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Abstract

In presence of large uncertainty, traditional methodologies based
on a single controller do not provide, in general, satisfactory perfor-
mance when applied to any system in the uncertainty set, and may
not even guarantee stability. A way to address this problem is to
consider a set of candidate controllers and design a supervisor that
appropriately orchestrates the switching among them, based on the
data collected from the controlled system. The analysis of the result-
ing hybrid switched control system requires specialized tools.

In this paper, we consider the switching control of a class of sto-
chastic linear system affected by a possibly unbounded noise. We
study and compare two supervisory control schemes adopting respec-
tively the dwell time and the hysteresis-based switching logic. We
prove that they both stabilize the switched control system. We also
show that self-optimality can be achieved in the dwell time switch-
ing scheme by adding an asymptotically vanishing dither noise to the
control input.

1 Introduction

In this paper, we study the problem of controlling an unknown stochastic
linear system.

∗Research partly supported by the European Commission under the HYBRIDGE
project, IST-2001-32460.



Suppose that a candidate controllers set is given. The performance of
the control scheme composed by the system in closed-loop with a certain
candidate controller can be measured by a cost criterion J : the lower the
value for J , the more satisfactory the control performance (J can be, for
instance, an H2 or H∞ cost). If the system were known, then the optimal
controller according to the cost criterion J could be computed by minimizing
J over the candidate controllers set.

Consider now the case of interest, i.e., the case when the system is not
known. Suppose that a parametric set of admissible models is introduced
to model the uncertainty on the system description. Then, the problem of
selecting the best controller according to J can be addressed by introduc-
ing a state variable representing the unknown parameter vector, and then
determining the optimal controller according to J for the so-obtained aug-
mented state-space representation of the system. The resulting controller
incorporates a self-adjusting mechanism, in that it selects a control input
that realizes an appropriate compromise between the control and the identi-
fication objectives (dual action, [1]). However, such an optimal dual control
problem is doable only in a few simple cases where computing the solution
to the optimization problem is actually feasible.

A computationally feasible –though sub-optimal– approach to the design
of self-adjusting controllers is the so-called switching control approach origi-
nally introduced in [2] and further developed in e.g. [3, 4, 5, 6]. A switching
control scheme is typically composed of an inner loop where a candidate con-
troller is connected in closed-loop with the system, and an outer loop where
a supervisor, based on input-output data, decides which controller to place
in feedback with the system and when to switch to a different one. Note
that the switched control system constituting the inner loop of the switching
control scheme is a hybrid system, which commutes between different modes
when a switching event occurs. Its dynamics within each mode is that of
the closed-loop system composed by the system and the controller operating
between two consecutive switching events. The analysis of its behavior then
requires specialized tools.

The candidate controller to switch to is typically selected through an
estimator-based procedure ([3, 7]). Specifically, a parametric set of admissible
models of the system is introduced, and each model is associated with the
controller in the candidate controllers set that is the best for it according
to the chosen control cost criterion J . A monitoring signal is computed for
each admissible model parameter, based on the input-output data collected
from the system. This signal is usually given by some integral norm of
the output estimation error: the lower is its value, the more accurate is



the corresponding model as a description of the system. At any switching
time instant, the estimator-based supervisor then selects the controller that
is associated to the model whose parameter minimizes the monitoring signal
(the estimated system). The idea underlying the estimator-based approach to
switching is that, as the amount of data collected from the system increases,
the estimated system better resembles the behavior of the actual system, at
least in closed-loop (closed-loop identification property). Hence, by imposing
a specific desired behavior on the estimated system, one actually imposes that
behavior on the underlying system (self-tuning property). If the estimated
system is an accurate description of the true system, this ultimately results
in applying to the underlying system the candidate controller that is optimal
for it (self-optimality property).

As for the switching times, they are chosen so as to avoid that switching
is too fast with respect to the system settling time, thus causing instability.
In the dwell time switching method, the switching rate is slowed down by
making a dwell time elapse between consecutive switching times, either by
fixing it before implementing the switching controller ([3, 7]), or by selecting
it on-line at each switching time ([8, 6]). In the hysteresis-based switching
method, the switching rate is slowed down by changing controller only at
those times t when the collected data reveal that the model used to select
the currently operating controller is significantly worse than the estimated
system (see, e.g., [9, 10, 11]).
The reader is referred to [12] for an overview on different switching logics.

