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Abstract— A navigation functions’ based methodology, es-
tablished previously for decentralized navigation of multiple
holonomic agents, is extended to address the problem of
decentralized navigation of multiple nonholonomic agents. In
contrast to our previous work, each agent does not require any
knowledge about the velocities and the desired destinations
of the other members of the team. Furthermore, the control
inputs are the acceleration and rotational velocity of each
vehicle, coping in this way with realistic dynamics of classes
of mechanical systems. Asymptotic stability is guaranteed by
LaSalle’s Invariance Principle for nonsmooth systems. The
collision avoidance and global convergence properties are
verified through simulations.

I. I NTRODUCTION

Multi-agent Navigation is a field that has recently gained
increasing attention both in the robotics and the control
communities, due to the need for autonomous control of
more than one mobile vehicles in the same workspace.
While most efforts in the past had focused on central-
ized planning, specific real-world applications have lead
researchers throughout the globe to turn their attention
to decentralized concepts. Examples include decentralized
conflict resolution in air traffic management ([23]), auto-
mated highway systems, communication networks and the
field of micro robotics, where a team of autonomous micro
robots must cooperate to achieve manipulation precision in
the sub micron level.

Decentralized navigation approaches are more appealing
to centralized ones, due to their reduced computational
complexity and increased robustness with respect to agent
failures. The main focus of work in this domain has been co-
operative and formation control of multiple agents, where so
much effort has been devoted to the design of systems with
variable degree of autonomy ([9],[29],[22], [31]). There
have been many different approaches to the decentralized
motion planning problem. Open loop approaches use game
theoretic and optimal control theory to solve the problem
taking the constraints of vehicle motion into account; see
for example [2],[7], [13],[12], [5], [30]. On the other hand,
closed loop approaches use tools from classical Lyapunov
theory and graph theory to design control laws and achieve

the convergence of the distributed system to a desired
configuration both in the concept of cooperative ([8], [16],
[17], [14]) and formation control ([1], [11], [21], [28]).

Closed loop strategies are apparently preferable to open
loop ones, mainly because they provide robustness with
respect to modelling uncertainties and agent failures and
guaranteed convergence to the desired configurations. How-
ever, a common point of most work in this area is devoted to
the case of point agents. Although this allows for variable
degree of decentralization, it is far from realistic in real
world applications. For example, in conflict resolution in
Air Traffic Management, two aircraft are not allowed to ap-
proach each other closer than a specific “alert” distance. The
construction of closed loop methods for distributed non-
point multi-agent systems is both evident and appealing.

A closed loop approach for single robot navigation was
proposed by Koditschek and Rimon [15] in their seminal
work. This navigation functions’ framework had all the
sought qualities but could only handle single, point-sized,
robot navigation. In [18] this method was successfully ex-
tended to take into account the volume of each robot while
a decentralized version of this work has been presented by
the authors in [6].

The first extension of the latter work to the case of non-
holonomic agents has appeared in [19]. The decentralization
factor in this work lied in the fact that each agent had
no specific knowledge of the destinations of the others,
however it treated a spherical region around the target of
each other agent as a static obstacle. In this work we modify
the proposed control law in order to allow each agent
to neglect any knowledge about the others’ destinations.
Furthermore, each agent had to have knowledge of the
others’ velocities. In this paper, we take advantage of the
boundedness of the workspace, and design a decentralized
controller that does not take the velocities of the other
agents into account. Finally, the control inputs are the
acceleration and rotational velocity of each vehicle, coping
in this way with realistic dynamics of classes of mechanical
systems.

The rest of the paper is organized as follows: section II
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introduces the decentralized multiagent navigation function
used in this paper for multiple nonholonomic vehicles.
Section III states the problem and the related assumptions.
In section IV, we review the necessary mathematical tools
for the stability analysis of section V. In section V we
present the proposed control scheme and provide stability
guarantees. Section VI presents simulation results while in
section VII conclusions and issues for further research are
discussed.

II. D ECENTRALIZED NAVIGATION FUNCTIONS

In previous work [6],[18] the authors presented an exten-
sion to the navigation function methodology with applica-
tions to multiple robot navigation. In this section we present
how this novel class of potential functions can be enhanced
with a dipolar structure [26] to provide trajectories suitable
for nonholonomic navigation.

