
Can linear stabilizability analysis be generalized
to switching systems? ∗

E. De Santis, M. D. Di Benedetto, G. Pola
University of L’Aquila, Dipartimento di Ingegneria Elettrica,

Centro di Eccellenza DEWS,

Poggio di Roio, 67040 L’Aquila (Italy)

desantis,dibenede,pola@ing.univaq.it

Abstract

Stabilizability and asymptotic stabilizability of switching systems is
characterized in terms of the existence of controlled invariant sets and
domains of attraction. Then the classical Kalman decomposition for linear
dynamical system is extended to switching systems. This shows that the
core issue for solving the stabilizability problem for switching systems is
the stability of an autonomous (i.e. without continuous input) switching
subsystem.
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1 Introduction
Hybrid systems have captured over the past few years great attention in the
scientific community because of their generality and expressive power. In par-
ticular, important theoretical results have been achieved for safety problems
where the control specifications require the evolution of the controlled system
to stay out of sets of states called the "bad" states. A systematic procedure for
solving these problems has been proposed in [12]. On the other hand, stability
issues of hybrid systems have been investigated e.g. in [4], [17], [11] and refer-
ences therein. A very recent paper [9] discusses the issue of uniform stability of
switched linear systems.
In this paper, we focus on the subclass of hybrid systems where the con-

tinuous dynamics and the reset functions are linear and the transitions depend
only on a disturbance event (switching systems). We first study the relations
between stabilizability and safety properties for switching systems (a prelimi-
nary result on this equivalence can be found in [6] in the discrete time domain).
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We introduce the notion of strong safety and we show that strong safety implies
the existence of a controlled safe set with non-empty interior. Then, we fully
characterize controlled invariant sets and domains of attraction for switching
systems. This characterization is useful for assessing stabilizability and asymp-
totic stabilizability of switching systems in terms of the existence of controlled
invariant sets or domains of attraction. We then extend the classical Kalman
decomposition for linear dynamical system to switching systems by also show-
ing that asymptotic stabilizability of a switching system can be reduced to the
stability properties of a particular autonomous switching system extracted from
the original one. Some recent results on this issue can be found in [15].

2 Definitions
We consider the subclass of hybrid systems where the continuous dynamics and
the reset functions are linear and the transitions depend only on a disturbance
event (switching transitions). This sub-class can be viewed as a particular case
of general hybrid systems as defined in [16] The continuous state space associ-
ated with each discrete state is characterized by its own dimension that is not
necessarily the same for all the discrete states.

Definition 1 A linear continuous time switching system S is a tuple (Ξ,Q,V,
Rm,SC , S, E,R) where:

• Ξ =
S
i∈J
{qi} ×Rni is the hybrid state space; J = {1, 2, . . . ,N}.

• Q = {qi, i ∈ J} is the set of discrete states;

• V is the finite set of discrete disturbances;

• Rm is the continuous input space; we denote by U the class of piecewise
continuous control functions u : R→ Rm;

• SC is a subclass of linear, continuous time dynamical systems . The system
Sh ∈ SC is defined by the equation:

ẋ(t) = Ahx(t) +Bhu(t)

with h ∈ J, Ah ∈ Rnh×nh , Bh ∈ Rnh×m;

• S : Q → SC is a mapping that associates a continuous time (resp. a
discrete time) dynamical system to every discrete state; for simplicity
S (qi) = Si.

