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Abstract

In this paper we incorporate dipolar potential fields
used for nonholonomic navigation into a novel po-
tential function designed for multi – robot naviga-
tion. The derived navigation function is suitable
for navigation of multiple nonholonomic vehicles.
A properly designed discontinuous feedback control
law is applied to steer the nonholonomic vehicles.
The derived closed form control scheme provides
robust navigation with guaranteed collision avoid-
ance and global convergence properties, as well as
fast feedback, rendering the methodology particu-
larly suitable for real time implementation. Col-
lision avoidance and global convergence properties
are verified through non - trivial computer simula-
tions.

1 Introduction

Multiple robot navigation is a research area with
an increasing research interest over the last decade
[19, 11, 8, 18, 7]. In the last few years multi - robot
navigation for Non - Holonomic vehicles is gaining
increasing attention [14, 2, 4, 5].

Our main interest is to deduce global convergent
control schemes with collision avoidance, suitable
for real time implementation. Many researchers
consider the local stabilization issues [20, 2, 3] with-
out any deadlock resolution mechanism. There are
also several attempts to attack the problem with
neural nets [21, 5] and with fuzzy logic controllers
[4]. In [14] a global convergent algorithm is pre-
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sented for nonholonomic path planning, based on
probabilistic roadmaps, but the me thodology can-
not be used for real time implementation due to its
complexity.

Nonholonomic stabilization has attracted the at-
tention of the control community over the years,
due to the fact that nonholonomic systems do not
satisfy the Brockett’s necessary smooth feedback
stabilization condition [1]. In this paper we address
the problem of multiple nonholonomic robot nav-
igation by constructing a potential function that
can handle both multiple robot situations and pro-
vide feasible nonholonomic trajectories due to its
dipolar structure.

The rest of the paper is organized as follows: Sec-
tion 2 introduces the motivating problem. Section
3 outlines the concept of multiple robot naviga-
tion functions. Section 4 presents the discontin-
uous feedback control scheme. Section 5 presents
simulation results for a number of non - trivial nav-
igational tasks. Finally, section 6 summarizes the
conclusions and indicates our current research di-
rections.

2 Problem Statement

Consider the following system of m nonholonomic
vehicles:

ẋi = ui · cos (θi)

ẏi = ui · sin (θi) (1)

θ̇i = wi

with i ∈ {1 . . .m}. (xi, yi, θi) are the position and
orientation of each robot, ui and wi are the trans-
lational and rotational velocities respectively.
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The problem can be now stated as follows:
“Given the nonholonomic system (1), derive a feed-
back kinematic control law that steers the system
from any initial configuration to the goal configu-
ration avoiding collisions. The environment is as-
sumed perfectly known and stationary, while each
robot acts as a potential obstacle to the others.”

3 Multi-Robot Navigation

Functions

In a previous work [9] the authors presented an
extension to the navigation function methodology
with applications to multiple robot navigation. In
this section we present how this novel class of po-
tential functions can be enhanced with a dipolar
structure [15] to provide trajectories suitable for
nonholonomic navigation.

As it was shown in [9] the function: ϕ =
γk

d

(γk
d
+G)

1/k proposed by [6] for single robot navi-

gation, with a proper selection of G can be used
for multiple robot navigation and can be made a
navigation function by an appropriate choice of
k. Our assumption that we have spherical robots
and spherical obstacles does not constrain the gen-
erality of this work since it has been proven [6]
that navigation properties are invariant under dif-
feomorphisms. Methods for constructing analytic
diffeomorphisms are discussed in [13, 12] for point
robots and in [16, 17]for rigid body robots.

Let us assume the following situation: We have
m mobile robots, and their workspace W ⊂ R2

. Each robot Ri, i = 1 . . .m occupies a disk
in the workspace: Ri =

{

q ∈ R2 : ‖q − qi‖ ≤ ri
}

where qi ∈ R2 is the center of the disk and ri is
the radius of the robot. The position vector of
the robots is represented by q = [q1 . . . qm]. The
orientation vector of the robots is represented by
θ = [θ1 . . . θm] where θi represents the orientation
of each robot . The configuration of each robot
is then represented by pi =

[

qi θi
]

∈ R2 ×
(−π, π] and the configuration space C is spanned

by p =
[

qT1 . . . qTm θ1 . . . θm
]T

.