In this paper, we study the estimator-based switching control of discrete
time linear systems affected by a stochastic noise.
In Section 2, we introduce the admissible models set and the candidate con-
trollers set, and then describe in details the estimator-based supervisor ar-
chitecture. In Section 3, we then analyze the switching control scheme under
the assumption that the true system belongs to the admissible models set.
Our objective here is to present the results in [6, 11] in a unifying perspective.
Specifically, we prove that when the least squares cost is used as monitoring
signal, then both the dwell time and the hysteresis-based switching methods
guarantee stability. Finally, in Section 4, we compare these two switching
methods. The hysteresis-based switching approach generally leads to a bet-
ter transient behavior than the dwell time switching approach. On the other
hand, self-tuning is ensured only by adopting the dwell time switching ap-
proach. Also, we show that by adding an asymptotically vanishing dither
noise to the dwell time switching control input, self-optimality is achieved.



2 Switching control scheme

Admissible models set

We introduce the following set of models to represent the uncertainty on the
system description:

A(ϑ; q−1) yt+1 = B(ϑ; q−1) ut + wt+1, (1)

where wt is some stochastic white noise, A(ϑ; q−1) = 1 −∑ns

i=1 aiq
−i and

B(ϑ; q−1) =
∑ms

i=1 biq
−i+1 are polynomials in the unit-delay operator q−1, and

ϑ = [ a1 a2 . . . ans b1 b2 . . . bms ]T is the model parameter vector. We denote
by ss the order of the model. We assume that

Assumption 1 The admissible models parameter vector ϑ belongs to a com-
pact set Θ ⊂ <ns+ms.

Note that here we suppose that each model is linearly parameterized in
ϑ, since it can in fact be rewritten as yt+1 = ϕT

t ϑ + wt+1, where ϕt :=
[ yt yt−1 . . . yt−ns+1 ut ut−1 . . . ut−ms+1 ]T is the regression vector. However, ϑ
could be a nonlinear function of some parameter p without hampering any
of the results presented in the paper. This is for example the case when ϑ is
a continuous function of p belonging to a compact set. We decided to refer
to the linear parameterization case only for ease of notation.

Candidate controllers set

For the sake of simplicity in the implementation of the controller and the
supervisor, we assume that the candidate controllers set is finite. Specifically,
the models parameter set Θ is partitioned into m compact sets Θk, k ∈ K :=
{1, . . . , m}, such that, for each k ∈ K the models in the set Θk are adequately
controlled according to some cost criterion J by the controller

R(k; q−1)ut = S(k; q−1)yt, (2)

of order sc, where R(k; q−1) = 1−∑mc

i=1 ri(k)q−i and S(k; q−1) =
∑nc

i=0 si(k)q−i.
This set is called a finite controller cover ([13, 14]) and has to satisfy the fol-
lowing stability condition.

Assumption 2 For each k ∈ K, the roots of the characteristic polynomial

qss+sc{A(ϑ; q−1)R(k; q−1) − B(ϑ; q−1)S(k; q−1)q−1}, ϑ ∈ Θk,

are within the open circle with radius λ < 1. We shall call λ the stability
margin.



We then define Σ : Θ → K to be the map associating the parameter ϑ with
the controller k which is optimal over the set Θk to which ϑ belongs (in the
case when ϑ belongs to the frontier of two or more sets, some rule must be
given to decide which controller to assign to ϑ).
Note that here we deal with a regulation problem. This is only for simplifying
the presentation. All the results in the paper can be in fact extended to the
case of a tracking problem with a deterministic and bounded reference signal.

Supervisor

We consider an estimator-based supervisor, which, based on the input signals
u and y, generates the piecewise constant switching signal σ, whose value at
any time t denotes the candidate controller that is placed in feedback with
the system at that time t. The supervisor is composed of two blocks:

• a monitoring signal generator, which computes at each time instant
t ≥ 0 the least squares cost (LS): Vt(ϑ) = 1

t+1

∑t
s=0(ys − ϕT

s−1ϑ)2 + εJ ,
with εJ > 0;

• a switching logic, which decides at each time instant t whether or not a
controller different from the one currently operating has to be switched
in the loop, and which controller to switch to. This latter decision is
based on the LS signal.
Denote by {ti} the sequence of switching times and define

