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Abstract
Air Traffic Management (ATM) involves interactions
between multiple human operators, procedures and technical
systems, all of which are highly distributed. This yields that
providing safety is more than making sure that each of the
ATM elements functions properly safe; it is the complex
interaction between them that determines safety. The
assessment of isolated indicators falls short in covering the
complex interactions between procedures, human operators
and technical systems in safety-critical non-nominal
situations. To improve this situation, this paper develops an
approach towards the modelling and assessment of risk of
mid-air collision between aircraft.  

1. Introduction
By its very nature Air Traffic Management (ATM) is a highly
distributed safety critical operation. Each aircraft has its own
crew, and each crew is communicating with and receives
safety critical instructions from multiple human operators in
different centres on the ground. The implication is that safety
of air traffic is the result of interactions between multiple
human operators, procedures (including spacing and
separation criteria), and technical systems (hardware and
software) all of which are highly distributed. Providing safety
is more than making sure that each of these elements function
properly and safely. Since the interactions between the
various elements of ATM significantly determine safety, it is
imperative to understand the safety impact of these
interactions, particularly in relation to non-nominal situations.

Traditional ATM design approaches tend first to design
advanced ATM that provides sufficient capacity, and next to
extent the design with safety features. The advantage of this
approach is that ATM developments can be organised around
the clusters of individual elements, i.e., the communication
cluster, the navigation cluster, the surveillance cluster, the
automation tools cluster, the human machine interfaces
(HMIs), the advanced procedures, etc. The disadvantage of
this traditional approach is that it fails to address the impact
of interactions between ATM elements on safety.

A goal directed approach would be to design an ATM
operational concept that is inherently safe at the capacity-
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level required. From this perspective, safety assessment might
be one of the primary filters in the development of advanced
ATM designs. An early filtering of ATM design concepts on
safety grounds can potentially avoid a costly development
program, or an even more costly implementation program that
turns out to be less effective than expected. Although
understanding this idea is principally not very difficult, it can
be brought into practice only when an ATM safety
assessment approach is available that provides appropriate
feedback to the ATM designers at an early stage of the
concept development (Fig. 1). This feedback should not only
provide information on whether the design is safe enough, but
it should also identify the safety-capacity bottlenecks.

Figure 1: Safety feedback based ATM design.

For oceanic air traffic, the civil aviation community has
developed a mathematical model to estimate mid-air collision
risk levels as a function of spacing (ICAO, 1988). This model
is known as the Reich collision model (Reich, 1964).
Following Hsu (1981), in mathematical terms the Reich
model assumes that the physical shape of each aircraft is a
box, having a fixed x,y,z orientation, and the collision risk
between two boxes is approximated by integrating the in-
crossing rate over the time period in which these boxes may
be close to each other. Unfortunately, this Reich model does
not adequately cover situations where ground controllers
monitor the air traffic through radar surveillance and provide
tactical instructions to the aircraft crews.

The aim of the current paper is to improve the modelling and
assessment of collision risk between aircraft by studying the
problem within the framework of hybrid-state Markov
processes. This framework has been well developed for
applications to other safety critical industries, e.g. nuclear,
chemical. As explained in a recent overview (Labeau et al.,
2000), the particular processes studied are ordinary
differential equations (ODE) with switching coefficients, such
that the resulting hybrid state process is Markov. For risk
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evaluation of this class of hybrid-state Markov processes
several combinations of analytical and numerical techniques
have been developed. The main extension of the current paper
is that in contrast to the ODE’s with switching coefficients,
we consider stochastic differential equations (SDE) with
switching coefficients. This allows Brownian motion terms,
e.g. to represent the effect of random wind disturbances on
aircraft trajectories.

In addition to the mathematical challenges of modelling
collision risk in air traffic, there is the challenge to specify an
appropriate mathematical model of an air traffic operation
that covers all relevant elements and the interactions between
these elements. For air traffic, this issue is covered by
complementary studies, e.g. Corker (2000), Blom et al. (2001,
2003a), Everdij & Blom (2002), Stroeve et al. (2003), and
falls outside the scope of the present study.

The paper is organised as follows. Section 2 develops mid-air
collision risk equations. Section 3 develops a stopping-time
based risk decomposition. Section 4 illustrates some results of
the approach of sections 2 and 3 for a realistic application.
Section 5 draws conclusions.

2. Mid-air collision risk equations
Throughout this and the next sections, all stochastic processes
are defined on a complete stochastic basis (Ω, F, IF, P, 7) with
(Ω, F, P) a complete probability space, and IF is an increasing
sequence of sub-σ-algebra’s on the positive time line 7=IR+,

i.e. IF { }FFJ (, ),7∈∆
,tt , J containing all P-null sets of F and

FFFJ ⊂⊂⊂ ts  for every s < t.

