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Abstract
This paper considers the state observer problem for a class of nonlinear systems,

which present multiple non commensurate time delays as well as distributed delay terms.
The proposed algorithm is an extension of the observer for nonlinear delayless systems
proposed in 1993 by Ciccarella, Dalla Mora, Germani. It is proved that a suitable
gain can be easily chosen such that the observation error goes to zero exponentially,
with arbitrarily ¯xed decay rate. The algorithm presented here is a basis for future
developments of observers for hybrid systems with multiple discrete and distributed
mode dependent time delays.

1. Introduction
The only paper available in the literature on the topic of the observer problem

for nonlinear systems with delays in the state is, to our knowledge, [9]. There an
asymptotic state observer is built up for a class of nonlinear systems with one only
discrete delay, and no distributed delay terms. In this paper the observer problem
for another class of nonlinear time delay systems is considered. These systems can
have multiple noncommensurate and distributed time delays. The output and its n¡ 1
time derivatives are related with the system variables by a di®eomorphism, as in [2].
Therefore no continuous time di®erence equation dynamics are involved. The class of
systems considered in this paper is not contained in the class of systems considered in
[9]. The class of systems considered in this paper contains the class of systems (one
discrete delay) studied in [9], only when the output of the systems in [9] and its n¡ 1
time derivatives depend on the present value of the system variables, and not on their
past ones. The observer proposed in this paper has the property that the observation
error goes exponentially to zero, with any prescribed decay rate. Moreover the initial
conditions of both the system and the observer are allowed to be discontinuous. The gain
is very easy to be calculated, as the one for nonlinear delayless systems proposed in [2].
The importance of the class of systems considered in this paper is due to their use in the
literature to model practical problems such as biological phenomena. For instance, the
glucose-insuline (see [5,14]) and the prey-predator Lotka-Volterra (see [15]) models are
in that class. Moreover, the algorithm presented here is a basis for future developments
of observers for hybrid systems with multiple discrete and distributed mode dependent
time delays (see [10,21]).
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2. Preliminaries
Consider the following system

_x(t) = f (x(t)) + g(x(t)) ¢ p(xt; u(t)); (2.1)
y(t) = h(x(t)); t ¸ 0; (2.2)

with initial conditions x0 2 PC([¡¢; 0]; IRn) (here PC denotes the set of functions
which are bounded, and are continuous except in a ¯nite number of points), where:

¢ > 0 is the maximum delay, x(t) 2 IRn, u(t) 2 IR, y(t) 2 IR, f; g : IRn 7! IRn
are C1 vector functions, h : IRn 7! IR is a C1 scalar function, p is a functional from
PC([¡¢; 0]; IRn) £ IR to IR, xt 2 PC([¡¢; 0]; IRn) is given by xt(¿) = x(t + ¿ ).

From here on we suppose that the following hypothesis is satis¯ed by the system
(2.1)(2.2):
Hp) the triple (f; g; h) is such that, 8 Â0 2 IRn, lg lkfh(Â0) = 0, k = 0; 1; : : : ; n ¡ 2;
the function Á : IRn 7! IRn, de¯ned by Á

¡
Â0) = [h(Â0) lfh(Â0) : : : ln¡1

f h(Â0) ]T ,
Â0 2 IRn, is a di®eomorphism in IRn.

Let y(j)(t) be the j¡th time derivative of the measured output y(t), j = 1; 2; : : : ; n.
Let

zT (t) = [ y(t) y(1)(t) : : : y(n¡1)(t) ]T ; t ¸ 0; z(¿ ) = Á(x0(¿ )); ¿ 2 [¡¢; 0]
(2.3)

The system (2.1)(2.2) can be rewritten in normal form as

_z(t) = Az(t) +B(lnf h(Á¡1(z(t))) + lgln¡1
f h(Á¡1(z(t)))¢

p(©¡1(zt); u(t))

z(¿ ) = Á(x0(¿ )); ¿ 2 [¡¢; 0]

(2.4)

where: A, B have the Brunowsky canonical form (see [13], pp. 153, 231); Á¡1 is the
inverse function of Á; © : PC([¡¢; 0]; IRn)7! PC([¡¢; 0]; IRn) is given by

©(Ã)(¿ ) = Á(Ã(¿ )); Ã 2 PC([¡¢; 0]; IRn); ¿ 2 [¡¢; 0]; (2:5)

©¡1 : PC([¡¢; 0]; IRn)7! PC([¡¢; 0]; IRn) is given by

©¡1(Ã)(¿ ) = Á¡1(Ã(¿)); Ã 2 PC([¡¢; 0]; IRn); ¿ 2 [¡¢; 0]: (2:6)

By the hypothesis Hp it follows that the matrix function de¯ned by

Q(Â0) =
@Á(Â0)
@Â0

; Â0 2 IRn (2:7)

is invertible for any Â0 2 IRn.