ϑt =




ϑ̂t, if t = ti,

ϑt−1, otherwise,
(3)

initialized with ϑ−1 = ϑ̄ ∈ Θ, where ϑ̂t is the LS cost minimizer. Then,
the switching signal σt, t ≥ 0, can be expressed as

σt = Σ(ϑt). (4)

As the amount of data collected from the system increases, the estimated
system better describes the actual system behavior, at least in closed-loop.
One can then stabilize the true system by stabilizing the time-varying esti-
mated system. In order to do it, however, it is not sufficient to stabilize the
“frozen” closed-loop estimated system with parameter ϑt at each time t. A
possible solution to this issue is to update the parameter estimate at a slower
rate than the updating of the system variables, so as to limit the estimated
system time variability. By equation (3), this corresponds to slowing down
the switching rate. We next describe how this is realized in the dwell time
and hysteresis-based switching logics.



Dwell time switching logic. The switching rate is slowed down by mak-
ing a dwell time elapse between two consecutive switching times. Specifically,
the sequence of switching times is obtained by the recursive equation

ti+1 = ti + τD(ϑti), i > 0 (5)

initialized with t0 = 0, with τD(ϑ) denoting the dwell time function mapping
the parameter ϑ in the corresponding dwell time. The dwell time function is
defined next.

Consider the closed-loop system composed of the model with parameter
ϑ and the controller with index k:{ A(ϑ; q−1) yt+1 = B(ϑ; q−1) ut + wt+1,

R(k; q−1)ut = S(k; q−1)yt.
(6)

By letting xt := [yt . . . yt−n+1 ut−1 . . . ut−m+1]
T where n := max{ns, nc + 1}

and m := max{ms, mc +1}, the closed-loop system (6) can be given the state
space representation{

xt+1 = A(ϑ) xt + B(ϑ)ut + Cwt+1

ut = L(k)xt,

where

A(ϑ) =




a1 . . . an−1 an

1 0 . . .
. . .

. . .

1 0

b2 . . . bm−1 bm

0 . . . 0
. . . 0

0
0 . . . . . . 0
0 . . . . . . 0

. . .
. . .

0 0

0 . . . . . . 0
1 0

. . .
. . .

1 0




, B(ϑ) =




b1

0
...
0
1
0
...
0




,

H = CT =
[

1 · · · 0 0 0 · · · 0 0
]
,

L(k) =
[

s0(k) · · · sn−2(k) sn−1(k) r1(k) · · · rm−2(k) rm−1(k)
]
,

with ai = 0 if i > ns, si(k) = 0 if i > nc, bi = 0 if i > ms, ri(k) = 0 if i > mc,
thus leading to xt+1 = F (ϑ, k) xt +Cwt+1, where F (ϑ, k) = A(ϑ)+B(ϑ)L(k)
is the closed-loop system dynamic matrix.
Note that the introduced state space representation of the model with para-
meter ϑ is nonminimal but, because of the block triangular matrix structure



of A(ϑ), the added eigenvalues are all identically equal to zero. This, jointly
with the fact that the stability margin is λ, implies that if the model with
parameter ϑ is controlled by the controller with parameter k = Σ(ϑ), then,
its closed-loop dynamic matrix F (ϑ, Σ(ϑ)) satisfies

max{|λmax(F (ϑ, Σ(ϑ)))| : ϑ ∈ Θ} < λ. (7)

We are now in a position to define the dwell time switching function. Fix a
positive constant µ < 1. Then, τD : Θ → < is given by

τD(ϑ) := inf{τ ∈ N : ‖F (ϑ, Σ(ϑ))τ‖ ≤ µ}. (8)

Hysteresis-based switching logic. The hysteresis-based switching logic
continuously monitors the performance of the current controller σt−1 and
falsifies it as soon as data reveal that the model used to select it is significantly
worse than the model whose parameter minimizes the LS signal. If and when
the current controller is falsified, then, a switching occurs. In particular, the
generic switching time ti+1 is defined as follows:

ti+1 = min
{
t > ti : (1 + h)Vt(ϑ̂t) ≤ Vt(ϑt−1)

}
, (9)

where h > 0 is the hysteresis factor.

In the next section, we analyze the introduced estimator-based switching
control scheme and prove that stability is guaranteed when the true system
is described by equation (1) with ϑ set equal to ϑ◦ ∈ Θ and the stochastic
disturbance wt satisfies the following assumption.

