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Abstract—A navigation functions’ based methodology, es- the convergence of the distributed system to a desired
tabllshed_ prewously_for decentralized navigation of multiple configuration both in the concept of cooperative ([8], [16],
holonomic agents, is extended to address the problem of [17], [14]) and formation control ([1], [11], [21], [28]).

decentralized navigation of multiple honholonomic agents. In Cl dl trateqi fl ferable t
contrast to our previous work, each agent does not require any osed loop strategies are apparently preierable 10 open

knowledge about the velocities and the desired destinations 100p ones, mainly because they provide robustness with
of the other members of the team. Furthermore, the control respect to modelling uncertainties and agent failures and
inputs are the acceleration and rotational velocity of each guaranteed convergence to the desired configurations. How-
vehicle, coping in this way with realistic dynamics of classes gyar 3 common point of most work in this area is devoted to
of mechanical systems. Asymptotic stability is guaranteed by . . .
LaSalle’s Invariance Principle for nonsmooth systems. The the case of point ag.ent.s. AIt_ho.ugh this allowsl fqr \{arlable
collision avoidance and g|0ba| convergence properties are degree Of decentrallzatlon, It Is fa.r from I’eallstIC n real
verified through simulations. world applications. For example, in conflict resolution in
Air Traffic Management, two aircraft are not allowed to ap-
proach each other closer than a specific “alert” distance. The
Multi-agent Navigation is a field that has recently gaineadonstruction of closed loop methods for distributed non-
increasing attention both in the robotics and the contrgdoint multi-agent systems is both evident and appealing.
communities, due to the need for autonomous control of A closed loop approach for single robot navigation was
more than one mobile vehicles in the same workspacproposed by Koditschek and Rimon [15] in their seminal
While most efforts in the past had focused on centrawork. This navigation functions’ framework had all the
ized planning, specific real-world applications have leadought qualities but could only handle single, point-sized,
researchers throughout the globe to turn their attentiawbot navigation. In [18] this method was successfully ex-
to decentralized concepts. Examples include decentralizéehded to take into account the volume of each robot while
conflict resolution in air traffic management ([23]), auto-a decentralized version of this work has been presented by
mated highway systems, communication networks and thike authors in [6].
field of micro robotics, where a team of autonomous micro The first extension of the latter work to the case of non-
robots must cooperate to achieve manipulation precision holonomic agents has appeared in [19]. The decentralization
the sub micron level. factor in this work lied in the fact that each agent had
Decentralized navigation approaches are more appealing specific knowledge of the destinations of the others,
to centralized ones, due to their reduced computationhbwever it treated a spherical region around the target of
complexity and increased robustness with respect to agesdch other agent as a static obstacle. In this work we modify
failures. The main focus of work in this domain has been cahe proposed control law in order to allow each agent
operative and formation control of multiple agents, where sto neglect any knowledge about the others’ destinations.
much effort has been devoted to the design of systems wiHurthermore, each agent had to have knowledge of the
variable degree of autonomy ([9],[29],[22], [31]). Thereothers’ velocities. In this paper, we take advantage of the
have been many different approaches to the decentralizedundedness of the workspace, and design a decentralized
motion planning problem. Open loop approaches use gamentroller that does not take the velocities of the other
theoretic and optimal control theory to solve the problenagents into account. Finally, the control inputs are the
taking the constraints of vehicle motion into account; seacceleration and rotational velocity of each vehicle, coping
for example [2],[7], [13],[12], [5], [30]. On the other hand, in this way with realistic dynamics of classes of mechanical
closed loop approaches use tools from classical Lyapunsystems.
theory and graph theory to design control laws and achieve The rest of the paper is organized as follows: section Il