• E ⊂ Q×V×Q is a collection of discrete transitions;

• R : E × Ξ → Ξ is the linear reset function, i.e. given e = (qi, σ, qj) ∈ E
and ξ = (qi, x) ∈ Ξ, R(e, ξ) = (qj ,Mijx), Mij ∈ Rnj×ni .
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The triple (Q,V, E) can be viewed as a Finite State Machine (FSM) having
state set Q and transitions defined by E. This FSM characterizes the structure
of the discrete transitions and w.l.o.g. is supposed to be connected.
Following [12], we recall that a hybrid time basis τ is an infinite or finite se-

quence of sets Ij satisfying the following conditions: Ij =
©
t ∈ R : tj ≤ t ≤ t0j

ª
;

if card(τ) = L+1 <∞, then IL may be of the form IL = {t ∈ R : tL ≤ t <∞}
and t0L =∞; for all j, tj ≤ t0j and for j > 0, tj = t0j−1. Denote by T the set of
all hybrid time bases. The switching system temporal evolution is then defined
as follows:

Definition 2 (Switching System Execution) An execution χ of a switching sys-
tem S is a collection χ = (ξ0, τ , σ, u, ξ) with ξ0 = (bq, x0) ∈ Ξ, τ ∈ T , σ : N→ V,
u ∈ U , ξ : R× N→ Ξ. Setting ξ (t, j) = (q(j), x(t, j)), ∀t ∈ Ij the function ξ is
defined as follows:

ξ (t0, 0) = ξ0 = (bq, x0);
ξ (tj+1, j + 1) = R(ej , ξ(t

0
j , j));

ej = (q (j) , σ (j) , q (j + 1)) ∈ E;
x (t, j) = xh(t, x (tj , j) , u)

where xh(t, x (tj , j) , u) is the (unique) solution at time t of the dynamical system
Sh = S (q (j)), with initial time tj, initial condition x (tj , j) and input u|[tj ,t).

We will say that χ = (ξ0, τ , σ, u, ξ) is an execution of S with initial state
ξ0 ∈ Ξ.
Throughout the paper we make the following assumptions:

Assumption 1 (Minimum dwell time) Given the switching system S, t0j− tj ≥
δm > 0, ∀j = 0, 1, ..., L, for any hybrid execution.

Assumption 1 implies that all executions are non-Zeno. Then, all executions
may be assumed w.l.o.g. to be infinite.
We can now define the class of state feedback functions for a switching

system.

Definition 3 (Hybrid state feedback) Given S, a state feedback function is a
function ϕ : Ξ→ Rm. A closed loop execution of S is a hybrid execution where
u(t) = ϕ (ξ (t, j)) , t ∈ [tj , t0j), j ∈ {0, 1, ..., L}.

The following definition generalizes some well-known properties of subsets
of finite dimensional vector spaces to subsets of the hybrid state space. Recall
that a C−set in Rn is a convex and compact set with the origin as an interior
point.

Definition 4 Consider a set Π =
S

i∈J0⊂J
{qi}×Σi ⊂ Ξ. Given some α ∈ R, we

write αΠ :=
[

i∈J0⊂J
({qi} × αΣi). The set Π is
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• symmetric, (convex, polyhedral) if Σi is symmetric (convex, polyhedral
resp.) ∀i ∈ J 0;

• a C−set if J 0 = J and Σi is a C−set in Rni , for any i ∈ J ;

• a Cs−set if J 0 = J and Σi is a convex symmetric bounded set with the
origin as an interior point in Rni , for any i ∈ J .

We are now ready to define stabilizability and asymptotic stabilizability for
linear switching systems. Let B =

S
i∈J
{qi} × Bi, Bi = {x ∈ Rni : kxk ≤ 1}.

Definition 5 GivenQ0 ⊂ Q, let B0 =
S
i∈J0

{qi}×Bi ⊂ Ξ, J0 = {i ∈ J : qi ∈ Q0}.

A system S is Q0− stabilizable by state feedback if for all ε > 0 there exist ρ > 0
and a state feedback function ϕ such that for any ξ0 ∈ ρB0, ξ(t, j) ∈ εB, ∀t ≥ 0,
∀j ≥ 0, for all closed loop executions of the switching system, with initial state
ξ0. A system S is Q0− asymptotically stabilizable by state feedback if it is
Q0−stabilizable by state feedback and the state feedback function ϕ is such that,
for any arbitrarily small ε > 0 and for any ξ0 ∈ αB0, with arbitrarily large α,
there exists a finite time t such that ξ(t, j) ∈ εB, ∀t ∈ Ij ∩ [t,∞), ∀j ≥ j, for
all closed loop executions of the switching system with initial state ξ0, where
j = inf j : t ∈ Ij.

