prove below thay((w, ¢); #) can be written as

P-dimensioi+) = VC-dimensioriG)

Consider the strictly stationary stochastic procgss =
(yx, dr—1)} satisfying the beta-mixing Assumption 2. Each
random variablew;, takes values over the compact 3&t
and has probability distributior®.
g((w,c);0) = Is((w,c),0), (16) Similarly to the i.i.d. case, we define

where S ¢ R+ x [O,M] X §R(p+1)(n+m+2)71 is a set Qmix(ta 6) = Pt{(wh SR wt) : sup |Jt(0) - J(G)‘ > 6}7
with a particular structure. Precisely, 0o
. where P, denotes the joint probability distribution of the
S = Boolean formula applied t¢.5;}:_ 1", random variablegws , . .., w;), and.J.(#) and.J(0) are the
empirical and theoretical costs defined in (9) and (10).

where S;, i = 1,...,2° r iven ;= : . . . .
ere i, i oo 204 p, are sets given by By the same line of reasoning as in the i.i.d. case, if

; ith 7; pol jals i h |
{7i((w, ), 0) > 0} with 7 polynomials in whose largest we can show thagmix(t,€) tends to zero ag — oo at a

degree isv = 4 (a Boolean formula is any set expres-_ .~
sion containing union, intersection, and complementationf.urﬁt'ﬁf?g%isséfr&jtr?évtieoris{%(fr;?h ;;e_)A[%CE]\A gret)rg}rty

Before proving (16), we note that the statement (15) Cav'ﬁl)ith respect to the process, — (v, dx_1)} foliows from

be obtained from (16) by applying the bound on th% . / o
. . . : . he Borel-Cantelli Lemma. The asymptotic optimality result
VC-dimensiong) in [24, Corollary 10.2], which, iin our (6) is then an immediate conseql}/enge of Lgmma X

notations, can be written as follows
We next show thatmix(¢, €) tends to zero ag — oo at

VC-dimensioniG) < 2qlog,(4ev(2F + p)) a faster rate thag;, Ve > 0, thus concluding the proof of
= 2¢log,(16e(2” + p)), asymptotic qptlmallty. The foIIowmg result proven in [20,
Theorem 2] is fundamental for this.
whereq :=(p+1)(n+m+2)—1.
The proof is now completed by showing (16). Proposition 2 ([20, Theorem 2])Fix a sequence of in-
Let us recall that tegers{k,} such thatk, < ¢, Vt. Then,

h(w; 0) := (z — f(2;0))%, w= (z,2) € W, amix(t, €) < t0k, + ki max{q(ls + 1,€),q(l¢, )}, (A7)



wherel; = |t/k;| denotes the integer part of'k; and  [4]
q(k,€) is defined in (13). a
Proposition 3: [5]
amix(t,€) = o(1/t%), Ye >0
Proof. By plugging in (17) the bounds ofi; and ¢(¢,¢) [6]
respectively given in Assumption 2 and (14), we get
. [7]
amix(t, €) < tp™ + kye(e)p(e)'
where we setc(e) = 8 (18c ]y %)d and p(e) := 8]
exp (—ﬁ) . If we define
v(e) = max{p, p(e)}(< 1) o
and choose:; = |Vt + 1], then, it is easily seen that, for
all t > 3, [10]
qmix(t,€) < tu(e)‘/z + (Vt+ 1)0(6)17(6)\/2_2. [11]
Since the right-hand-side of this equation is(a/t?), this
concludes the proof. O 12

IV. CONCLUSIONS

In this paper we adopted a statistical learning theory
approach for the analysis of the asymptotic learning Cq13]
pability of a PEM identification method, when the model
to be identified is piecewise affine and the input-outpu4!
data are collected from the system operating in stationary
conditions. We showed that if the input-output processes ares]
geometrically beta-mixing, then, the model with the bez[tle]
prediction performance is identified asymptotically. Thi
result is proven with reference to single-input/single-output
systems affine systems, but it can be generalized to tie]
multiple-input/multiple-output case. [18]

The adopted methodology could be useful for studying
the case when the model to be identified belongs to a moF]
general class of hybrid systems. Also, some of the interzo]
mediate results obtained in this paper are not asymptotic,
hence, they could be a good starting point for assessing trz%
quality of models identified based on a finite humber o
data. This is an interesting direction of research.
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