I. INTRODUCTION
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introduces the decentralized multiagent navigation functiorest in the collision avoidance procedure, even it has already
used in this paper for multiple nonholonomic vehiclesreached its destination. Details for the construction of the
Section Il states the problem and the related assumptiorfanction G; can be found in [6], while the construction of
In section IV, we review the necessary mathematical tookhe f; function is described in subsection llb.
for the stability analysis of section V. In section V we . , L .
present the proposed control scheme and provide stabilfy Pecentralized Dipolar Navigation Functions
guarantees. Section VI presents simulation results while in To be able to produce a dipolar potential fiejdl, must
section VII conclusions and issues for further research ake modified as follows:
discussed. oy = vai + fi )
;=
Il. DECENTRALIZED NAVIGATION FUNCTIONS ((vai + fi)* + Hyn, - Gi - Bo,) "
In previous work [6],[18] the authors presented an exterwhereH,,;,, has the form of a pseudo - obstacle. A possible

sion to the navigation function methodology with applicaselection ofH,,;,, would be:
tions to multiple robot navigation. In this section we present
how this novel class of potential functions can be enhanced

thi =é€npn + Mnh;

with a dipolar structure [26] to provide trajectories suitablavith 7,,, = |(¢ — qa) - ng||?>, where ng, =

for nonholonomic navigation. [cos (B4,) sin(64,)]T . Subscriptd denotes destination.
Let us assume the following situation: We haxemobile  Moreovery; = |l¢: — ¢4, ||°, i.e. the angle is not incor-

robots, and their workspacl’ C R? . Each robotR;, porated in the distance to the destination metfg, =

i = 1...m occupies a disk in the workspac&; = 12 . —I|q¢ —qu, % is the workspace bounding obstacle and
{q ER?:|lqg—ql < ri} whereg; € R? is the center of r,,,,, is the workspace radius. Figure 2 shows a 2D dipolar
the disk andr; is the radius of the robot. The position navigation function. Following the recipe of [6],[20], it can
vector of the robots is represented Ry = [q1 ... qm]-
The orientation vector of the robots is represented by
6 = [0;...60,] whered, represents the orientation of each
robot . LetW; C R? x (—m,n represent each robot’'s
workspace. The configuration of each robot is representec
by pi = [ 6;] € W; and it's target byps, =

[ qa, 04, ] € W; . The following figure shows a three-
agent conflict situation:

s>

u Fig. 2. 2D dipolar navigation function
2 3 [3
A be shown that the proposed modifications of the potential
function do not affect its navigation properties, as long as
° the workspace is bounded anagl, > ¢ (k).
Gaz B. Thef function

The key difference of the decentralized method with

Fig. 1. A conflict scenario with three agents. . ;
respect to the centralized case is that the control law of

As it was shown in [6] the function:p; = each agentvignores the destinations of the others. By using
—Jakli - with a proper selection of!; can be used ¥i = m as a navigation function for agent

((7di+fi)k+Gi1. . . . . . . . . . .
for decentralized motion planning of multiple holonomicthere is no potential for to cooperate in a possible collision

robots and can be made a navigation function by an appreeheme when its initial condition coincides with its final
priate choice of. The functiony,; represents agens ob- destination. In our previous work [19], the other agents
jective which is convergence to a desired destination whilgoal configurations where considered as obstacles by the
the functionG; encodes the possible collision schemes imther ones. Clearly, this is a limiting factor for the level of
which agent; could be involved. The functiotf; encodes decentralization that we aim to achieve.

some form of cooperation between the moving agents and inin order to overcome this limitation,we add a function
particular, guarantees that an agent will cooperate with thg to ~; so that the cost functiop; attains positive values
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in proximity situations even whenhas already reached its We make the following assumptions:

destination. A preliminary definition for this function was , Each agent has global knowledge of the position of the
given in [6]. Here, we modify the previous definition to others at each time instant.

ensure that the destination point is a non-degenerate local, Each agent has knowledge only of its own desired
minimum of ¢; with minimum requirements on assump- destination but not of the others.

tions. We define the functioff; by: « We consider spherical agents.