Assumption 3 {wt} is a martingale difference sequence with respect to a
filtration {Ft}, satisfying the following conditions

1. supt E[wβ
t /Ft−1] < ∞, almost surely (a.s.), for some β > 2;

2. lim
t→∞

1

t

t−1∑
s=0

w2
s = γ2 > 0, a.s.

Note that Assumption 3 is e.g. satisfied when {wt} is an i.i.d. Gaussian
sequence with zero mean and variance γ2, but it includes many other situa-
tions. Also, differently from what is typically done in the switching control
literature ([3, 7, 15, 5, 16]), w is not supposed to be bounded.



3 Stability analysis

The switched control system{
yt+1 = [1 −A(ϑ◦; q−1)] yt+1 + B(ϑ◦; q−1) ut + wt+1

ut = S(σt; q
−1) yt + [1 −R(σt; q

−1)] ut,

with σt given by (4), can be represented as a variational system with respect
to the closed-loop estimated system as follows:{

yt+1 = [1 −A(ϑt; q
−1)]yt+1 + B(ϑt; q

−1) ut + wt+1 + et

ut = S(Σ(ϑt); q
−1) yt + [1 −R(Σ(ϑt); q

−1)] ut,
(10)

where et := ϕT
t [ϑ◦ − ϑt] is the perturbation term.

The switched control system stability can then be proven based on the fol-
lowing two facts:

i) the closed-loop estimated system (10), where et is regarded as an ex-
ogenous input, is exponentially stable, uniformly in time;

ii) the internally generated perturbation term et is ‘small’.

These two properties are proved next.
The stability result for the autonomous estimated system will be expressed
in terms of the state space representation introduced in Section 2.

i) Uniform exponential stability

Theorem 1 The autonomous estimated system xt+1 = F (ϑt, σt)xt, with ϑt

and σt respectively given by (3) and (4), is a.s. exponentially stable, uni-
formly in time, i.e, there exists λ̄ ∈ (λ, 1) and a (random) constant k̄ such
that, for all t∗, t, with 0 ≤ t∗ ≤ t,

‖xt‖ ≤ k̄λ̄t−t∗‖xt∗‖, a.s. (11)

Proof. We start by consider the time-invariant system

vt+1 =
1

λ
F (ϑ, Σ(ϑ)) vt. (12)

By equation (7), we have that system (12) is exponentially stable ∀ϑ ∈ Θ.
Moreover, Lt(ϑ) := vT

t P (ϑ)vt, where P (ϑ) is the solution to the Lyapunov
equation 1

λ
F (ϑ, Σ(ϑ))T P 1

λ
F (ϑ, Σ(ϑ))−P = −I, is a Lyapunov function for



system (12) satisfying Lt+1(ϑ) −Lt(ϑ) = −‖vt‖2, ∀t.
This implies that Lt+1(ϑ) ≤ Lt(ϑ), ∀t, from which it follows that

‖vt̄+1‖ ≤ ρ ‖vt′‖, t′ ≤ t̄, (13)

where we set ρ :=
√

supϑ∈Θ K#(P (ϑ)), with K#(P ) denoting the condition
number with respect to the 2-norm of matrix P . It is important to note that
ρ is bounded. In the case when Θ is finite, this property immediately follows
from the fact that 1

λ
F (ϑ, Σ(ϑ)), ϑ ∈ Θ, is stable, hence P (ϑ) is positive

define and K#(P (ϑ)) < ∞ for all ϑ ∈ Θ. In the case when Θ = ∪m
k=1Θk,

where Θk is a continuum of parameterizations and it is compact, one has
to use also the property that, for every k ∈ K, F (ϑ, Σ(ϑ)) is a continuous
function of ϑ, ϑ ∈ Θk, and hence P (ϑ) (and K#(P (ϑ))) is also continuous on
Θk (see [17]).

