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Abstract: In this paper we set up a mathematical structure, called Markov String,
to obtaining a very general class of models for stochastic hybrid systems. Markov
Strings are, in fact, a class of Markov processes, obtained by a mixing mechanism of
stochastic processes, introduced by Meyer. We prove that Markov strings are strong
Markov processes with the cadlag property. We then show how a very general class
of stochastic hybrid processes can be embedded in the framework of Markov Strings.
This class, which is referred to as the General Stochastic Hybrid Systems (GSHS),
includes as special cases all the classes of stochastic hybrid processes, proposed in
the literature.
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1 Introduction

We formulate a very general class of Markov processes, which will be called Markov
Strings, loosely based on the so-called “melange” operation of Markov processes [10].
We start with a countable family of Markov processes with some nice properties: the
strong Markov property, the cadlag property. For each process belonging to this family,
we underlie the associated probabilistic elements: probability space, natural filtration,
translation operator, probabilities on the trajectories. We suppose that a stopping time
associated to each process, with memoryless property, and a renewal kernel are priory
given. The stopping times play the role of the jump times from one process to another
and the renewal kernel gives the distribution of the post-jump location. The probabilistic
construction of the Markov String is natural:

1. start with one process which belongs to the given family;
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2. kill the starting process at the time T3 of the first jump;

3. jump according to the renewal kernel;

4. restart an other process (belonging to the given family) from the new location;

5. proceed until the jump time of the new process and kill again, etc.

The pieced together process obtained by the above procedure is called Markov String. Its
jump structure is completely described by a renewal kernel, which is priory given, and the
family of stopping times described above. To eliminate pathological solutions that take an
infinite number of discrete transitions in a finite amount of time (known as Zeno solutions)
we impose that the resulted Markov String has finitely many jumps in finite time. We
prove that the above Markov Strings, as stochastic processes, enjoy useful properties like
the (strong) Markov property and the cadlag property.

Markov Strings differ from the class of processes considered in [10] in that:

1. The jump times are essentially given stopping times, not necessarily the life times of
the component processes; 2. After a jump the string restarts following an other process
which might be different from the pre-jump process.

The mixing (“melange”) operation in [10] is only sketched and the author claims that
it can be obtained using the renewal (“renaissance”) operation. We consider that the
passing from renewal to mixing is not straightforward. It is necessary to emphases the
construction of all probabilistic elements associated with the resulted string. Lifting the
renewal construction to the mixing construction, remarkable changes should be introduced
in the Markov string definitions of the state space, probability space, probabilities on the
trajectories.

We then show how a very general class of stochastic hybrid processes can be embedded

in the framework of Markov Strings. This class, which is referred to as the General
Stochastic Hybrid Systems (GSHS), allows:
1. Diffusion processes in the continuous evolution; 2. Discrete transitions which are
spontaneous (according to a transition rate) or forced (driven by a boundary hitting
time); 3. Probabilistic reset of the discrete and continuous state as a result of discrete
transitions.

The class of GSHS includes as special cases all the classes of stochastic hybrid processes,
proposed in the literature, as Piecewise Deterministic Markov Processes (PDMP) [6, 4, 11],
Stochastic Hybrid Systems (SHS) [8] and Switching Diffusion Processes (SDP) [7]. We
show that the class of GSHS inherits the strong Markov and cadlag properties from Markov
Strings.

2 Markov Strings

In this section we define the Markov string notion, which, roughly speaking, is a stochastic
process obtained by mixing some given Markov processes.

We prove that if we start with a countable family of ‘nice’ Markov processes then the
Markov string resulted will inherit the properties of its components.

2.1 The Ingredients

Suppose that M? = (Q, F/, F},xi,0;, P/, PL), i € Q is a countable family of Markov
processes. We denote the state space of each M* by (X*, B") and assume that B° is the
Borel o-algebra of X' if X is a topological Hausdorff space. Let A be the cemetery point
for all X*, i € @, which is an adjoined point to X*, X4 = XU {A}. The existence of
A is assumed in order to have a probabilistic interpretation of P, (z} € X*) < 1, i.e. at
some ‘termination time’ {i (w;) the process M escapes to and is trapped at A. For each



i € Q, the elements F', F;'°, Fi, 0, P, P!, have the usual meaning as in the Markov
process theory [3]. Also, in this paper, we make use some standard notions in the Markov
process theory as: underlying probability space, natural filtration, translation operator,
Wiener probabilities, admissible filtration, stopping time, strong Markov property [3].
Let (P}) denote the operator semigroup associated to M? which maps Bf(X?) into itself
given by _ _ _ _
P f(a') = By f(x),
where E!, is the expectation w.r.t. P’,. Then a function f is p-excessive (p > 0) w.r.t.