3.1 Mathematical Tools - Terminol-

ogy

The robot proximity functions, a measure for the
distance between two robots i and j, are defined by:
βi,j (q) = qTDijq−(ri + rj)

2
, where ri is the radius

of the i’th robot and Dij is defined in [9]. We will
use the term ‘relation’ to describe the possible col-
lision schemes that can be defined in a multi robot
- obstacles scene. The ‘set of relations’ between
the members of a set can be defined as the set of all
possible collision schemes between the members. A
binary relation is a relation between two robots.
Any relation can be expressed as a set of binary
relations. A ‘relation tree’ is the set of robots-
obstacles that form a linked team. Each relation
may consist of more than one tree (figure 1). We
will call the number of binary relations in a rela-
tion, the ‘relation level’.

Figure 1 : (a) One – tree relation, (b) Two tree rela-
tion

A relation proximity function (RPF) pro-
vides a measure of the distance between the robots
involved in a relation. Each relation has it’s
own RPF. An RPF assumes the value of zero
whenever the related robots collide and increases
wrt the distance of the related robots: bR =
qT · PR · q −

∑

{i,j}∈R

(ri + rj)
2
where R is the set

of binary relations (e.g. for the relation in fig-
ure (1.a) R = {{A,B} , {A,C} , {B,C} , {D,E}}
) and PR =

∑

{i,j}∈R

Di,j is the relation matrix of

RPF. The gradient and Hessian of the RPF are:
∇bR = 2PR · q and ∇2bR = 2PR.

A Relation Verification Function (RVF) is
defined by:

gRj

(

bRj
, BRC

j

)

= bRj
+λ ·bRj

/(

bRj
+B

1/h

RC
j

)

(2)

where λ, h > 0 , RC
j is the complementary to

Rj set of relations in the same level, j is an in-
dex number defining the relation in the level and
BRC

j
=

∏

k∈RC
j

bk . An RVF is zero if a relation holds
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while no other relation from the same level holds
and has the properties: (a) lim

x→0
lim
y→0

gx (x, y) = λ ,

(b) lim
y→0

lim
x→0

gx (x, y) = 0 .

Based on the above properties, in a robot prox-
imity situation, one can verify that: if

(

gRj

)

k
= 0

at some level k then (gRi
)h 6= 0 for any level h

and i 6= j in level k . It should be noted hereby
that since in the highest relation level only one re-
lation exists, there will be no complementary rela-
tions and the RVF will be identical to the RPF e.g.
λ = 0 for this relation.

We can now define G =
nL
∏

L=1

nR,L
∏

j=1

(

gRj

)

L
, with

nL the number of levels and nR, L the number of
relations in level L .Figure (2) demonstrates several
types of relations of a four – member team.

Figure 2 : I, II are level 3; IV, V are level 4 and III is
a level 5 relation

3.2 Dipolar Navigation Functions

To be able to produce a dipolar potential field, ϕ
must be modified as follows:

ϕ =
γkd

(

γkd +Hnh ·G
)1/k

(3)

where Hnh has the form of a pseudo - obstacle.
A possible selection of Hnh would be: Hnh = εnh+
(

m
∏

i=1

ηnhi

)µ

with ηnhi
= ‖(q − qd) · ndi

‖2, where

nd,i =
[

O1x2(i−1) cos (θd,i) sin (θd,i) O1x2(m−i)

]T

and µ a tuning parameter. Subscript d denotes des-
tination. Moreover γd = ‖p− pd‖

2
, i.e. the angle

is incorporated in the distance to the destination
metric. The proposed modifications of the poten-
tial function does not affect its navigation proper-
ties [10], as long as the workspace is bounded and
εnh > ε (k).

4 Non - Holonomic Control

In the following analysis we will use V for denoting
the navigation function instead of ϕ for notational
consistency.