3. The Proposed Observer
The proposed observer for nonlinear delay systems (2.1)(2.2) is the following

_̂x(t) = f (x̂(t)) + g(x̂(t)) ¢ p(x̂t; u(t)) +Q¡1(x̂(t))K(y(t) ¡ h(x̂(t)); t ¸ 0; (3.1)
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with initial conditions x̂0 2 PC([¡¢; 0]7! IRn. As usual, x̂t(¿) = x̂(t+¿ ), ¿ 2 [¡¢; 0].
The gain vector K 2 IRn is chosen such to assign the eigenvalues of the matrix

A ¡KC in the left half complex plane.
Note that if for a given ¹t it is x̂(¿) = x(¿) for ¿ 2 [¹t ¡ ¢; ¹t], it follows that

x̂(t) = x(t) for all t > ¹t.

Lemma 3.1. The dynamics of the observer (3.1) can be rewritten as

_̂z(t) = Aẑ(t) +B(lnf h(Á¡1(ẑ(t))) + lgl
n¡1
f h(Á¡1(ẑ(t)))¢

p(©¡1(ẑt); u(t))) +K(y(t)¡ Cẑ(t));
x̂(t) = Á¡1(ẑ(t));

ẑ(¿ ) = Á(x̂0(¿ )); ¿ 2 [¡¢; 0]

(3.2)

where A;B;C have the Brunowsky canonical form, and ẑt(¿ ) = ẑ(t + ¿ ), ¿ 2 [¡¢; 0].

Lemma 3.2. Let !1; !2 be scalar non negative functions de¯ned on [¡¢;1), such
that:

1) they are bounded in [¡¢; 0], and they are continuous in [¡¢; 0] except in a ¯nite
number of points;

2) they are continuous in [0;1);
3) !1(¿ ) < !2(¿ ), ¿ 2 [¡¢; 0].

Let ´1; 2́ be scalar non negative continuous functions de¯ned on [0;1), with
´1(t) < ´2(t), t ¸ 0. Let W be a non negative scalar continuous function de¯ned
on [0;1)£ [0;1). Let, for t ¸ 0,

!1(t) · ´1(t) +
Z t

0
W (t; ¿) sup

µ2[¡¢;0]
!1(¿ + µ)d¿ (3:3)

!2(t) = ´2(t) +
Z t

0
W (t; ¿) sup

µ2[¡¢;0]
!2(¿ + µ)d¿ (3:4)

Then, !1(t) < !2(t), t ¸ 0.
Lemma 3.3. (Bellman-Gronwall) Let ! : [0;1) 7! IR+ be a continuous function
which:
1!) is left-hand di®erentiable in (0;1) and right-hand di®erentiable in [0;1);
2!) in any bounded interval contained in (0;1), admits a ¯nite number of points where

the left-hand derivative is di®erent from the right-hand derivative.
Let g : [¡¢;1)7! IR+ be a function which:

1g) is bounded in any bounded interval;
2g) in any bounded interval is continuous except in a ¯nite number of points.

Let ®; ¯ be non negative reals. Let the following inequality be satis¯ed for t 2
[0;1):

!(t) · ® +
Z t

0
g(¿)d¿ +

Z t

0
¯!(¿ )d¿ (3.5)

Then, the following inequality holds

!(t) · e¯t® +
Z t

0
e¯(t¡¿)g(¿ )d¿ (3:6)
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Theorem 3.4. Let the system (2.1)(2.2) satisfy the hypothesis Hp. Assume there
exists uM such that ju(t)j · uM 8t ¸ 0. Assume the following Lipschitz hypotheses:
H1) there exist positive constants °1; °2 ; °3 such that, for all v1 ; v2 2 IRn and for all

Ã1; Ã2 2 PC([¡¢; 0]; IRn),

jlnf h(Á¡1(v1))¡ lnf h(Á¡1(v2))j · °1kv1 ¡ v2k; (3:7)

sup
kuk·uM

jlgln¡1
f h(Á¡1(v1)) ¢ p(©¡1(Ã1); u) ¡ lgln¡1

f h(Á¡1(v2)) ¢ p(©¡1(Ã2); u)j ·

°2kv1 ¡ v2k+ °3kÃ1 ¡ Ã2k1 ;

H2) there exist positive constants °Á and °Á¡1 such that for all v1; v2 2 IRn,

kÁ(v1) ¡ Á(v2)k · °Ákv1 ¡ v2k;
kÁ¡1(v1) ¡ Á¡1(v2)k · °Á¡1kv1 ¡ v2k:

(3:8)

Then, given any negative real c, there exist a gain K to be put in the observer
(3.1), such that

kx(t)¡ x̂(t)k · °Á°Á¡1kV ¡1(¸)kkV (¸)kkx0 ¡ x̂0k1ect; (3:9)

where ¸ is the vector of eigenvalues of A¡KC and V (¸) is the Vandermonde Matrix.
Proof. The proof follows the same lines of the one for the nonlinear observer in [2].