M if f >0and e PP f < fforallt>0and e PP/ f /' fast\,0.

Assumption 1 For each i € @), we suppose that:

1. M is a strong Markov process. 2. P' is a complete probability.

3. The state space X' is a topological space which is homeomorphic to a Borel subset of
a complete separable metric space (Borel space).

4. M? enjoys the cadlag property, i.e. for each w; € 0, the sample path t — xi(w;) is
right continuous on [0,00) and has left limits on (0,00) (inside XY )..

5. The p-excessive functions of M are P'-a.s. right continuous on trajectories.

Part 3. implies that the underlying probability space Q¢ can be assumed to be
Do) (X"), the space of functions mapping [0,00) to X* which are right continuous
functions with left limits. In the terminology of [9], parts 1., 3. and 5. of the Assumption
1 imply that each M’ is a right process.

Using this family of Markov processes {M'};cq, we define a new Markov process whose
realizations consist of concatenations of realizations for different M. To achieve this goal,
we need to define the transition mechanism from one process to the others. The jumping
mechanism will be driven by:

1. a sequence of stopping times, for each process is chosen a stopping time (which gives
the jump temporal parameter),
2. a renewal kernel which gives the post jump location.

2.2 The Construction

Using the elements defined in the section 2.1 we construct a stochastic process M =
(Q, F, Fi, x4, 0, P, P,). The process M is obtained by the concatenation of the component
processes M and will be called Markov String. Roughly speaking, this Markov string
is constructed in such a way that its sample paths are obtained sticking the sample
component paths between some jump times.

To completely define the Markov String we need to specify the following elements:
1. (X, B) - the state space; 2. (Q, F, P) - the underlying probability space; 3. F; - the
natural filtration; 4. 6, - the translation operator; 5. P, - Wiener probabilities.

State Space (X, B)

The state space will be X defined as follows. X is constructed as the direct sum of
spaces X, with the same cemetery point A, i.e.

X = | J{G2)x e X7} (1)

i€Q

It is possible to define a metric p on X such that p(x,,z) — 0 as n — oo with x,, =
(in,2in), * = (i,2%) if and only if there exists m such that i,, = i for all n > m and

Tpap — 2’ as k — oo. The metric p restricted to any component X' is equivalent to the



usual component metric [6]. Each {i} x X’ being a Borel space, will be homeomorphic
to a measurable subset of the Hilbert cube, H (Urysohn’s theorem, Prop. 7.2 [2]). Recall
that H is the product of countable many copies of [0,1]. The relation (1) implies that X
will be, as well, homeomorphic to a measurable subset of H. Thus X is a Borel space [2].

The space X can be endowed with the Borel o-algebra B(X) generated by its metric
topology. Moreover, we have

B(X) = of | J{i} x B'}. (2)
i€Q

Then (X, B(X)) is a Borel space, whose Borel o-algebra B(X) restricted to each com-
ponent X° gives the initial o-algebra B¢ [6]. The above argument allows us to make the
following remark:

Remark 1 We can suppose, without loss of generality, that X' N X7 = (0 if i # j. Thus
the relations (1) and (2) become

X = |Jx5 (3)
1€Q

B(X) = o(|JB). (4)
i€Q

Therefore, we can suppose, as well, that Q' N QJ = @ if ¢ # ;.

Probability Space

The space 2 can be thought as the space generated by the concatenation operation
defined on the union of the spaces Q' (which pairwise disjoint), i.e. Q = (U;eq Q)
Thus, the c—algebra F on 2 will be the smallest c—algebra on 2 such that the projection
7t Q0 — QF are F/F' measurable, i € Q. The probability P on F will be defined as a
‘product measure’. Let F be the o( |J F') defined on |J €.