If the above definition holds with Q0 = Q, the system will be called sta-
bilizable (asymptotically stabilizable) by state feedback . For shortness, in the
sequel we’ll omit the specification "by state feedback" for the stabilizability.

3 Lyapunov-like analysis
In this section, stabilizability properties of a switching system will be analyzed
and their precise relationship with safety properties will be established. There-
fore we need now some more preliminaries.
Hybrid control problems with safety specifications are described by giving a

set of good states within which the controlled switching system should evolve.
A switching system with constraints

ξ (t, j) ∈ Ω =
[
i∈J
{qi} ×Ωi ⊂ Ξ ∀t ∈ Ij ,∀Ij ∈ τ ,∀τ ∈ T (1)

will be called state constrained switching system.
The definitions below generalize to hybrid systems the concepts of controlled

invariant set, domain of attraction (see [3]) and controlled safe set (see [2]).

Definition 6 A set Π =
S
i∈J
({qi} ×Σi) ⊂ Ξ is controlled invariant for a

switching system S if there exists a state feedback function ϕ such that for any
closed loop execution of S with initial state in Π, ξ (t, j) ∈ Π, ∀t ∈ Ij , ∀j ∈
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{0, 1, ..., L}. We say that ϕ makes the set Π invariant for system S. Given a
real β > 0, a set Π ⊂ Ξ is a β−domain of attraction for S if there exists
a state feedback function ϕ such that for any closed loop execution of S with
initial state in Π, ξ (t, j) ∈ e−βtΠ, ∀t ∈ Ij , ∀j ∈ {0, 1, ..., L}.

Definition 7 Consider a state constrained switching system S. A set Π ⊂ Ω ⊂
Ξ is controlled safe for S if a state feedback function ϕ exists such that the
constraints (1) are satisfied for any closed loop execution of S with initial state
in Π. We say that ϕ makes the set Π safe for the system S.

Given a state constrained switching system S, the class of controlled safe
sets has a maximal element, the so-called maximal safe set of S, denoted by
X =

S
i∈J 0⊂J

{qi} ×Xi, where each set Xi is controlled!!! safe for the dynamical

system Si, with state constraining set Ωi ⊂ Rni .
The constrained switching system can be classified on the basis of the max-

imal safe set properties according to the following:

Definition 8 A system S is safe (resp. strongly safe) with respect to con-
straints (1) if X 6= ∅ (resp. if X has nonempty interior).

Remark 9 By Definitions 6 and 7, a controlled invariant subset of Ω for a
switching system S is also controlled safe for S, under constraints (1) and the
maximal safe set coincides with the maximal controlled invariant subset of the
state constraining set.

Throughout this section, the following assumption holds:

Assumption 2 The state constraining set Ω ⊂ Ξ is a C−set .

Under Assumption 2, any switching system is safe, because the origin is safe
with respect to any q ∈ Q. Therefore we’ll be interested in characterizing the
strong safety property.
In what follows Ji = {j : (qi, σ, qj) ∈ E, for some σ ∈ V}. Given some set

Σ ⊂ Rni , Ii (Σ) and Iiβ (Σ) denote the maximal controlled invariant subset of
Σ and the maximal β−domain of attraction in Σ for system Si, respectively.
Obviously Ii0 (Σ) = Ii (Σ).
The following theorem establishes the equivalence between stabilizability and

safety.

Theorem 10 A switching system S is stabilizable if and only if it is strongly
safe with respect to constraints (1), for any given C−set Ω.