Let us assume the following situation: We havem mobile
robots, and their workspaceW ⊂ R2 . Each robotRi,
i = 1 . . . m occupies a disk in the workspace:Ri ={
q ∈ R2 : ‖q − qi‖ ≤ ri

}
where qi ∈ R2 is the center of

the disk andri is the radius of the robot. The position
vector of the robots is represented byq = [q1 . . . qm].
The orientation vector of the robots is represented by
θ = [θ1 . . . θm] whereθi represents the orientation of each
robot . Let Wi ⊆ R2 × (−π, π] represent each robot’s
workspace. The configuration of each robot is represented
by pi =

[
qi θi

] ∈ Wi and it’s target bypdi =[
qdi θdi

] ∈ Wi . The following figure shows a three-
agent conflict situation:
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Fig. 1. A conflict scenario with three agents.

As it was shown in [6] the function:ϕi =
γdi+fi

((γdi+fi)k+Gi)
1/k with a proper selection ofGi can be used

for decentralized motion planning of multiple holonomic
robots and can be made a navigation function by an appro-
priate choice ofk. The functionγdi represents agenti’s ob-
jective which is convergence to a desired destination while
the functionGi encodes the possible collision schemes in
which agenti could be involved. The functionfi encodes
some form of cooperation between the moving agents and in
particular, guarantees that an agent will cooperate with the

rest in the collision avoidance procedure, even it has already
reached its destination. Details for the construction of the
function Gi can be found in [6], while the construction of
the fi function is described in subsection IIb.

A. Decentralized Dipolar Navigation Functions

To be able to produce a dipolar potential field,ϕi must
be modified as follows:

ϕi =
γdi + fi

((γdi + fi)k + Hnhi
·Gi · β0i

)1/k
(1)

whereHnhi has the form of a pseudo - obstacle. A possible
selection ofHnhi

would be:

Hnhi = εnh + ηnhi

with ηnhi = ‖(qi − qdi) · ndi‖2, where ndi =
[cos (θdi

) sin (θdi
)]T . Subscript d denotes destination.

Moreover γdi = ‖qi − qdi‖2, i.e. the angle is not incor-
porated in the distance to the destination metric.β0i

=
r2
world−‖qi − qdi

‖2 is the workspace bounding obstacle and
rworld is the workspace radius. Figure 2 shows a 2D dipolar
navigation function. Following the recipe of [6],[20], it can

Fig. 2. 2D dipolar navigation function

be shown that the proposed modifications of the potential
function do not affect its navigation properties, as long as
the workspace is bounded andεnh > ε (k).

B. Thef function

The key difference of the decentralized method with
respect to the centralized case is that the control law of
each agent ignores the destinations of the others. By using
ϕi = γdi

((γdi)
k+Gi)1/k as a navigation function for agenti,

there is no potential fori to cooperate in a possible collision
scheme when its initial condition coincides with its final
destination. In our previous work [19], the other agents
goal configurations where considered as obstacles by the
other ones. Clearly, this is a limiting factor for the level of
decentralization that we aim to achieve.

In order to overcome this limitation,we add a function
fi to γi so that the cost functionϕi attains positive values
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in proximity situations even wheni has already reached its
destination. A preliminary definition for this function was
given in [6]. Here, we modify the previous definition to
ensure that the destination point is a non-degenerate local
minimum of ϕi with minimum requirements on assump-
tions. We define the functionfi by:

fi(Gi) =





a0 +
3∑

j=1

ajG
j
i , Gi ≤ X

0, Gi > X

(2)

whereX, Y = fi(0) > 0 are positive parameters the role of
which will be made clear in the following. The parameters
aj are evaluated so thatfi is maximized whenGi → 0
and minimized whenGi = X. We also require thatfi is
continuously differentiable atX. Therefore we have:

a0 = Y, a1 = 0, a2 =
−3Y

X2
, a3 =

2Y

X3

The parameterX serves as a sensing parameter that
activates thefi function whenever possible collisions are
bound to occur. The only requirement we have forX is
that it must be small enough to guarantee thatfi vanishes
whenever the system has reached its equilibrium, i.e. when
everyone has reached its destination. In mathematical terms:

X < Gi (qd1, . . . , qdN ) ∀i (3)

That’s the minimum requirement we have regarding knowl-
edge of the destinations of the team.