i€Q i€Q
Recipe

Formally, in order to define the desired Markov string, M, we need to give:
1. (S%;eq, where, for each i € @, S’ is a stopping time of M’ with the ‘memoryless’
property, i.e. _
S (Qiw;) = S*(w;) — t, Vt < S*(w;) (5)
2. The jumping mechanism between the processes M is governed by a renewal kernel
which is a Markovian kernel

v {9 xB(X) = [0,1]
1€Q

satisfying the following conditions: (a) If S*(w;) = 400 then ¥(w;,-) = ea; (b) If t <
St(w;) then ¥(Qjw;, ) = ¥(w;,-).
Notation. The cemetery point of the state space ' is denoted by [A]* and the cemetery
point of € is denoted by [A]. We use to denote by w (resp. & or w;) an arbitrary element
of Q (resp. |J Q° or Q).
i€

In the follgwing, we give the procedure to construct a sample path of the stochastic

process (z¢)¢~o with values in X, starting from a fixed initial point zop = z € X". Let



wi, be a sample path of the process (z!°) starting with zo. In fact, we give a recipe to
construct a Markov string starting with an initial path w;,. Let T1(w;,) = S (wy,). The
the event w and the associated sample path are inductively defined. In the first step

W = Wy,

The sample path z;(w) up to the first jump time is now defined as follows:
f (W) =o00: z(w)=2°(wy), t>0
if T (w) <oo: x(w) =a(wy,), 0<t < Ti(w)
27, is a r.v. according to 5%0\1'.

The process restarts from xp, = xlf according to the same recipe, using now the process
(x3'). Let w;, be a sample of the process (z3') starting with z}*. Thus, if T} (w) < co we
define the next jump time

T3 (Wi, wiy) = T1(wig) + iy (Wi, )-
Then, in the second step
W = Wi, * Wiy

The sample path z;(w) between the two jump times is now defined as follows:
if To(w) =o00:  a(w) =2t q (Wi ), t > Ti(w)
if Th(w) <oo:  x(w) =2 (W), 0 < T (w) <t < Th(w)
rr, is ar.v. according to &y, V.
Generally, if Ti,(w) = Tk(wig, Wiqy ooy Wiy, ) < Wwith

W= Wi * Wiy * e KWy,
then the next jump time is

T 1(w) = Thi1(Wig, Wiy s ooy Wiy ) = The(Wig, Wiy ooy wiy 1) + S (wi,) (6)
The sample path z;(w) between the two jump times T}, and T}, is defined as:

i Tipn (@) = 00t @(w) = oy (@i),t > Tep ()

2 (w) = 2 g (wi,), 0 < Tho(w) <t < Ty (w)

ifTp11(w) < . ;
k41 (W) Tr,,, is a r.v. according to &, V.

(7)

We have constructed a sequence of jump times 0 < T} < Tp < ... < T, < ... Let
Too = lim T,,. Then z4(w) = A if t > T. A sample path until Ty, (where kg = min{k :

Sir(w) = oo}) of the process (x;), starting from a fixed initial point o = (ig, =), is
obtained as the concatenation:

W = Wi, ¥ Wi, * ... *wik071.

We denote N¢(w) =3 I4>7,) the number of jump times in the interval [0,¢]. To eliminate
pathological solutions that take an infinite number of discrete transitions in a finite amount
of time (known as Zeno solutions) we impose the following assumption:

Assumption 2 For every starting point x € X, EN; < oo, for allt € R,.
Under the assumption 2, the underlying probability space €2 can be identified with Djg o) (X).

Wiener Probabilities




One might define the expectation E*f, x € X, where f is a F-measurable function
on Q, which depends only on a finite number of variables, by recursion on the number of
variables.

Stepl. If f depends only on w;, i.e. f(w) = fi(w;) with f; a Fi-measurable function on
Q¢ then

oif v =1’ € X' then E,f = E!,f, where E’, is the expectation corresponding to the
probability P?,;
eif v =a7 € X7, j#ithen E,f =0.

Step2. If f depends only on w;,,wi,,...,wi,, i.e. f(w) = fulwiy,wiy,...,ws, ) with f, a

[T Fit-measurable function on T Q¥ then

k=1 k=1
fn—l(wiovwin"'vwin—l) = i fn(wiovwin"'7win—17win)dpé;n(winil7.)(win);
9Ww) = fac1(Wie,Wiys s Wi,y )5
E.f = E.qg. (8)

Translation Operators

Let us define now the translation operator (6;) associated with (x¢). If ¢ > T (w), then
we take 6;(w) = [A] = ([A]")ieq. Otherwise, there exists k such that Ty, (w) <t < Tj41(w).
In this case we take _

et(w) = (eik_Tk(w)(wik)vwik+1v ) (9)

Lemma 1 (0;) is the translation operator associated with (x), i.e.
fs00, = 9s+t; xs060, = Lstt-

Proof. If t > T (w), then 6;(w) = [A] and zsq¢(w) = A = 24(04(w)).
Suppose that there exist k,7 > 0 such that Tj(w) < t < Tk41(w) and T;(Ow) < s <
Ti+1(9tw). Then

(W) = 1ty (win); (25 0 04) (W) = 2, (O)_g,0i,).