Proof. The sufficiency is obvious. The necessity follows from the fact that,
by definition of stabilizability, ∀ρ > 0 ∃ε > 0 such that εBi is a safe set with
respect to qi ∈ Q, ∀i ∈ J , and with respect to any C−set Ω, containing the set
ρB.
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The following result fully characterizes controlled invariant sets and domains
of attraction for switching systems. Such characterization will be useful for as-
sessing stabilizability of a switching system in terms of the existence of controlled
invariant sets or domains of attraction. The symbolM−1ij Σj denotes the inverse
image of the set Σj through the operator Mij .

Lemma 11 A set Π =
S
i∈J
({qi} ×Σi) ⊂ Ξ is a β−domain of attraction (resp.

controlled invariant set) for the system S if and only if for any i ∈ J a state
feedback function exists such that for any x0 ∈ Σithe following condition holds
(resp. the following condition holds with β = 0):

xi(t, x0) ∈ e−βtΣi,∀t ∈ [0, δm) and

xi(t, x0) ∈ e−βtIiβ

Ã T
j∈Ji

¡
M−1ij Σj

¢T
Σi

!
,∀t ≥ δm.

where xi(t, x0) is the closed loop evolution at time t of the system Si, starting
at t = 0 from the initial state x0.

Proof. For the characterization of controlled invariance, see [7]. As for the
property of being a β−domain of attraction, a set is a β−domain of attraction for
the system S if and only if it is controlled invariant for the system S 0, obtained
from the given system S by the perturbation of the continuous dynamics: A0i =
Ai + βI, where A0i, i ∈ J , denotes the state matrix of the perturbed dynamical
system. Therefore by linearity of S and S 0 the result follows.
Given a set Π =

S
i∈J
({qi} ×Σi) ⊂ Ξ, let Πs be the symmetric set

{ξ ∈ Ξ : ξ = α1ξ1 + α2ξ2, ξ1, ξ2 ∈ Π, α1, α2 ∈ R : |α1|+ |α2| ≤ 1}

The following result holds:

Lemma 12 If a set Π =
S
i∈J
({qi} ×Σi) ⊂ Ξ is a β−domain of attraction (resp.

controlled invariant set) for the system S, then the set Πs is a β−domain of
attraction (resp. controlled invariant set) for S.

Proof. Straightforward from linearity and from Lemma 11.
The following theorem establishes an equivalence between asymptotic sta-

bilizability and the existence of a domain of attraction for the class of linear
switching systems. The "if" implication is obvious, and it was already stated in
the literature for a broader class of systems: in fact, the existence of a domain
of attraction implies the existence of "multiple Lyapunov-like functions" (see
[5], [9] and the references therein), concatenated together to form a Lyapunov
function, suitable for assessing stability of switching systems. The necessity is
a consequence of the linearity of the switching system and of the results stated
in this section.

6



Theorem 13 A system S is stabilizable (resp. asymptotically stabilizable) if
and only if there exists a Cs−set Π ⊂ Ξ, which is controlled invariant (resp.
β−domain of attraction for some β > 0) for S .

Proof. The sufficiency is obvious. Necessity: if S is stabilizable, then Theorem
10 implies that the maximal safe set has nonempty interior. From Remark 9
the maximal safe set is controlled invariant, and finally Lemma 12 implies that
there exists a controlled invariant Cs−set. If S is asymptotically stabilizable,
then the system S 0 defined in the proof of Lemma 11 is stabilizable. Therefore
there exists a controlled invariant Cs−set for S 0, which, as already pointed out
in the same proof, is a domain of attraction for S.
We now define the multiple Lyapunov-like function induced by the controlled

invariant (resp. β−domain of attraction) Cs−set Π ⊂ Ξ. Consider the hybrid
generalization of the Minkowski functional ΨΠ : Ξ→ R (see [10]) :

ΨΠ(ξ) = inf {µ ∈ R, µ ≥ 0 : ξ ∈ µΠ}

Since Π is controlled invariant (resp. β−domain of attraction, for some β > 0)
for S, then, setting

V (ξ (t, j)) = ΨΠ(ξ (t, j))

there exists a closed loop execution such that for any hybrid initial state and
for any j ∈ {0, . . . , L},

• V̇ (ξ (t, j)) ≤ 0 (resp. V̇ (ξ (t, j)) ≤ η < 0), for any time t ∈ Ij ;

• V (ξ (tk, k)) ≤ V (ξ (tj , j)) (resp. V (ξ (tk, k)) ≤ γV (ξ (tj , j)), for some
γ ∈ (0, 1)), ∀k > j : q (k) = q (j).