If we consider the time-invariant system zt+1 = F (ϑ, Σ(ϑ))zt, setting
zt′ = vt′ , by (13) we get the following bound on the state vector zt:

‖zt̄+1‖ ≤ ρλt̄+1−t′ ‖zt′‖, t′ ≤ t̄′. (14)

Consider now the time-varying autonomous estimated system

xt+1 = F (ϑt, σt)xt. (15)

Denote by {ti} the switching time instant sequence, i.e., the time instants
when σt (or equivalently ϑt) changes. Since during each time interval [ti, ti+1)
system (15) is time invariant, by (14) we have

‖xt̄+1‖ ≤ ρλt̄+1−t′ ‖xt′‖, t′ ≤ t̄, t′, t̄ ∈ [ti, ti+1), (16)

In particular, for t′ = ti and t̄ = ti+1 − 1,

‖xti+1
‖ ≤ ρλti+1−ti‖xti‖. (17)

Consider now the time interval [t∗, t].
Let {tkj

}Nσ(t∗,t)
j=1 , with t∗ < tk1 < tk2 < . . . < tkNσ(t∗,t)

< t, denote the
Nσ(t∗, t) consecutive switching times in (t∗, t). Suppose that Nσ(t∗, t) > 0 (if
Nσ(t∗, t) = 0, then by (16) we have that (11) is satisfied for any k̄ ≥ ρ).

Case 1 : The dwell time switching logic.
By applying first (16) with t′ = tkNσ(t∗,t)

and t̄ = t, then recalling the fact

that ‖xtkj+1
‖ = ‖F (ϑtkj

, σtkj
)
τD(ϑtkj

)
xtkj

‖ ≤ µ‖xtkj
‖ (cf. equations (5) and

(8)), and finally by applying (16) with t′ = t∗ and t̄ = tk1 , we obtain the
following chain of inequalities

‖xt‖ ≤ ρλ
t−tkNσ (t∗,t)‖xtkNσ (t∗,t)

‖ ≤ ρλ
t−tkNσ (t∗,t)µNσ(t∗,t)−1‖xtk0

‖
≤ ρ2λ

t−tkNσ(t∗,t)λtk0
−t∗µNσ(t∗,t)−1‖xt∗‖. (18)



We next prove that the dwell time function τD(ϑ), ϑ ∈ Θ, is uniformly
bounded.
Set τ̄D = inf{τ ∈ N : ρ λτ ≤ µ} < ∞. Since from equation (14) with
t̄ + 1 − t′ = τ̄D, it easily follows that ‖F (ϑ, Σ(ϑ))τ̄Dz‖ ≤ µ‖z‖, ∀ϑ ∈ Θ, ∀ z,

then ‖F (ϑ, Σ(ϑ))τ̄D‖ = sup
‖z‖6=0

‖F (ϑ, Σ(ϑ))τ̄D z‖
‖z‖ ≤ µ, ∀ϑ ∈ Θ. Therefore, the

dwell time τD(ϑ) defined in (8) satisfies

sup
ϑ∈Θ

{τD(ϑ)} ≤ τ̄D < ∞. (19)

If we define λ̄ := max{λ, µ1/τ̄D}, by equation (18) we then have

‖xt‖ ≤ ρ2λ̄
t−tkNσ (t∗,t) λ̄tk0

−t∗λ̄
tkNσ(t∗,t)

−tk0‖xt∗‖ = ρ2λ̄t−t∗‖xt∗‖,

which is equation (11) with k̄ = ρ2.

Case 2 : The hysteresis-based switching logic.
By applying first (16) with t′ = tkNσ(t∗,t)

and t̄ = t, then, (17) repeatedly, and
finally (16) with t′ = t∗ and t̄ = tk1 , we obtain the following inequality

‖xt‖ ≤ ρNσ(t∗,t)+1 λt−t∗‖xt∗‖. (20)

By the scale-independent hysteresis switching theorem proven in [10, 9], we
know that Nσ(t∗, t) can be bounded as follows:

Nσ(t∗, t) ≤ 1 + m +
m

log(1 + h)
log

V̄t(ϑ)

min{V̄t∗(ϑ) : ϑ ∈ Θ} , ϑ ∈ Θ,

where V̄t(ϑ) := (t+1)Vt(ϑ) is a rescaled version of the performance index Vt.
The inequality above can be rewritten as follows:

Nσ(t∗, t) ≤ 1 + m +
m

log(1 + h)
log
( 1

εJ

t + 1

t∗ + 1

[ 1

t + 1

t∑
s=0

w2
s + εJ

])

= 1 + m +
m

log(1 + h)

(
log
( t + 1

t∗ + 1

)
+ log

( 1

εJ
[

1

t + 1

t∑
s=0

w2
s + εJ ]

))
.