Since 0;(w) is given by (9) and Tx41 is given by (6) we obtain

Ti1 () = S™(0)" 1 oy (wir) = 5% (wi,) — (t = T(w))
= Tk+1(w) — 1.
Then
Tit1(Ow) = Thpiva(w) — ¢
Therefore

Ti(Otw) <s< Ti+1(9tw) = Tk+i (w) <s+t< Tk+i+1 (w)
Markov Chain

Let (pn) be a discrete time Markov chain associated to (x;) with the state space
(U i, F) and the underlying probability space (€2, F). The chain (p,,) is essentially ‘the
i€Q
n —th’ step of the process (z,). If its starting point is w;, (a trajectory in Q% starting in
zg) then p,(w) = w;,.
The transition kernel associated with (p,,) can be defined as follows:

H(@,A) :PEQ\I/(A)v A Gﬁ-



The construction of P* from subsection 2.2 is such that
e H is the transition function of (p,);
e P? is the initial probability law of (p,); i.e. if © € |J €; which starts in x € X
i€Q
P°(py € A) = P*(A), A€ F.
Let n;, be the projection (po,p1,...,Dk), i-6. Np(W) = (Wig, Wiy s -vs Wiy )-

Natural Filtrations

Let (F:) be the natural filtration with respect to (x;). The natural filtration (F;) on
2 is built such that we have the following definition of F;-measurability:

Definition 2 A F-measurable function f on Q is Fy-measurable if the following property
holds:

For each k, the function f - I{1, (w)y<t<Ty.i(w)} 8 equal to h o ny, where the function
P(Wigy Wiy s wey wiy, ) 8 Such that for a fixed (W;y, @y, vy @4y, ) With T (©iq, iy y ey Wiy, ) <
t, wi, — h(@ig, Wiy ey Wiy, Wiy, ) 18 measurable with respect to ]—'tiiTk.

Because the families of filtrations (F}) are nondecreasing and right continuous, one
can verify that the family (F;) has the same properties, as follows.

Proposition 3 (i) The family (F;) is nondecreasing and right continuous.

(i) The random variables T}, are stopping times w.r.t. (Fy).

(iii) Let T' a stopping time with respect to (Fy). For each k € N, T ATy, is a function on
Q which depends only on wiy, Wiy, ...,wi,_,. On the other hand, if wiy,wi,,...,w;,_, are
fizved, the function (T NTyq1 — T)T with w;, as argument is a stopping time with respect
(7).

Proof. The proof can be obtained with small changes from the similar result proofs given
in [10] for the case of rebirth processes.

Jump Process

Fix x € X and consider a Markov string (x;) starting at « as constructed above. The
associated jump process (n,) takes values in X x Z, is defined as

x ! x
77t|:0 :|7t<T17~~'7nt|:Z%:||:ka :|7Tk§t<Tk+1-

We do not have a one-to-one correspondence between the sample paths of (z;) and (n,),
as in the case of piecewise deterministic Markov processes [6]. Given the sample path {z,
s < t}, the finite set of jump times is {7}, j = 1,...,k} = {s € (0,t] : x5 # xs_}, and
the sample path {n,, s <t} is defined using the above recipe. But conversely, given {n,,
s < t}, since kg = n then it is possible to find more then one trajectories which start
from zg. In fact, a sample trajectory of (n,) is associated with a family of sample paths
of (zy).

Therefore, the above jump process will not serve to study the Markov string, as in [6]. Its
role is taken by the Markov chain constructed in section 2.2.



2.3 Basic Properties
Simple Markov Property

Mainly, in this section we prove that the Markov string (z;) constructed in section
2.2 is a right Markov process. The proof engine is based on the Markov property of the
discrete time Markov chain (p,).

Remark 2 For each k on the set {T},(w) <t < Tjy1(w)} we have: xy = xi’“_Tk O Py

Proposition 4 Any Markov string M = (Q, F, Fi,x4,0¢, P, P,), obtained using the pro-
cedure presented in section 2.2, is a Markov process.