3 y o The workspace is bounded and spherical.
fi(Gy) = a0+J; a;Gi, Gi < X ) Our assumption regarding the spherical shape of the
0, G; > X agents does not constrain the generality of this work since
- it has been proven that navigation properties are invariant
whereX, Y = f;(0) > 0 are positive parameters the role ofynger diffeomorphisms ([15]). Arbitrarily shaped agents dif-
which will be made clear in the following. The parameterseomorphic to spheres can be taken into account. Methods
a; are evaluated so thaf; is maximized whenG; — 0 for constructing analytic diffeomorphisms are discussed in
and _m|n|m|zed_ wherQi = X. We also require thay; is [27] for point agents and in [24] for rigid body agents.
continuously differentiable ak'. Therefore we have: The second assumption makes the problem decentralized.
-3Y 2Y Clearly, in the centralized case a central authority has
Xz BT X3 knowledge of everyones goals and positions at each time

The parameterX serves as a sensing parameter th‘,j{pstant and it coordinates the whole team so that the desired

activates thef; function whenever possible collisions arespecification; (destination convergence and collision avqid—
bound to occur. The only requirement we have foris an_ce) are fulfilled. In the currer_1t S|tuat|.on. no such authority
that it must be small enough to guarantee thatanishes exists and we have to deal with the limited knowledge of
whenever the system has reached its equilibrium, i.e. wh&fCh agent.

everyone has reached its destination. In mathematical terms:

ap=Y,a1 =0,a3 =

IV. ELEMENTS FROMNONSMOOTHANALYSIS

X < Gi(qar,---,qan) Vi 3 In this section, we review some elements from nonsmooth
That's the minimum requirement we have regarding know@2"alysis and Lyapunov theory for nonsmooth systems that
edge of the destinations of the team we use in the stability analysis of the next section.

The resulting navigation function is no longer analytic We consider the vector differential equation with discon-

as required by the classic definition in [15], but merefinuous right-hand side:

C' at G; = X. However, by choosingX large enough, i = f(z) (5)
the resulting function is analytic in a neighborhood of the

boundary of the free space so that the characterization of ithere f : R — R™ is measurable and essentially locally
critical points can be made by the evaluation of its Hessiamounded.

Hence, the parameteX must be chosen small enough inDefinition 4.1 [10] In the case when is finite, the vector
order to satisfy (3) but large enough to include the regiofunction z(.) is called a solution of (4) inty, ] if it is
described above. Clearly, this is a tradeoff the control desigabsolutely continuous offty, ;] and there existsN; C
has to pay in order to achieve decentralization. IntuitivelyR", u(N;) = 0 such that for allN C R", u(N) = 0 and
the destinations should be far enough from one another. for almost all¢ € [to, 1]

[1l. SYSTEM AND PROBLEM DEFINITION t € K[f](z) =cof lim f(x;)|z; ¢ Ny UN}

We consider the following system of nonholonomic

agents with the following dynamics The above definition along with the assumption thfat

&; = v; cos b; is measurable guarantees the uniqueness of solutions of
gi =wv;sinf; . (4)[10].
0, = w; yi€{l,...,N} ) Lyapunov stability theorems have been extended for
0 = Uy nonsmooth systems in [25],[3]. The authors use the con-

cept of generalized gradienwhich for the case of finite-

dimensional spaces is given by the following definition:

Definition 4.2 [4]Let V : R™ — R be a locally Lipschitz
nction. The generalized gradient &f at « is given by

wherewv;, w; are are the translational and rotational veloci
ties of agent respectively, and.; its acceleration.