Define M = {1, . . . ,m} and Ω = P (M) where P
denotes the power set operator. Assuming that Ω
is an ordered set, let Nj denote the j ’th element
of Ω where j ∈ {1, . . . , 2m}. Then Nj ⊆ M

with N1 = {∅} and N2m = M . We can now de-
fine: ∆j = Kθ ·

∑

i∈{M\Nj}

(Vθi
· (θnhi

− θi)) −

Ku

m
∑

i=1

(|Vxi
· cos (θi) + Vyi

· sin (θi)| · Zi) −

Kθ ·
∑

i∈Nj

V 2
θi

with Zi = Ku ·
(

V 2
xi

+ V 2
yi

)

+

Kz

(

(xi − xdi
)
2
+ (yi − ydi

)
2
)

where Vq de-

notes the derivative ∂V
∂q

of V along q. Define

H = {j : ∆j < 0} and ρ =

{

j : ∆j = max
i∈H

(∆i)

}

.

We can now state the following:

Proposition 1. The system (1) under the control
law:

ωi = Kθ · (θdi
− θi) , i ∈M ∆1 ≤ 0

ωl = Kθ · (θdl
− θl) , l ∈ {Np} , ∆1 > 0

ωj = −Kθ · Vθj
, j ∈ {M\Np} , ∆1 > 0

ui = −sgn (Vxi
· cos (θi) + Vyi

· sin (θi)) · Zi,

i ∈M

is globally asymptotically stable.

Proof. The navigation function V studied in the
previous section serves as a Lyapunov function
candidate. We will now examine the deriva-
tive of V along the trajectories of (1): V̇ =
∂V
∂t

+ ∇V · ẋ = ∇V · ẋ since V = V (x)

with ẋ =
[

ẋ1 ẏ1 θ̇1 . . . ẋm ẏm θ̇m

]T

and ∇V =
[

∂V
∂x1

∂V
∂y1

∂V
∂θ1

. . . ∂V
∂xm

∂V
∂ym

∂V
∂θm

]T

. Substituting

we get:

V̇ =
m
∑

i=1

(

∂V

∂xi
ẋi +

∂V

∂yi
ẏi +

∂V

∂θi
θ̇i

)

=

m
∑

i=1

(

ui (Vxi
· cos (θi) + Vyi

· sin (θi)) + θ̇iVθi

)
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We are interested in establishing that V̇ < 0
almost everywhere, and the sets of points where
V̇ = 0 except from the destination are not invari-
ant. Applying the proposed controls, we get:

For ∆1 ≤ 0 we have:

ωi = Kθ · (θdi
− θi) , i ∈M

ui = −sgn (Vxi
· cos (θi) + Vyi

· sin (θi)) · Z,

i ∈M

Then V̇ = ∆1 ≤ 0. To proceed with the proof
we will need the following lemma:

Lemma 1. If ∆1 > 0 then ∃i ∈ {1, . . . , 2m} : ∆i <

0

Proof. If ∆1 > 0 then since:

−Ku

m
∑

i=1

(|Vxi
· cos (θi) + Vyi

· sin (θi)| · Zi) ≤ 0

It must be Kθ ·
m
∑

i=1

(Vθi
· (θnhi

− θi)) > 0 which

means that there exists at least one k for which
Vθk

6= 0 and the term −Kθ ·
∑

i∈Nj

V 2
θi

of some ∆i will

be negative definite. For the worst case scenario,
∆2m < 0 since N2m = M .

For ∆1 > 0 then there is at least one j for which
∆j < 0 as we deduced from (Lemma 1) and thus
ρ 6= {∅} . We choose j = ρ because we want the
maximum possible number of robots to follow the
dipole generated Non-Holonomic trajectories. The
rest will be doing a conflict avoidance manoeuver.
The controls in those cases take the form:

ωl = Kθ · (θdl
− θl) , l ∈ {Np} , ∆1 > 0

ωj = −Kθ · Vθj
, j ∈ {M\Np} , ∆1 > 0

ui = −sgn (Vxi
· cos (θi) + Vyi

· sin (θi)) · Zi,

i ∈M

Then V̇ = ∆ρ ≤ 0

Now let E = {x : V̇ (x) = 0} and E ⊃ S =
{x : ωi = ui = 0,∀i ∈M} is an invariant set. From
the proposed control law, it can be seen that ui =
0,∀i ∈M only at the destination, and for all other
configurations the controller provides a direction
of movement. According to LaSalle’s invariance
principle, the trajectories of the system converge
asymptotically to the largest invariant set, which is
the destination configuration

5 Simulations

To verify the navigation properties of the method-
ology, we set up a simulation with four nonholo-
nomic unicycles that are about to navigate from
an initial to a final configuration, without hitting
each other. The robots are placed at several initial
configurations and the paths travelled are recorded
and depicted in the figures that follow. The cho-
sen configurations constitute non - trivial setups,
since the straight paths connecting initial and final
positions are obstructed by other robots.