Proof. The simple Markov property of (x;) is equivalent to the following implication
[10]:
If f is a positive Fy-measurable function and g is a F-measurable function then

E*[f-go0:i] = E*[f - E*[g]]. (10)
The identity (10) can be unfolded into two separated equalities
E*[f-go0i-Iysmy] = E°[f- E™[g] - Iisroy] (11)
E*[f-g00i- Lin,wy<i<tim@pyl = E°[f B[] Imw<icnoawy]  (12)
The identity (11) is clear because on {t > Two }
E*tg] = g([A]); Ou(w) = [A]; 2i(w) = A.
Let us prove now the identity (12). Let w € Q. By the definition of F; we have

f(w) : I{Tk(w)§t<Tk+1(w)}(w) = h(wiovwin "'7wik) (13)

where h is a measurable function as in the definition 2 and is equal to zero outside of the
set {Ti(w) <t < Tpr1(w)}

In order to prove (12) it is enough to treat the case when the function g depends only
on a finite number of variables (because the expectation E* is defined by the recursion

(8))-
We start with the case when the function g depends only on a single variable, w;,, i.e.

g(w) = a(wi,), where a is Fo-measurable on Q. In this case, the left-hand side of (12)
is equal to

E*[f - Ity )<t<tir @)y - 400 g 0 (@in))]- (14)
Because the term between |[...] depends only on (w;,, w;,, ..., w;, ), (14) becomes
B[ by o) - a0l g, ) @i))APE, (i)} (15)

Qik

Again, the integrand between {...} depends only on (w;,, wi,, ..., w4, _, ). Since the function
wiy, — h(Wig, Wiy s -oywiy, ) 18 szTk—measurable, we can use the Markov property of the
process M and (15) becomes

ik
/ h(wiovwin"'vwik)E i
Qik z

t—1Ty, (wiy)

[a] dPé,’“( ) (wiy,)- (16)

Wig_ 1y



Since z;(w) = xi’“_Tk (wip) on {T(w) <t < Tyy1(w)} the computation of the right-hand
side of (12) gives _
Ez{h(wio,wil,...,wik).E;’zk » )[a]} (17)
t—1y, Wiy
Using the recursive procedure, as before, (17) gives (16).
Suppose now that (12) is established for all functions g which depend only on (wi,, Wiy, «.., Wiy, )-
We have to prove that (12) is true for

g((.U) = g(wiovwin"'vwik); k> 0.

Let
C(OJ) = C(WiO,OJil, "'7wik—1) = /

@
) b(wio s Wiy eeey wlk)dP\If(
Q'k

wik717.)(wik)'
Using the recursive procedure, one can check that the functions
h(...)go0; and h(...)co#b,

have the same expectations.
On the other hand, the functions

h(..)E.[g] and h(..)E;c

have the same expectations. Since ¢ depends only on k — 1 variables, this implies (12) for
the general case.

Cadlag Property

Proposition 5 If M = (Q, F, Fy, x4, 0, P, P.) is a Markov string as in section 2.2, then
for all w € Q the trajectories t — x¢(w) are right continuous on [0, 00) with left limits on
(0, 00).

Proof. The result is a direct consequence of two facts:

1. the sample paths of (z;) are obtained by concatenation of sample paths of component
process;

2. the component processes enjoy the cadlag property.

Then the Markov string inherits the cadlag property.

Strong Markov Property

Theorem 6 Any Markov string M = (Q, F, Fy, x, 01, P, P,), obtained using the procedure
presented in section 2.2, is a strong Markov process.

Each T} is a stopping time for (z;) (see proposition 3 (ii)). For each k > 1, T}, can be
obtained by the following recursion

Tir1 =Ty + S o0,

Let us prove now that the process () is a strong Markov process. The filtration (F;) is
nondecreasing and right continuous (see proposition 3 (i)). Then the process (x;) satisfies
the right hypothesis.

Let (P;) be the semigroup of the whole Markov process (x;), P;g(z) = E,g(z;), where g is
bounded B-measurable function. Let (U,),>0 the resolvent associated to the semigroup,
ie.

Upg:/ e P! Pgdt.
0



It is known that the strong Markov property is equivalent with each from the following
assertions [9]:

1. If g is a positive bounded continuous function on Xa then f = Up,g (p > 0) is nearly
Borel and right continuous on the process trajectories.