From Assumption 3, we have that with probability 1 there exists a random
time instant t′ < ∞ such that 1

t+1

∑t
s=0 w2

s ≤ γ2 + εJ , t ≥ t′. Therefore,

Nσ(t∗, t) ≤ 1 + m +
m

log(1 + h)

(
log
( t + 1

t∗ + 1

)
+ log

( 1

εJ

[γ2 + 2εJ ]
))

, t ≥ t′.



Now, observe that log
(

t+1
t∗+1

)
= o(t−t∗). This implies that, if we fix λ̄ ∈ (λ, 1),

there exists τ ′ > 0 such that log
(

t+1
t∗+1

) ≤ log(1+h)
m

(
logρ(λ̄) − logρ(λ)

)
(t − t∗),

t− t∗ ≥ τ ′, and therefore, Nσ(t∗, t) ≤ 1+m+ m
log(1+h)

log(γ2

εJ
+2)+

(
logρ(λ̄)−

logρ(λ)
)
(t− t∗), t ≥ t′, t− t∗ ≥ τ ′. By replacing this bound in equation (20),

we have that ‖xt‖ ≤ ρc1+c2(t−t∗)λt−t∗‖xt∗‖, t′ ≤ t∗ ≤ t, t − t∗ ≥ τ ′, where

c1 := 2 + m + m
log(1+h)

log(γ2

εJ
+ 2) and c2 := logρ

(
λ̄
λ

)
. From this equation it

then follows that

‖xt‖ ≤ kλ̄t−t∗‖xt∗‖, t′ ≤ t∗ ≤ t, t − t∗ ≥ τ ′,

where k := ρc1.
If t − t∗ < τ ′ or 0 ≤ t∗ ≤ t < t′, then, ‖xt‖ can be bounded as follows

‖xt‖ ≤ (max
ϑ∈Θ

‖F (ϑ, Σ(ϑ))‖)t−t∗‖xt∗‖. (21)

Moreover, equation (21) still holds if 0 ≤ t∗ < t′ < t and t−t′ < τ ′. If 0 ≤ t∗ <

t′ < t and t − t′ ≥ τ ′, then ‖xt‖ ≤ kλ̄t−t′
(
maxϑ∈Θ ‖F (ϑ, Σ(ϑ))‖)t′−t∗‖xt∗‖.

Observe now that by (20) with t∗ = t − 1 and x(t − 1) = x̄, ‖x(t)‖ =
‖F (ϑ, Σ(ϑ)) x̄‖ ≤ ρ λ‖x̄‖, ∀x̄, ϑ ∈ Θ. Therefore, maxϑ∈Θ ‖F (ϑ, Σ(ϑ))‖ ≤
ρ λ. Then, if we define the random constant k̄ := max{kρt′ , ρt′+τ ′}, equation
(11) is satisfied for all t∗, t such that 0 ≤ t∗ ≤ t.
This concludes the proof. �

ii) Bound on the perturbation term

Theorem 2 Suppose that ut is Ft-measurable. If the hysteresis-based switch-
ing logic is used, then, ϑt given in (3) satisfies

t∑
s=0

(ϕT
s−1(ϑ

◦ − ϑt))
2 = o

( t∑
s=0

‖ϕs−1‖2
)

+ h O(t + 1), a.s. (22)

If the dwell time switching logic is used, then (22) holds with h set equal to
0, but only on the switching times sequence {ti}.

Proof. In the hysteresis-based case, by (9) we have that, at each time t,

(t + 1)Vt(ϑt) =
t∑

s=0

(ϕT
s−1(ϑ

◦ − ϑt) + ws)
2 + (t + 1)εJ

≤ (1 + h)(t + 1)Vt(ϑ
◦) = (1 + h)

( t∑
s=0

w2
s + (t + 1)εJ

)
. (23)



Then, by
∑t

s=0 w2
s = O(t + 1), a.s., (see point 2 in Assumption 3)

t∑
s=0

(ϕT
s−1(ϑ

◦ − ϑt))
2 ≤ h O(t + 1) + 2

t∑
s=0

ϕT
s−1(ϑt − ϑ◦)ws, a.s. (24)

Observe that ϕs−1 is Fs−1-measurable whereas ws satisfies Assumption 3.