The resulting navigation function is no longer analytic
as required by the classic definition in [15], but merely
C1 at Gi = X. However, by choosingX large enough,
the resulting function is analytic in a neighborhood of the
boundary of the free space so that the characterization of its
critical points can be made by the evaluation of its Hessian.
Hence, the parameterX must be chosen small enough in
order to satisfy (3) but large enough to include the region
described above. Clearly, this is a tradeoff the control design
has to pay in order to achieve decentralization. Intuitively,
the destinations should be far enough from one another.

III. SYSTEM AND PROBLEM DEFINITION

We consider the following system ofn nonholonomic
agents with the following dynamics

ẋi = vi cos θi

ẏi = vi sin θi

θ̇i = ωi

v̇i = ui

, i ∈ {1, . . . , N} (4)

wherevi, ωi are are the translational and rotational veloci-
ties of agenti respectively, andui its acceleration.

The problem we treat in this paper can be now stated as
follows:“ Given theN nonholonomic agents (4),consider
the rotational velocityωi and the accelerationui as control
inputs for each agent and derive a control law that steers
every agent from any feasible initial configuration to its
goal configuration avoiding, at the same, collisions.”

We make the following assumptions:

• Each agent has global knowledge of the position of the
others at each time instant.

• Each agent has knowledge only of its own desired
destination but not of the others.

• We consider spherical agents.
• The workspace is bounded and spherical.

Our assumption regarding the spherical shape of the
agents does not constrain the generality of this work since
it has been proven that navigation properties are invariant
under diffeomorphisms ([15]). Arbitrarily shaped agents dif-
feomorphic to spheres can be taken into account. Methods
for constructing analytic diffeomorphisms are discussed in
[27] for point agents and in [24] for rigid body agents.

The second assumption makes the problem decentralized.
Clearly, in the centralized case a central authority has
knowledge of everyones goals and positions at each time
instant and it coordinates the whole team so that the desired
specifications (destination convergence and collision avoid-
ance) are fulfilled. In the current situation no such authority
exists and we have to deal with the limited knowledge of
each agent.

IV. ELEMENTS FROMNONSMOOTHANALYSIS

In this section, we review some elements from nonsmooth
analysis and Lyapunov theory for nonsmooth systems that
we use in the stability analysis of the next section.

We consider the vector differential equation with discon-
tinuous right-hand side:

ẋ = f(x) (5)

wheref : Rn → Rn is measurable and essentially locally
bounded.
Definition 4.1 [10] In the case whenn is finite, the vector
function x(.) is called a solution of (4) in[t0, t1] if it is
absolutely continuous on[t0, t1] and there existsNf ⊂
Rn, µ(Nf ) = 0 such that for allN ⊂ Rn, µ(N) = 0 and
for almost all t ∈ [t0, t1]

ẋ ∈ K[f ](x) ≡ co{ lim
xi→x

f(xi)|xi /∈ Nf ∪N}

The above definition along with the assumption thatf
is measurable guarantees the uniqueness of solutions of
(4)[10].

Lyapunov stability theorems have been extended for
nonsmooth systems in [25],[3]. The authors use the con-
cept of generalized gradientwhich for the case of finite-
dimensional spaces is given by the following definition:
Definition 4.2 [4]Let V : Rn → R be a locally Lipschitz
function. The generalized gradient ofV at x is given by

∂V (x) = co{ lim
xi→x

∇V (xi)|xi /∈ ΩV }

whereΩV is the set of points inRn whereV fails to be
differentiable.
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Lyapunov theorems for nonsmooth systems require the
energy function to beregular. Regularity is based on the
concept ofgeneralized derivativewhich was defined by
Clarke as follows:
Definition 4.3 [4] Let f be Lipschitz nearx and v be a
vector inRn. The generalized directional derivative off at
x in the directionv is defined

f0(x; v) = lim
y→x

sup
t↓0

f(y + tv)− f(y)
t

Regularity of a function is defined:
Definition 4.4 [4] The functionf : Rn → R is called
regular if
1) ∀v, the usual one-sided directional derivative
f ′(x; v)exists and
2) ∀v, f ′(x; v) = f0(x; v)