2. Each p-excessive function (p > 0) is nearly Borel and right continuous on the process
trajectories.

Recall that a real function defined on the state space X is nearly Borel for the process
(x¢) if there exist two Borel function h and A’ on Xa such that A’ < f < h and

P{w|3t,h o x4 (w) < hozt(w)} = 0. (18)
Let g be a positive bounded continuous function on X. We have g =3 ¢, where
i€Q
g' = g|x: are bounded continuous functions on X?. Then P,g =Y P/g" and
i€Q
Upg :/ e P P,gdt :Z/ e P Plgtdt :Z U;gi.
0 ieQ V0 i€Q

It is known that f = U,g (p > 0) (the restriction to X) is p-excessive function with
respect to (P;) and for each i € Q and the function f* = Ul g’ is p-excessive function with
respect to (Pf). Therefore, f! is nearly Borel and right continuous on the trajectories of
the process (x¢). It is clear from the construction that the function f is right continuous
on the trajectories of the process (z;).

Let A, h” two Borel functions on X4 such that h’ < f* < h' and

hY o xt(w;) = h' o xi(w;) P — a.s.,Vt > 0. (19)
Let us consider the function h, h’ defined as below:
h=> W', W =Y "n". (20)
i€Q i€Q

It is clear that
P{w|3t > Too, h' 0 2 (w) < hox(w)} = 0.

Let us compute the probability of the following event:
A = {3t[T), <t < Tpq1, W oxy(w) < hoxp(w)}.

We have A, € F. Let ap = I4, which depends only on w;,,w;,,...,w;, . The recursive
method to compute the probability of Ay on {1}, <t < Tj11} gives

/Qik ar (Wi, Wiy, ""wik)dpék(wik,l,-)(wik)' (21)
Since ag(wiy, Wiy, -, wi),) on Qi+ is exactly the indicator function of
B = {w;, |Fu < S* (w;, ), ' o 2 (w) < h'* o 2% (w)}
using (19) we obtain that the integral (21) is zero. Therefore the functions h,h’ defined

by (20) verify the condition (18). Then f will be a nearly Borel function relative to the
process ().
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3 General Stochastic Hybrid Systems

3.1 Description

General Stochastic Hybrid Systems (GSHS) are a class of non-linear stochastic continuous-
time hybrid dynamical systems. GSHS are characterized by an hybrid state defined by
two components: the continuous state and the discrete state. The continuous state evolves
in according to a stochastic differential equation (SDE) whose vector field and drift factor
depend on the hybrid state, both continuous and discrete. Switching between two discrete
states is governed by a probability law or occurs when the continuous state hits the
boundary of its state space. Whenever a switching occurs, the hybrid state is reset
instantly to a new state in according to a probability law which depends itself on the past
hybrid state.

GSHS involve a hybrid state space, with both continuous and discrete states. The
continuous and the discrete parts of the state variable have their own natural dynamics,
but the main point is to capture the interaction between them.

The time ¢ is measured continuously. The state of the system is represented by a
continuous variable z and a discrete variable i. The continuous variable evolves in some
“cells” X' (open sets in the Euclidean space) and the discrete variable belongs to a
countable set Q). The intrinsic difference between the discrete and continuous variables,
consists of the way that they evolve through time. The continuous state is governed by an
SDE that depends on the hybrid state. The discrete dynamics produces transitions in both
(continuous and discrete) state variables x, 4. Transitions occur when the continuous state
hits the boundary of the state space (forced transitions) or according with a probability
law. Whenever a transition occurs the hybrid state is reset instantly to a new value. The
value of the discrete state after the transition is determined by the hybrid state before the
transition. On the other hand, the new value of the continuous state obeys a probability
law which depends on the last hybrid state. Thus, a sample trajectory has the form
(gt, x¢,t > 0), where (z¢,t > 0) is piecewise continuous and ¢; € @ is piecewise constant.
Let (0<T) <Tp <..<T; <Tj41 < ..) be the sequence of jump times at which the
continuous and the discrete part of the system interact. This time sequence is generated
when the state of the system hits the boundary or according with a transition rate.

In fact, GSHS are a class of stochastic processes which generalizes piecewise determin-
istic Markov processes (PDMP) introduced by Davis in [6]. The difference between GSHS
and PDMP is that for GSHS between two consecutive jumps the process is a diffusion
whilst for PDMP the inter-jumps motion is deterministic, according to a vector field.