The problem we treat in this paper can be now stated
follows:” Given the N nonholonomic agents (4),consider
the rotational velocityw; and the acceleration; as control OV (z) =co{ lim VV(x;)|z; ¢ Qv}
inputs for each agent and derive a control law that steers i
every agent from any feasible initial configuration to itswhere )y is the set of points ilR"™ where V' fails to be
goal configuration avoiding, at the same, collisidns. differentiable.
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Lyapunov theorems for nonsmooth systems require the M; > |Zvi<pj “Nilmazx
energy function to beegular. Regularity is based on the i
concept ofgeneralized derivativevhich was defined by
. h — | O¢i  Ovj
Clarke as follows: Vip; = { promliirs }

Definition 4.3 [4] Let f be Lipschitz nearz and v be a
vector inR". The generalized directional derivative pfat
z in the directionv is defined

In particular, we prove the following theorem:
Theorem 5.2Under the control law (6), the system is
asymptotically stabilized tpg = [pa1, . . ., pan]” -
£O(2:0) = lim sup fly+ ﬁ;) — () Proof: Let us first consider the case;| > 0Vi. We use

Y= 10 1
V=Y ViVi= it vl + 5(0: = 0ai — Onni)?
Regularity of a function is defined:
zzmslttrlc;fn 44 4] The functionf - B — R is called as a Lyapunov function candidate. Hof| > 0 we have
1) Vv, the usual one-sided directional derivative > (Vi) - nj + sgn(v;) 0+
f'(x;v)exists and V= ZV Z J .
2) Vo, f’(x;y) = fO(m;,U) (9 —0a; — Onni) (0; — enhz)

The following chain rule provides a calculus for the timeand substituting

derivative of the energy function in the nonsmooth case:

Theorem 4.5[25] Let » be a Filippov solution toz = N o) el M,
f(x) on an interval containing and V' : R* — R be a N Z Zvj( si) g = il ([(Vispi) - il + M)
Lipschitz and regular function. TheVi(z(t)) is absolutely |m K. K. — oy

. . tanh(Jog) L Vit 2 > gi |vil
continuous,(d/dt)V (x(t)) exists almost everywhere and ! i

d ~ T - ZK91 (9 - edi - enhz)

ZV®) e V)= (| K@) z

£V (z(1)) The first term of the right hand side of the last equation can

be rewritten as
We shall use the following honsmooth version of LaSalle’s

invariance principle to prove the convergence of the pre- D ng( i0i) - mj — oil ((Vaggi) - mi| + Mi)} —

scribed system: i |

Theorem 4.6 [25] Let Q be a compact set such that v (Vigs) - mi +vi Y (Vipj) - mi—

every Filippov solution to the autonomous system= = Z{ J# } <0
f(x),z(0) = x(ty) starting inQ is unique and remains if? P U=l (Vi) -l + M)

forall t > ty. LetV : Q2 — R be atime independent regular go that
function such that < 0¥v € V(if V is the empty set then .

2

o - . < < — o K — i il — (0; — 04 — Oppi
this is trivially satisfied). DefineS = {z € Q|0 € V}. - ;K‘“’KZ’ Zi:g‘ [vi zi:Ka’l (0: = Oui = Onni)
Then every trajectory if2 converges to the largest invariant . )
setM, in the closure ofS. where the inequality 5= > 1 for 2 > 0.

The candidate Lyapunov function is nonsmooth whenever
V. NONHOLONOMIC CONTROL AND STABILITY v; = 0 for somei. The generalized gradient 6f is given
ANALYSIS by

We will show that the system is asymptotically stabilized [ > Vipi 1
under the control law !

u; = —v{|Vigi il + Mi} — givi — g oy HKvi Kz, :

{‘ Pi - 1 | } g tanh(Jo;]) - vithz ZVN%
= —Ky,(0; — 0q; — Onn,) + Onn, i
(6) 01|
whereK,,, Ky,, g; > 0 are positive gains, :
O = arg(g‘Pi s+ Igsoz 5) oV — 1 d|vn] )
Z; Yi 5V, (01 — 041 — Onn1)
si = sQN((qi — qai) * Ndi) :
2
N = [ cosf; sinb; ]T VQN (eN —ban — thN)

. 1 A6, (01 — Oy — 1)’
Nai = [ cosfay sinfy | .