Therefore V : Ξ→ R is a Lyapunov-like function [4].

4 Kalman-like continuous state space decompo-
sition

In [8] we presented a number of techniques for simplifying the structure of the
finite state machine associated to a hybrid system, which allow a significant
reduction of the effort required to check stabilizability and detectability. A
consequence of those results is that stabilizability of a given switching system
depends on a suitable subsystem, where none of the continuous dynamics is
controllable. Moreover, a switching system is (asymptotically) stabilizable if
and only if each strongly connected component is (asymptotically) stabilizable.
Hence, without loss of generality, we consider a strongly connected switching
system S where all the dynamical systems are not controllable.
We start with a decomposition with respect to the continuous component of

the state space.
We will show that, as in the case of a linear dynamical system, a switching

system S can be decomposed into two subsystems.
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Given S = (Ξ,Q,W,Rm,SC , S, E,R), we can assume without loss of gen-
erality that the dynamical systems are in controllability canonical form

Ai =

Ã
A
(11)
i A

(12)
i

0 A
(22)
i

!
, Bi =

µ
B
(1)
i

0

¶
(2)

where A(22)i ∈ Rdi×di , di > 0, ∀i ∈ J . In fact, if S is not in this form, it is
possible to define the following hybrid state space transformation: given the
hybrid state ξ = (qi, x) and the reset matricesMij , i, j such that (qi, σ, qj) ∈ E,
the transformed hybrid state and reset matrices arebξ = (qi, Tix), cMij = TjMijT

−1
i

where Ti is a nonsingular matrix such that TiAiT
−1
i and TiBi are in the desired

controllability canonical form. The matrix Mij can be partitioned as

Mij =

Ã
M

(11)
ij M

(12)
ij

M
(21)
ij M

(22)
ij

!

with M
(22)
ij ∈ Rdj×di ; the continuous component of the hybrid state (qi, x) can

be partitioned as x =
µ

x(1)

x(2)

¶
where x(1) ∈ Rni−di , x(2) ∈ Rdi .

Given the system S, define the switching systemeS = ³eΞ,Q,W,Rm, eSC , eS,E, eR´
with eΞ = S

i∈J
{qi} ×Rdi , eSi ∈ eSC described by the equation

ż(t) = A
(22)
i z(t)eS(qi) = eSi, eR(e,eξ) = (qj ,M (22)

ij z), e = (qi, σ, qj) ∈ E, eξ = (qi, z) ∈ eΞ.
The following Theorem 15 characterizes asymptotic stabilizability of the sys-

tem S in terms of stabilizability of eS and can be seen as an extension to hybrid
systems of the classical Kalman decomposition for linear dynamical systems.
The proof of Theorem 15 requires the following lemma, which generalizes the
"Squashing Lemma" proved previously in [14].