3.2 The Abstract Model

State space

Let Q be a countable set of discrete states, and let d : Q — N and X : Q — R0 be
two maps assigning to each discrete state i € Q an open subset X? of RU). We call the
set

X(Q,d, x) = | J{i} x X
i€Q
the hybrid state space of the GSHS and =z = (i,2%) € X(Q,d, X) the hybrid state. The
completion of the hybrid state space will be

X =X UdX

11



where _
0X = [ J{i} x ax7,
1€Q

It is clear that, for each i € @, the state space X? is a Borel space. It is possible
to define a metric p on X in such a way the restriction of p to any component X° is
equivalent to the usual Euclidean metric (see section 2). Then (X, B(X)) is a Borel space
(see section 2 for the construction of B(X)). Moreover, X is a homeomorphic with a Borel
subset of a compact metric space (Lusin space) because it is a locally compact Hausdorff
space with countable base (see [6] and the references therein).

Construction

Assumption 3 Suppose that b: Q x X) - R o :Q x XO) — RIOX™ 4 e N, are
bounded and Lipschitz continuous in x.

This assumption ensures, for any i € @, the existence and uniqueness (Theorem 6.2.2.
in [1]) of the solution for the following SDE

dz(t) = b(é, 2(t))dt + o (i, 2 (t))dWs, (22)

where (W, ¢t > 0) is the m-dimensional standard Wiener process in a complete probability
space.

In this way, when i runs in @, the equation (22) defines a family of diffusion processes
M = (QF, Fi, Fi at, 0t PY), i € Q with the state spaces R, i € Q.

The jump (switching) mechanism between the diffusions is governed by two functions:
the jump rate A and the transition measure R. The jump rate A : X — R is a measurable
function and the transition measure R maps X into the set P(X) of probability measure
on (X, B(X)).

One can consider the transition measure R : X x B(X) — [0, 1] as a reset probability
kernel such that: (i) for all A € B(X), R(-,A) is measurable; (ii) for all # € X the
function R(z,-) is a probability measure.

Assumption 4 (i) A\ : X — Ry is a measurable function such that t — Naj(w;)) is
integrable on [0,e(x?)), for some e(x?) > 0, for each x* € X* and each w; starting at x°.

(ii) For each i € Q the restriction of A to X' is bounded. Let ¢! = sup A(z?).
zieX?

Since X is a Borel space, then X is homeomorphic to a subset of the Hilbert cube,
‘H. Therefore, its space of probabilities is homeomorphic to the space of probabilities
of the corresponding subset of H (Lemma 7.10 [2]). There exists a measurable function
F :H x X — X such that

R(xz, A) = pF ~'(4), A € B(X) (23)
where p is the probability measure on H associated to R(x,-) and
F 1 (A) = {w e H|F (w,z) € A}.

The measurability of F is guaranteed by the measurability properties of R.

We construct an GSHS as a Markov string H which admits (M) as subprocesses.
The sample path of the stochastic process (z;);~o with values in X, starting from a fixed
initial point xg = (i, xé") € X is defined as in subsection 2.2 using a particular sequence
of stopping times and a particular renewal kernel. We have to precise, from the beginning,
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that the above recipe gives a sample path of GSHS starting with a initial diffusion path
whose starting point is xg. An arbitrary point xy does not define in a unique way a
diffusion path!

Let w; a trajectory which starts in (i,2°). Let t.(w;) be the first hitting time of 0X*
of the process (2}). Let us define the function

t
F(t,wr) = Lper. o)) exp(— / A, (1)) ds. (24)
0

Using this function we define a stopping time S* associated to the diffusions (z%). In other
words, F' can be thought of as the survivor function for the stopping time. Obviously, the
stopping time S? is the minimum of two other stopping times:

1. the first exit time from X7, i.e. t,

Qi3

2. the the stopping time with the exponential survivor function (24), i.e.
Si(w;) = inf{t > 0| F(t,w;) < e~}

or, _
PUS" > t] = PH{w;|F(t,w;) > e '}

The event w and the associated sample path are inductively defined. In the first step

w = w;,. The first jump time of the process is T1(w) = T1(w;,) = S (w;,). The sample
path z;(w) up to the first jump time is now defined as follows:

if Ty (w)=o00: x(w) = (ig,2i(ws,)), t >0

if Th(w) <oo:  x(w) = (ig, 2% (W), 0 <t < Th(w)

Ty = F(wv (2'071'1791 wio)))'