Let ¸ = [¸1 ¸2 : : : ¸n ] be a n ¡ pla of negative real eigenvalues, with ¸1 >
¸2 >; : : : ;> ¸n. Consider the expression (2.4) of system (2.1) and the expression (3.2)
of the observer.

The dynamics of the error ez = z ¡ ẑ can be written as

_ez (t) =(A¡KC)ez(t) +B(

lnf h(Á¡1(z(t))) + lg ln¡1
f h(Á¡1(z(t))) ¢ p(©¡1(zt); u(t))¡

lnf h(Á¡1(ẑ(t))) ¡ lg ln¡1
f h(Á¡1(ẑ(t))) ¢ p(©¡1(ẑt); u(t)))

(3.10)

where the matrix K is such that the matrix A¡KC has ¸ as eigenvalues.
Let E(t) = V (¸)ez(t). By (3.10) and H1, it follows

kE(t)k · e¸1tkE(0)k+
Z t

0
e¸1(t¡¿)pn°kV ¡1(¸)k(kE(¿ )k + kE¿k1)d¿; (3:11)

where ° = max(°1 + °2; °3). By considering Ã(t) = e¡¸1 tkE(¿ )k and applying the
Belmann-Gronwall Lemma 3.3, it follows

kE(t)k · e(
p
n°kV¡1(¸)k+¸1)tkE(0)k +

Z t

0
e(
p
n°kV ¡1 (̧ )k+¸1)(t¡¿)pn°kV ¡1(¸)kkE¿k1d¿

(3:12)
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Let c be an arbitrary negative constant.
Let ¸ such that [2]

p
n°(1 + e¡c¢)kV ¡1(¸)k+ ¸1 = c (3:13)

Let M be a positive constant such that
M > °ÁkV (¸)kkx0 ¡ x̂0k1 (3:14)

Then the function
k(t) = Mect; t 2 [¡¢;1); (3:15)

is such that:

k(t) = e(
p
n°kV¡1(¸)k+¸1 )tM +

Z t

0
e(
p
n°kV¡1(¸)k+¸1 )(t¡¿)°kV ¡1(¸)kjk¿ j1d¿ (3:16)

where jk¿ j1 = supµ2[¡¢;0]k(¿ + µ) = k(¿ ¡¢). So, by lemma (3.2) and H2, it follows
kx(t) ¡ x̂(t)k < °Á¡1kV ¡1(¸)kk(t), which, by arbitrarity of M > °ÁkV (¸)kkx0 ¡ x̂0k1 ,
proves the theorem.

4. Simulation Results

¯g.3: true and estimated glucose

Consider the following model of the glucose-insulin system (see [5], pp. 160, [14],
pp. 79).

_x1(t) = ¡b1x1(t) ¡ b4x1(t)x2(t) + b7;

_x2(t) = ¡b2x2(t) +
b6
b5

Z 0

¡b5
x2(t+ ¿ )d¿;

y(t) = x1(t);

x1(¿) = Gb ; ¿ 2 [¡b5; 0); x1(0) =Gb + b0;

x2(¿) = Ib; ¿ 2 [¡b5; 0); x2(0) = Ib + b3b0;

(4:1)
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where x1 is the glucose, x2 is the insuline, b0 ; b1 ; b2; b3; b4; b5; b6; b7 are parameters, Gb ; Ib
are initial conditions, which have been taken here equal to the ones proposed in [5], table
1, concerning a 23 years old man. Note that the system presents a distributed delay
term and the initial conditions are not continuous in 0. The observer is given by the
following system, obtained by (3.1):

_̂x(t) =
· _̂x1(t)

_̂x2(t)

¸
=
· ¡b1 x̂1(t) ¡ b4 x̂1(t)x̂2(t) + b7
¡b2x̂2(t) + b6

b5

R 0
¡b5 x̂2(t+ ¿ )d¿

¸
+

·
1 0

¡b1 ¡ b4x̂2(t) ¡b4x̂1(t)

¸¡1 ·
K1
K2

¸
(y(t) ¡ x̂1(t));

(4:2)

with initial conditions x̂0 2 PC([¡¢; 0]); IR2). The initial conditions of the observer
are taken 40 units lower than the initial conditions of the system.

The vector K =
·
K1
K2

¸
in the observer is chosen equal to

·
3
2

¸
, by which the matrix

A¡KC has eigenvalues (¡1;¡2). In the ¯gures 3 and 4 the true and estimated values
of the glucose and of the insuline are reported.

¯g.4: true and estimated insuline

For detailed results on the glucose-insuline system and on the problem of the
observation of the insuline from the measures of the glucose, which is out of the aims of
this theoretical paper, the interested reader can refer to the recent Ph.D. dissertation
[6].
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