Lemma 14 Let (A,B) be a controllable matrix pair with A ∈ Rn×n, B ∈
Rn×mand consider the system described by the equation

ẋ(t) = Ax(t) +Bu(t) + d(t)

with kd(t)k ≤ De−βt, ∀t ∈ [0, T ], for some D ≥ 0, β > 0, where the symbol k.k
denotes the Euclidean norm in the space Rn. Then ∀∆ ∈ (0, T ) and ∀ε > 0
there exists γ > 0 and a state feedback gain F , such that the solution x(t) of the
closed loop system satisfies the condition

kx(t)k ≤ ε
³
e−γ(t−∆) kx(0)k+ e−β(t−∆)D

´
, ∀t ∈ [0, T ] .
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Proof. We use the same arguments as in the proof of the Squashing Lemma
[14]. Given any set of n distinct real numbers λ1, ..., λ1, since the pair (A,B) is
controllable, there exists a polynomial matrix H(λ) that assigns to A+BH(λ)

the characteristic polynomial p(s, λ) =
nQ
i=1
(s+ λ (1 + λi)) [13], and therefore

the eigenvalues of bA = A + BH(λ) are real, distinct and bounded above by
−λ. This implies that the matrices T and T−1 such that T−1 bAT = Λ, being Λ
a diagonal matrix with the eigenvalues of bA on the diagonal, are rational and
continuous functions of the parameter λ > 0. Then

kx(t)k ≤
°°°e bAt°°° kx(0)k+ tZ

0

°°°e bA(t−τ)°°° kd(τ)k dτ
≤ kTk

°°T−1°°
e−λt kx(0)k+D

tZ
0

e−λ(t−τ)e−βτdτ


= kTk

°°T−1°°µe−λt kx(0)k+ D

λ− β

¡
e−βt − e−λt

¢¶
.

Since the matrices T and T−1 are rational and are continuous functions of the pa-
rameter λ > 0, then it is possible to select λ > β+1 such that kTk

°°T−1°° e−λ∆ ≤
ε. Therefore

kx(t)k ≤ kTk
°°T−1°° ¡e−λt kx(0)k+D

¡
e−βt − e−λt

¢¢
≤ ε

³
e−λ(t−∆) kx(0)k+D

³
e−β(t−∆) − e−λ(t−∆)

´´
≤ ε

³
e−λ(t−∆) kx(0)k+ e−β(t−∆)D

´
, t ∈ [0, T ] .

Setting γ = λ and F = H(λ), the result follows.
The last result of this paper shows that in the stabilizability problem for

switching systems, the core problem is the stability of the autonomous (i.e.
without continuous input) switching subsystem eS.
Theorem 15 The system S is asymptotically stabilizable if and only if the sys-
tem eS is asymptotically stable.
Proof. Consider the interval Ijof the time basis and let q(j) = qi.
(Sufficiency) Since the switching system eS is asymptotically stable, there

exists a Cs-set eΠ which is a β−domain of attraction for it. Set
α = maxi∈J

°°°A(12)i

°°° , µ11 = maxi∈J,j∈Ji
°°°M (11)

ij

°°° ,
µ12 = maxi∈J,j∈Ji

°°°M (12)
ij

°°° , µ21 = maxi∈J,j∈Ji
°°°M (21)

ij

°°° .
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Without loss of generality, let eΠ be such that supi∈J,(qi,x))∈eΠ kxk = 1, and°°x(1)(tj , j)°° ≤ 1 + µ12, x(2)(tj , j) ∈ eΠ. (3)

By Lemma 14 and setting ∆ = δm, ∀ε > 0 there exists γ > 0 and a state
feedback gain H(qi), such that the state evolution of the closed loop system
S(qi) satisfies the condition,

kx(t)k ≤ ε
³
e−γ(t−δm−tj)

°°°x(1)(tj , j)°°°+ αe−β(t−δm−tj)
´

(4)

≤ ε
³°°°x(1)(tj , j)°°°+ α

´
,∀t ∈

£
tj , t

0
j

¤
,

Moreover, the stabilizability of the decoupled system eS ensures that x(2)(t, j) ∈
e−βδm eΠ, ∀t ∈ £tj + δm, t

0
j

¤
. After the first switching from the discrete state qi

to some discrete state qh,

x(1)(tj+1, j + 1) = M
(11)
ih x(1)(t0j , j) +M

(12)
ih x(2)(t0j , j),

x(2)(tj+1, j + 1) = M
(21)
ih x(1)(t0j , j) +M

(22)
ih x(2)(t0j , j).