In the first case (figure 5) the four robots were
equally sized and positioned at: [qT1 . . . qT4 ] =
[ 0.1732 − 0.1 − 0.1732 − 0.1 0.0 0.2 0.0 0.0 ] with
angles [θ1 . . . θ4] = [ π/2 π 0 −π ] and their
destination configuration was set at: [dqT1 . . . dqT4 ] =
[ − 0.1732 0.1 0.1732 0.1 0.0 − 0.2 0.0 0.0 ] with
[dθ1 . . .

dθ4] = [ 0 0 0 0 ]. Figure (5a) denotes
the initial (R1. . . R4) and target (T1. . . T4) config-
urations of the four robots. Figures (5b-5d) depict
the trajectories of the robots. As can be seen, the
multirobot navigation function successfully resolves
all the proximity situations and the nonholonomic
controller successfully steers the system to its des-
tination.

T1

R1 R2 

T2 
R3 

T3 

R4, T4 

(a) (b)

(c) (d) 

Figure 3 : (a) Initial Conf., (b,c) Intermediate Conf.,
(d) Intermediate and Final Configurations

In the next simulation, robots (R1. . . R3) were
equally sized and robot R4 had half the radius of
the rest. In this scenario, robots (R1. . . R3) are
placed at their target configurations (figure 4a), ob-
structing robot (R4) to achieve its destination. As
can be seen in this simulation (figures 4b-4e), the
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robots (R1. . . R3), exhibit a cooperative behavior,
departing momentarily from their destinations to
allow robot R4 to manoeuver to its destination.

(a) R1,T1 

R2,T2 R3,T3 
R4 

T4 

(b) 

(c) (d) 

(e) 

Figure 4 : (a) Initial Conf., (b,c,d) Intermediate
Conf., (e) Intermediate and Final Config-
urations

In the last simulation (figure 5a), we have again
equally sized robots, but the two of them (R3, R4)
were placed at their destination configurations (T3,
T4), while the other two (R1, R2) were placed at
the destinations of each other (T2, T1). Again
robots (R3, R4) are obstructing (R1, R2). As can
be seen and in this simulation, the methodology
succeeds to steer the robots to their destination and
resolves the proximity situations encountered. The
robots (R3, R4), in a cooperative manner depart
momentarily from their destination configurations
to allow (R1, R2) to reach their targets. In all
simulations, after all robots reach their targets, the
system remains stable to the destination configura-
tion.

6 Conclusions - Issues for fur-

ther research

In this paper we successfully merged two power-
ful concepts: Dipolar Potential Fields (DPF) for

(a)

R1, T2 R2,T1 

R3.T3 

R4,T4

(b) 

(c) (d)

(e)

Figure 5 : (a) Initial Conf., (b,c,d) Intermediate
Conf., (e) Intermediate and Final Config-
urations

nonholonomic navigation and Multirobot Naviga-
tion Functions (MNF).The derived Dipolar Mul-
tirobot Navigation Function (DMNF), along with
the specially designed discontinuous feedback con-
trol law, provides guaranteed global convergence of
the system. The methodology due its closed loop
nature provides a robust navigation scheme with
guaranteed collision avoidance and it’s global con-
vergence properties guarantee that a solution will
be found if one exists. The closed form control law
and the analytic expression of the potential func-
tion and its derivatives, provides fast feedback and
makes the methodology particularly suitable for
real time implementation. The methodology can
be easily applied to a three dimensional workspace
and through proper transformations to arbitrarily
shaped robots.

Current research directions are towards decen-
tralized multiple robot navigation with limited
workspace knowledge, limited vision capability, co-
operation between mobile robots, formation con-
trol, as well as locomotion issues.
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