Consider an M-aircraft evolution model that is represented by
stochastic differential equations1 with switching coefficients,
one for each of the M aircraft, i.e. for i = 1,…,M,
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assumes values in IRn and i
tθ  a finite (N) state process such

that {xt,θt} is a semi-martingale and a strong Markov process.
The mappings f and g may represent planning and control
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tx  form the 3D position of
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i
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with H a 3×n-matrix. To avoid Brownian motion behaviour in
positions, we adopt the assumption
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1 Labeau et al. (2000) assume g = 0, i.e. no diffusion.

Next, with i
ty  and j

ty  representing the positions of the
centres of aircraft pair (i,j), the relative 3D position is
represented by the process j

t
i
t
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velocity is represented by the process j
t
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A collision means that }{ ij
ty  enters a closed collision area Dij

around the origin; i.e. an area where aircraft i and j are not
separated anymore. Under the assumption that the length of
the aircraft equals the width of the aircraft, and that the
volume of an aircraft is represented by a box the orientation
of which does not change in time, then the size of Dij is the
sum of the size of two individual aircraft, i.e.
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width, is3  the height of aircraft i and ii ss 21 = . If the relative

position }{ ij
ty  enters Dij at time τ, i.e. if ijij Dy ∉∆−τ  and

ijij Dy ∈τ  for 0↓∆ , then we say an incrossing event occurred.
For equation (1) we assume that Dij is transient (i.e. non-
absorbing).

Next, we define for each (i,j) an indicator process }{ ij
tχ  as

follows:
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C.1 For any (i,j) the indicator process }{ ij
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variation over any finite interval.

Lemma 1
Under assumption C.1 the indicator process }{ ij
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any finite interval a unique decomposition:
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Proof: With }{ ij
ty  progressively measurable for all t, and Dij a

Borel set, the indicator process }{ ij
tχ  is also progressively

measurable for all t. Due to assumption C.1 any realisation
)}({ ωχ ij

t  is a real-valued measurable function with finite
variation for all t, which implies decomposition (3) (Wong
and Hajek, 1985, p.218). Q.E.D.

Remark 1: Notice that }{ +ij
tχ  and }{ −ij

tχ  count the in-

crossings and out-crossings respectively of }{ ij
ty  in Dij.



Next, we define ),( 10 ttI ij
in  as the expected number of

incrossings between the two aircraft considered during [t0, t1]
(t0 < t1 < ∞), i.e.,
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and define the collision probability ),( 10 ttP ij
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}{  ),(
0t1t10
++ ≠∆ ijijij

col PttP χχ (5)

Remark 2: Equation (5) implies that the first incrossing on a
given interval is the collision on that interval.

Furthermore, define τ0 as the moment of the first incrossing
after t0, i.e. ),inf( 00
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Proof: See Blom et al. (2003b).
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Theorem 2
Under assumptions C.1 and C.2, equation (4) yields:
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with )(tijφ  the incrossing rate, which is defined, if the limit
exists, as
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Proof: See Blom et al. (2003b).

Next, some assumptions are introduced under which )(tijφ  is
characterised. These assumptions are:
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A.4 A rather technical assumption on the joint density

function of the pair ),( ij
t
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t vy  (see Bakker & Blom,

1993).

Theorem 3
Under assumptions A.1, A.2, A.3 and A.4, the incrossing rate
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Proof: See Bakker & Blom (1993, Theorem 1)

Remark 3: Equations similar to (8) have been derived by
Leadbetter (1966, 1973) and by Marcus (1977) for a one-
dimensional process and by Belyaev (1968) for a multi-
dimensional process.

Remark 4: In Blom & Bakker (2002), the incrossing rate is
further characterised for Gaussian and Gaussian mixture
shapes of )(

,
⋅ij

tvij
ty

p .

3. Stopping time based decomposition

Theorem 3 shows that )(tijφ  can be evaluated as a function of

the probability density of the joint relative state ),( ij
t

ij
t vy . In

general, a characterisation of this probability density is
complex, especially since there are combinatorially many
types of non-nominal events. In order to improve this
situation, we introduce a stopping time based approach for
decomposing the incrossing risk for a pair of aircraft.
Following Section 3, the evolution of the M-aircraft situation
is modelled as a Markov process {ξt}={xt,θt} in a hybrid state
space X = (IRn×IM)M. From the theory of Markov processes,
e.g. Davis (1993), it follows that for a time homogeneous
Markov process the evolution of the density distribution