Therefore, °°x(1)(tj+1, j + 1)°° ≤ µ11ε
¡°°x(1)(tj , j)°°+ α

¢
+ µ12e

−βδm ,
x(2)(tj+1, j + 1) ∈ µ21ε

¡°°x(1)(tj , j)°°+ α
¢
B + e−βδm eΠ,

and hence, by condition (3),°°x(1)(tj+1, j + 1)°° ≤ µ11ε (1 + α+ µ12) + µ12e
−βδm ,

x(2)(tj+1, j + 1) ∈ µ21ε (1 + α+ µ12)B + e−βδm eΠ.
By selecting λ ∈

¡
e−βδm , 1

¢
and ε > 0 such that

µ11ε (1 + α+ µ12) ≤ λ,
µ21ε (1 + α+ µ12)B + e−βδm eΠ ⊂ λeΠ,

the following conditions hold:°°x(1)(tj+1, j + 1)°° ≤ λ+ µ12e
−βδm ≤ λ (1 + µ12) ,

x(2)(tj+1, j + 1) ∈ λeΠ.
By iterating this step for k discrete transitions, it is easily seen that°°x(1)(tj+k, j + k)

°° ≤ λk (1 + µ12) ,
x(2)(tj+k, j + k) ∈ λkeΠ.

If L =∞, the conditions above guarantee that limk→∞ x(1)(tj+k, k+1) = 0 and
limk→∞ x(2)(tj+k, k + 1) = 0. Hence by condition (4) the result follows.
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If L < ∞, since any S(qi), i ∈ J is asymptotically stable with the state
feedback gainH(qi) the hybrid state evolution converges to the origin for t→∞.
(Necessity) Let L =∞. Given S, consider the augmented system S(a) with

the dynamical systems defined by the matrices

A
(a)
i =

 A
(11)
i A

(12)
i 0

0 A
(22)
i 0

0 0 A
(22)
i

 , M
(a)
ij =

 M
(11)
ij M

(12)
ij 0

M
(21)
ij M

(22)
ij 0

M
(21)
ij 0 0

 ,

and B
(a)
i =

 B
(1)
i

0
0

. Let the continuous state of the system S(a) be denoted

by w, partitioned as w =

 w(1)

w(2)

w(3)

 with appropriate dimensions. Consider

the infinite closed loop executions of systems S, S(a) and eS with initial statesÃbq,Ã x
(1)
0

x
(2)
0

!!
,

bq,
 x

(1)
0

x
(2)
0

0


 and (bq, x(2)0 ), with time basis τ , discrete state

sequence {q (i) , i = 0, 1, ...} and feedback control law ϕ, where ϕ is asymptoti-
cally stabilizing for system S. By construction for any Ij

x(1)(t, j) = w(1)(t, j) (5)

x(2)(t, j) = w(3)(t, j) + z(t, j).

Since ϕ is asymptotically stabilizing for S then

lim
j→∞

x(1)(t, j) = lim
j→∞

w(1)(t, j) = 0, (6)

lim
j→∞

x(2)(t, j) = 0. (7)

Moreover when a switching occurs from qi to some qh, w(3)(tj+1, j + 1) =
M

(21)
ih x(1)(t0j , j). Hence by (6)

lim
j→∞

w(3)(t, j) = 0. (8)

Finally by combining conditions (5), (7) and (8), we obtain that limj→∞ z(t, j) =
0 and the result follows.

5 Conclusions
In this paper, we addressed the relationships between safety and stabilizability
for a special class of hybrid systems, switching systems. We defined strong safety,
as well as stabilizability and asymptotic stabilizability. The equivalence between

11



these properties and safety ones was established. We proposed a Kalman de-
composition for switching systems that is important in showing that the core
problem for solving the stabilizability problem is the stability of the autonomous
(i.e. without continuous input) switching subsystem.
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