K. = Vil + e — qaill® | 2Vouun (O — ban — Onnn)’ ]
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and the Filippov set(def.4.1) of the closed loop system byheorem. We have that = {z]|0 € 17} ={z: (v, =
0Vi) A(0; — 4; = 0,1:Vi)}. The trajectory of the system

le (S:?r? zi Zi (S:?s zll converges to the largest invariant subse$ oFor this subset
to be invariant we must have
. cos O on cos O 0 = 0= Kyl = 0= (Vipi =0) A (g = qai) Vi
vy sinfy vy sinfly For V,p; = 0 we haved,,,; = 0 so thatd; = 4. >
u_l K [_ul] VI. SIMULATIONS
K[f] = - i To demonstrate the navigation. propgrties of our decen-
uN [un] tralized approach, we present a simulation of four nonholo-
“1 w1 nomic agents that have to navigate from an initial to a
: : final configuration, avoiding collision with each other. Each
wN wN agent has no knowledge of the desired destinations of the
0,11 0,11 other agents. In this picturd — ¢, — i denote the initial
) : condition and desired destination of agentespectively.
. . The chosen configurations constitute non-trivial setups since
L Ounn L Oann the straight-line paths connecting initial and final positions
We denote by of each agent are obstructed by other agents. Screenshots
I-VI in Figure 3 show the evolution in time of the four
D2 {r:3e{l,...N}stw; =0} member team. The conflict resolution procedure evolves in

screenshots II-V while in VI the agents converge to their

the “discontinuity surface” and desired destinations.

Dg 2 {ie{l,...N}stw; =0}

the set of indices of agents that participatelin We then softa s R
have
< r &
V=N {K[f]= -
ceov
= "
o]
vl <2V1<ﬂi>'n1+---+vl\’ (ZVN%‘)'UN oL 10 ik

7

+ N Kul+...+ N ZfTK[uN]

£edlvy| §€0|un|
+ 2 (0 — Oa; — Onns) (Wi - 0nhi> =
3
V=% {Ui (Z Vz‘%‘) - 7; +sgn ('Ui)ui}
i¢Ds i ,
+ > N &Ku)— Y Ko, (0 — 0ai — Onni)
i€Ds £€0|v;| 5
Fori € Dg we haved |v;|, _, = [-1,1] and
K [uin:O = [_ ‘KviKzi| ’ |K’ULKZZ|] :: i
so that ‘ X
N €K lu]=0 N -
§€0|v;| T YR TR e ST

From the previous analysis we also derive that

> {Uz' (Z Vz‘@j) *7; + sgn (vz‘)uz} <
i¢Ds i
= > AKu K.+ gi|vil} VII. CONCLUSIONS

i#Ds The navigation functions’ based methodology, estab-
Going back to Theorem 4.6 it is easy to see thak |ished previously for decentralized navigation of multiple
Ovv € V. Each functionV; is regular as the sum of regular holonomic agents, has been extended to address the prob-
functions ([25]) andV is regular for the same reason.lem of decentralized navigation of multiple nonholonomic
The level sets of are compact so we can apply thisagents. In contrast to our previous work ([19]), each agent

Fig. 3. A four agent scenario
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does not require any knowledge about the velocities anar]
the desired destinations of the other members of the team.
Furthermore, the control inputs are the acceleration ar%s]
rotational velocity of each vehicle, coping in this way
with realistic dynamics of classes of mechanical systemg?l
Asymptotic stability is guaranteed by LaSalle’s Invariance
Principle for nonsmooth systems. The collision avoidf20]
ance and global convergence properties have been verified
through simulations. [21]
Current research directions are towards applying the
methodology to the cases where each agent has limited
knowledge of the positions of the others and where there ?s

some form of uncertainty in the agent movement.
[23]
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