The following chain rule provides a calculus for the time
derivative of the energy function in the nonsmooth case:
Theorem 4.5 [25] Let x be a Filippov solution toẋ =
f(x) on an interval containingt and V : Rn → R be a
Lipschitz and regular function. ThenV (x(t)) is absolutely
continuous,(d/dt)V (x(t)) exists almost everywhere and

d

dt
V (x(t)) ∈a.e. ˙̃

V (x) :=
⋂

ξ∈∂V (x(t))

ξT K[f ](x(t))

We shall use the following nonsmooth version of LaSalle’s
invariance principle to prove the convergence of the pre-
scribed system:
Theorem 4.6 [25] Let Ω be a compact set such that
every Filippov solution to the autonomous systemẋ =
f(x), x(0) = x(t0) starting inΩ is unique and remains inΩ
for all t ≥ t0. LetV : Ω → R be a time independent regular

function such thatv ≤ 0∀v ∈ ˙̃
V (if ˙̃

V is the empty set then

this is trivially satisfied). DefineS = {x ∈ Ω|0 ∈ ˙̃
V }.

Then every trajectory inΩ converges to the largest invariant
set,M , in the closure ofS.

V. NONHOLONOMIC CONTROL AND STABILITY

ANALYSIS

We will show that the system is asymptotically stabilized
under the control law

ui = −vi{|∇iϕi · ηi|+ Mi} − givi − vi

tanh(|vi|)KviKzi

ωi = −Kθi(θi − θdi − θnhi) + θ̇nhi

(6)
whereKvi ,Kθi , gi > 0 are positive gains,

θnhi = arg(
∂ϕi

∂xi
· si + i

∂ϕi

∂yi
· si)

si = sgn((qi − qdi) · ηdi)

ηi =
[

cos θi sin θi

]T

ηdi =
[

cos θdi sin θdi

]T

Kzi = ‖∇iϕi‖2 + ‖qi − qdi‖2

Mi > |
∑

j 6=i

∇iϕj · ηi|max

∇iϕj =
[

∂ϕj

xi

∂ϕj

yi

]

In particular, we prove the following theorem:
Theorem 5.1:Under the control law (6), the system is
asymptotically stabilized topd = [pd1, . . . , pdN ]T .
Proof: Let us first consider the case|vi| > 0∀i. We use

V =
∑

Vi, Vi = ϕi + |vi|+ 1
2
(θi − θdi − θnhi)2

as a Lyapunov function candidate. For|vi| > 0 we have

V̇ =
∑

i

V̇i =
∑

i

{ ∑
j

vj (∇jϕi) · ηj + sgn(vi)v̇i+

+(θi − θdi − θnhi) (θ̇i − θ̇nhi)

}

and substituting

V̇ =
∑
i

{
∑
j

vj (∇jϕi) · ηj − |vi| (|(∇iϕi) · ηi|+ Mi)

}

−∑
i

|vi|
tanh(|vi|)KviKzi −

∑
i

gi |vi|
−∑

i

Kθi (θi − θdi − θnhi)
2

The first term of the right hand side of the last equation can
be rewritten as

∑
i

{
∑
j

vj (∇jϕi) · ηj − |vi| (|(∇iϕi) · ηi|+ Mi)

}
=

=
∑
i

{
vi (∇iϕi) · ηi + vi

∑
j 6=i

(∇iϕj) · ηi−
− |vi| (|(∇iϕi) · ηi|+ Mi)

}
≤ 0

so that

V̇ ≤ −
∑

i

KviKzi−
∑

i

gi |vi|−
∑

i

Kθi (θi − θdi − θnhi)
2

where the inequality x
tanh x ≥ 1 for x ≥ 0.

The candidate Lyapunov function is nonsmooth whenever
vi = 0 for somei. The generalized gradient ofV is given
by

∂V =




∑
i

∇1ϕi

...∑
i

∇Nϕi

∂ |v1|
...