)(⋅tpξ  of the joint process can be characterised by a

Chapman-Kolmogorov equation
0,}{}|{}{ 00 ≥∈=∈=∈ ∫ tdPAPAP

X
tt ξξξξξξ , (10)

for any Borel set A ⊂ X.
The first step is to recognise that if the strong Markov
property holds true for {ξt}, then equation (10) holds true for
any stopping time τ  as well:
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X

tt ξξξξξξ ττ (11)

which for example means that, more colloquially, Monte
Carlo simulations of a strong Markov process may be
restarted from an empirical distribution that has been obtained

for any stopping time. Now for a stopping time ],[ 10 ttij ∈τ

that is smaller than the first incrossing moment ij
0τ  between

aircraft pair (i,j) on [t0,t1], i.e. ijijt 00 ττ << , eq. (6) becomes
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Next, we introduce a conditioning on classes of non-nominal
events. To do so, we define an event sequence classification
process }{ ij

tκ  assuming values in a discrete set K , and such

that ij
tκ  is a function of tθ , i.e. )( t

ijij
t K θκ = , with ijK  an

application specific measurable mapping of tθ  into K .

Hence, },{ ij
tt κξ  too is a strong Markov process. Then for any

stopping time τ ij for the aircraft pair (i,j) we can decompose
the incrossing integral using the total probability theorem as
follows:
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Figure 4: Collision risk tree.

In Figure 4, Equation (13) is presented in the form of a tree,
where
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This tree has a clear resemblance with the well-known fault
tree. However, because of the underlying stochastic and
physical relations, our new tree differs significantly and is
called a collision risk tree. The collision risk tree
decomposition in (13) allows evaluating the incrossing
integral in two steps: first the probabilities }{ κκ

τ
=ijP  and

next the conditional incrossing integrals ∫ =
T
ij
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ij
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τ τ
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for each K∈κ . If the evaluation of ∫ =
T
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as demanding as the direct evaluation of ∫ 1 )(
t
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τ

φ  is, then

nothing is gained with this decomposition. However, by
choosing the event sequence classification process }{ ij

tκ  and

the stopping time ijτ properly, it may be possible to simplify
numerical evaluation of the incrossing integral considerably.
The key to realise this is that the relevant state space to
evaluate the integration of each )|( κκφ

τ
=ij

ij
ij t  over ),( 1t

ijτ

should be much smaller than the state space needed to
evaluate the integration of )(tijφ  directly over ),( 10 tt . An
additional advantage is that it becomes clear how much the
contribution to the risk is per κ-value.

4. Results for an en-route ATC example
As an illustrative example, we show some results of applying
the risk equations and risk decomposition approach of
sections 3 and 4 to a specific conventional en-route ATC
situation, with two opposite streams of air traffic at the same
flight level (see Figure 5).

S

Figure 5: Opposite direction traffic in a dual lane route with
lane spacing S

See Everdij & Blom (2002) and Blom et al. (2003a) for
further explanation of this example. Here we restrict
ourselves to giving the risk evaluation and composition
results for varying spacing S values.
Let ℜi denote the expected number of incrossings per hour
(=T) between aircraft i and an opposite flying aircraft. Then
we have:
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Let Nflow be the aircraft flow per hour per lane and in eq. (1)

let for all i, j: f i = f j , gi = gj and }{ i
tw  and }{ j

tw  are
probabilistically equivalent, then
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with j one selected aircraft that encounters aircraft i clearly
within the time period.

Stopping time used
Let τij be the first moment of overlap in along-lane direction
between aircraft i and aircraft j, i.e.
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stopping time, no collision between aircraft pair (i, j) can
occur before τij. Hence, substitution of  (13) in (14) yields:
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Event sequence classification
For all t, we define the event sequence classification process

ij
tκ  as a mapping of tθ  into

22 ))(  DMABCCCN (KKKKK ×××∆ ,
where the set names CN, CC, AB and DM stand for:
• CN = Common Navigation modes {CN Up, CN Down}
• CC = Common Communication modes {CC Up, CC

Down}
• AB = Aircraft Behaviour modes (Nominal or Deviating

from ATC intent, with two Deviating modes: Non-
Nominal drift away and Turning away)

• DM = Decision Making Loop modes, which covers
surveillance, controller, radio-communication and crew
(all being Up or at least one being Down).

Numerical results
For the model considered it appeared that, for the CC×CN
values of κ, }{ κκ

τ
=ij

ijP  could be obtained through Markov

chain analysis of the behaviour of an independent Markov
chain part of {θt}. For the other κ-values CC×CN conditional
Monte Carlo simulation have been run. Table 5 illustrates the

}{ ij
ijP

τ
κ  outcomes for some clusters of κ-values:

I. Both aircraft in AB Nominal and DM being Up or Down.
II. At least one aircraft in AB Turning and DM being Up or

Down.
III. All other combinations.

CN Up CN Down
(AB×DM)2 CC Up CC Down CC Up CC Down

I 9.99⋅10-1 2.50⋅10-4 0.0 0.0
II 8.90⋅10-5 8.58⋅10-8 4.29⋅10-10 1.07⋅10-13

III 4.49⋅10-4 1.12⋅10-7 2.50⋅10-6 6.25⋅10-10

Table 5 Common event sequence probabilities for clusters of
κ-values in K. For the model considered there is no S
dependency.