The process restarts from xp, = (z’l,xil) according to the same recipe, using now the
process zi'. Let w;, be a diffusion path starting in 2%'. Then w = w;, * w;,. Then, if
T)(w) < oo we define the next jump time

Ty (w) = Ta(wip,wiy) = Th (wiy) + 5 (wy,)

The sample path z;(w) between the two jump times is now defined as follows:
if Th(w) =00: x(w) = (i1,2;1q, (w)), t = T1(w)
if ThH(w) <oo:  x(w) = (i1, 27 (w)), 0 < Ty (w) <t < Th(w)
rr, (W) = F (w, (i1, 27, (w)))-
and so on. Let T7 < Ty < ... < Tj, < ... be the sequence of stopping times obtained by
the above method. Let T, = lim T,. All probabilistic elements associated to (x;) are

n— oo

constructed as in section 2.2. We suppose that the assumption 2 is in force.

Formal Definitions

We can introduce the following definition.

Definition 7 A General Stochastic Hybrid Model (GSHS) is a collection H = ((@, d, X),b,0, Init, A\, R)
where

e () is a countable set of discrete variables;

e d:Q — N is a map giving the dimensions of the continuous state spaces;

e X :Q — R maps each q € Q into an open subset X1 of R4

o b:X(Q,d,X) — R is a vector field;

o 0: X(Q,d X) — RIO*™ s g X _yalued matriz, m € N;
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e Init : B(X) — [0,1] is an initial probability measure on (X, B(S));
* \: X(Q,d,X) — R" is a transition rate function;
e R: X x B(X) — [0,1] is a transition measure.

Definition 8 (GSHS Execution) A stochastic process z; = (q(t), z(t)) is called a GSHS
execution if there exists a sequence of stopping times Ty = 0 < Ty < Ty < ... such that
for each k € N,

o o = (qo,2{") is a Q x X -valued random variable extracted according to the probability
measure Init;

o Fort € [Ty, Tit1), @t = qr, 18 constant and z(t) is a solution of the SDE:

d(t) = blgr,, x(t))dt + o(qr,, 2(t))dW; (25)

where Wy is a the m-dimensional standard Wiener;
o Tji1 =Ty + S where S™ is according with the survivor function (24).
e The probability distribution of x(Tk+1) is governed by the law R ((qu,x(Tk_H)), ).

3.3 Properties

GSHS, being constructed as particular Markov strings, they inherit the properties of these,
namely they are strong Markov processes with cadlag property.

Proposition 9 Any General Stochastic Hybrid Model H, under the standard assumptions
of section 8.2, is a Borel right process.

Proof. To prove that H is a right Markov process, we have to verify the hypothesis of
theorem 4. We can suppose without loss of generality that Q' N € = (). Then, the kernel
¥ can be defined as follows ]
U:{U @} xB(X)—[0,1] such that W¥(w;, A)= R(z%,
i€Q
We need to check that: If 0 < t < S%(w;) then ¥(0iw;,-) = ¥(w;, -), i.e.the stopping times
(S%) have the ‘memoryless’ property R(x’ = R(2%u(,,),")- In fact, we have to

prove that, if 0 <t < t+ s < S%(w;) then

(o.).;)’ A)

lsi(e;'wi)v )

P (S' >t + 5S> t) = PT (S > s) (26)

Using the survivor function defined by (24), since ¢*(0jw;) = t.(w;) —t which implies that
t+s <te(w;) & s < tu(Oiw;), we get

F(t+ s,w;) _ Tiipoct, (i)} eXP(*fOHS Azl (wi))dT)

F(t,w;) Itoctn iy exp(— [y Mzt (w;))dr)
t+s )

= Ijpscrwm ep(— [ Aai(w))dr)

= Ifpscrw ep(— [ Ay, (w;)dr)

S

= o<t @y exp(— [ a0 0y (wi))dr)

S— — T

= F(s,0;(w1)
The left hand side of (26) becomes
PY(ST >t s|ST > 1) = P [F(tw) (s, 01(w:) 2 e Pt w) 2 e
= PUF(s,0i(w)) = e
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and (26) is proved.
Thus, H is a Markov string obtained by mixing some diffusion processes. Since the
state space is a Lusin space, H is a Borel right process.

4 Conclusions

In this paper we set up the notion of Markov string, which is roughly speaking, a concate-
nation of Markov processes. This notion arises as a result of our research on stochastic
hybrid system modelling [8, 4, 5, 11] and it aims to be a very general formalization of all
existing models of stochastic hybrid systems.
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