∂ |vN |
1
2∇θ1 (θ1 − θd1 − θnh1)

2

...
1
2∇θN

(θN − θdN − θnhN )2
1
2∇θnh1 (θ1 − θd1 − θnh1)

2

...
1
2∇θnhN

(θN − θdN − θnhN )2



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and the Filippov set(def.4.1) of the closed loop system by

K [f ] =




v1 cos θ1

v1 sin θ1

...
vN cos θN

vN sin θN

u1

...
uN

ω1

...
ωN

θ̇nh1

...
θ̇nhN




=




v1 cos θ1

v1 sin θ1

...
vN cos θN

vN sin θN

K [u1]
...

K [uN ]
ω1

...
ωN

θ̇nh1

...
θ̇nhN




We denote by

D
∆= {x : ∃i ∈ {1, . . . N} s.t.vi = 0}

the “discontinuity surface” and

DS
∆= {i ∈ {1, . . . N} s.t.vi = 0}

the set of indices of agents that participate inD. We then
have

˙̃
V =

⋂
ξ∈∂V

ξT K [f ] =

v1

(∑
i

∇1ϕi

)
· η1 + . . . + vN

(∑
i

∇Nϕi

)
· ηN

+
⋂

ξ∈∂|v1|
ξT K [u1] + . . . +

⋂
ξ∈∂|vN |

ξT K [uN ]

+
∑
i

(θi − θdi − θnhi)
(
ωi − θ̇nhi

)
⇒

˙̃
V =

∑
i/∈DS

{
vi

(∑
i

∇iϕj

)
· ηi + sgn (vi) ui

}

+
∑

i∈DS

⋂
ξ∈∂|vi|

ξT K [ui]−
∑
i

Kθi (θi − θdi − θnhi)
2

For i ∈ DS we have∂ |vi|vi=0 = [−1, 1] and

K [ui]|vi=0
= [− |KviKzi| , |KviKzi|]

so that ⋂

ξ∈∂|vi|
ξT K [ui] = 0

From the previous analysis we also derive that

∑
i/∈DS

{
vi

(∑
i

∇iϕj

)
· ηi + sgn (vi)ui

}
≤

− ∑
i/∈DS

{KviKzi + gi |vi|}

Going back to Theorem 4.6 it is easy to see thatv ≤
0∀v ∈ ˙̃

V . Each functionVi is regular as the sum of regular
functions ([25]) andV is regular for the same reason.
The level sets ofV are compact so we can apply this

theorem. We have thatS = {x|0 ∈ ˙̃
V } = {x : (vi =

0∀i)∧
(θi − θdi = θnhi∀i)}. The trajectory of the system

converges to the largest invariant subset ofS. For this subset
to be invariant we must have

v̇i = 0 ⇒ KviKzi = 0 ⇒ (∇iϕi = 0) ∧ (qi = qdi) ∀i
For∇iϕi = 0 we haveθnhi = 0 so thatθi = θdi. ♦

VI. SIMULATIONS

To demonstrate the navigation properties of our decen-
tralized approach, we present a simulation of four nonholo-
nomic agents that have to navigate from an initial to a
final configuration, avoiding collision with each other. Each
agent has no knowledge of the desired destinations of the
other agents. In this pictureA − i,T − i denote the initial
condition and desired destination of agenti respectively.
The chosen configurations constitute non-trivial setups since
the straight-line paths connecting initial and final positions
of each agent are obstructed by other agents. Screenshots
I-VI in Figure 3 show the evolution in time of the four
member team. The conflict resolution procedure evolves in
screenshots II-V while in VI the agents converge to their
desired destinations.

Fig. 3. A four agent scenario

VII. C ONCLUSIONS

The navigation functions’ based methodology, estab-
lished previously for decentralized navigation of multiple
holonomic agents, has been extended to address the prob-
lem of decentralized navigation of multiple nonholonomic
agents. In contrast to our previous work ([19]), each agent
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does not require any knowledge about the velocities and
the desired destinations of the other members of the team.
Furthermore, the control inputs are the acceleration and
rotational velocity of each vehicle, coping in this way
with realistic dynamics of classes of mechanical systems.
Asymptotic stability is guaranteed by LaSalle’s Invariance
Principle for nonsmooth systems. The collision avoid-
ance and global convergence properties have been verified
through simulations.

Current research directions are towards applying the
methodology to the cases where each agent has limited
knowledge of the positions of the others and where there is
some form of uncertainty in the agent movement.
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