Next, numerical results for ∫ =1 )|(
t
ij

ij
ij

ij dtt
τ τ

κκφ  are obtained

as function of spacing S for all κ values. The numerical
evaluation is done through five steps:
1. Importance sampling based Monte Carlo simulation of

sets of particles*) per κ-value to get an empirical density
approximation for )|(

|,
κ

τ
κ

ττ

⋅ij
ij

ij
ijvij

ijy
p  for each κ-value.

2. Gaussian sum density fitting of the resulting sets of
particles per κ-value.

3. Numerical evaluation of (8) using the Gaussian sum
characterisation for (8) in Blom & Bakker (2002);

4. Numerical integration over ),( 1t
ijτ . The effective

integration time is of the order 5.0}{/ ,1 <∆ ij
tvE s. On this

                                                
*) A particle is a simulation sample with an importance weight
attached to it.

short time interval eq. (1) is assumed to be approximated
by the following ODE**): 

0=
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5. Repeat steps 3 and 4 for all relevant S-values.

Table 6 illustrates the ∫ 1 )|(
t
ij

ij
ij

ij dtt
τ τ

κφ  outcomes for clusters

of κ-values in K and for S = 20 km.

CN Up CN Down
(AB×DM)2 CC Up CC Down CC Up CC Down

I 2.0⋅10-16 1.1⋅10-14 n.a. n.a.
II 5.2⋅10-9 6.2⋅10-9 1.4⋅10-9 2.9⋅10-8

III 2.6⋅10-5 1.5⋅10-4 1.6⋅10-4 1.6⋅10-4

Table 6 Conditional incrossing integral for clusters of κ-
values in K  and spacing S = 20 km.

Composition using eq. (15)
Solving (15) by substituting Nflow = 3.6 aircraft per hour and
the numerical results obtained for }{ κκ

τ
=ij

ijP and for

∫ =1 )|(
t
ij

ij
ij

ij dtt
τ τ

κκφ , yields ℜi. Figure 6 illustrates the

outcomes as a function of S and for four selected clusters of
κ-values in K.
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Figure 6. ℜ i and the contributions to it from four clusters of
κ values. The horizontal line represents ICAO’s applicable
Target Level of Safety (TLS) (ICAO, 1998).

In Figure 6, the curve for ℜi reaches the TLS line at about 24
km. This means that for the mathematical model, a safe
spacing value would be 24 km. One should be aware that
Figure 6 and Table 5 and Table 6 just illustrate the type of
outputs one can get with the mathematical model. For the
assessment against reality, see Everdij & Blom (2002).
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Numerical accuracy and simulation load
To get the results for all S-values, a total of 107 aircraft
flighthours has been Monte Carlo simulated. This comes
down to an average of 106 aircraft flighthours per κ-value.
The numerical accuracy is 10-10/flighthour. To get a similar
accuracy through counting collisions during a standard Monte
Carlo simulation, 1011 flighthours need to be simulated per S-
value and for an almost twice as large state space. This is a
factor 2.8×105 higher. Moreover, it doesn’ t provide insight in
the role played by the κ-value conditions.

5. Concluding Remarks
Increasing air traffic capacity without sacrificing the required
level of safety often is the key driver behind the development
of advanced operational concepts for ATM. During this
development process there is need to receive feedback about
the capacity/safety criticalities of the operational concept
design. In support of this need, the paper has studied the
development of a stochastic modelling approach towards the
assessment of mid-air collision risk between aircraft for ATM
operational concepts. In sections 2 and 3, collision risk and its
decomposition has been studied within the setting of a
stochastic differential equation with switching coefficients.
The novelty of the approach over approaches known from the
literature is twofold:
1) It includes Brownian motion in the evolution equations;
2) It introduced a stopping time based risk decomposition.
In Section 4 this novel approach has been illustrated to work
well for a particular en-route example.

There are several interesting directions that ask for a further
development of the stochastic analysis approach to accident
risk modelling in air traffic:
- Characterisation of large classes of SDE’ s the solutions

of which are semimartingale strong Markov processes on
a hybrid state space.

- Development of representation formalisms to specify a
mathematical model for an operational concept that has
to be assessed on accident risk.

- Further development of accident risk decomposition and
novel Monte Carlo simulation methods, and ways to
combine these with the analytical approaches towards
solving Chapman Kolmogorov equations.

- Development of mathematical equations for other types
of accident risk in air traffic, e.g. the stochastic analysis
based framework for wake vortex induced accident risk.

In collaboration with several European universities and
research institutes, these directions are currently under study
within the HYBRIDGE project of the European Commission.
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