Then, by Theorem 2.8 in [18],
∑t

s=0 ϕT
s−1(ϑt − ϑ◦)ws = o

(∑t
s=0 ‖ϕs−1‖2

)
,

a.s. By plugging this bound in (24), equation (22) follows.
In the dwell time case, equation (22) holds only on {ti}, since equation (23)
is valid only at those ts which belong to {ti}. �

The technical proof of the corollary below is obtained by a suitable manip-
ulation of the sole result in Theorem 2, jointly with the uniform boundedness
of ϑt. Its proof is basically the same in the two switching logic cases, here it
is omitted due to space limitations (see [6] and [11]).

Corollary 1 Suppose that ut is Ft-measurable. Then, the perturbation term
et = ϕT

t (ϑ◦ − ϑt) satisfies the following equation

t∑
s=0, s/∈Ct

e2
s = o

( t∑
s=0

‖ϕs‖2
)

+ h O(t + 1), a.s., (25)

with h = 0 in the dwell time logic case, where Ct is a set of instant points
which depends on t, whose cardinality is bounded: |Ct| ≤ KC, ∀t.

Based on these results, stability of the switched control system can finally
be proven (see [11] for a proof).

Theorem 3 The switched closed-loop system is a.s. stable in the sense that

lim sup
t→∞

1

t

t−1∑
s=0

[
y2

s + u2
s

]
< ∞. (26)

4 Performance analysis

Theorem 3 shows that both the dwell time and hysteresis-based switching
logics ensure stability. However, the resulting switched control systems have
a different performance in terms of short-term and long-term behavior.

The hysteresis-based switched control system is generally characterized
by better transients than the dwell time switched control system. This is
because in the hysteresis-based switching logic the control system behavior



is continuously monitored, and a different controller is switched in the loop
as soon as data reveal that the model used to select the currently operating
controller is significantly worse than the model whose parameter minimizes
the monitoring signal (cf. (9)). In the dwell time logic, instead, the controller
switched in the loop at any switching time, say ti, is kept in the loop for the
whole dwell time interval τ(ϑti), irrespectively of the fact that the system
behavior significantly deteriorates during such time interval (cf. (5)).

On the other hand, the dwell time switched control system is generally
better performing in the long run, as explained next.
By combining the results in Theorem 3 and Corollary 1, one can easily prove
that in the dwell time logic case 1

t+1

∑t
s=0 e2

s = o(1), a.s., i.e., the average
square perturbation term asymptotically vanishes. This result can be inter-
preted as the dwell time switched system presenting a self-tuning property.
This is not the case for the hysteresis-based switching logic, which allows
for an average square perturbation term of the order of h times the noise
variance to enter the system without causing any switching.

Note, however, that self-tuning does not imply self-optimality. Suppose,
for example, that ϑt converges to some ϑ∗, which is indistinguishable from ϑ◦

in closed-loop when controller Σ(ϑ∗) is applied. Suppose also that Σ(ϑ∗) 6=
Σ(ϑ◦). Then, the switched control system is stabilized and self-tunes, but
optimality is not achieved. In both the switching approaches, if ϑt converges
to the true parameter vector ϑ◦, and ϑ◦ is an interior point of ΘΣ(ϑ◦), then the
optimal controller for the true system Σ(ϑ◦) is switched in the loop at some
time, and then maintained indefinitely. Here, we show how the condition
ϑt → ϑ◦ can be ensured in the dwell time switching logic case by using the
attenuating noise technique (cf. [18]).

Letting {dt}t≥0 be a sequence of i.i.d. random variables with continuous
distribution, independent of {wt} and satisfying E[dt] = 0, E[d2

t ] = 1, |dt| ≤
c, we introduce the asymptotically vanishing dither noise {nt} given by

nt =
dt

(t + 1)ζ
, ζ ∈ (0,

1

4(ss + ns)
). (27)

Without loss of generality, we may assume that {Ft} introduced in Assump-
tion 3 is rich enough such that both wt and nt are Ft-measurable. By the
fact that {nt} satisfies 1

t+1

∑t
i=0 n2

i = 0, and the independence between wt

and nt, it can be shown that the stability result in Theorem 3 is still valid
for the switched control system with dither noise:{

yt+1 = [1 −A(ϑ◦; q−1)]yt+1 + B(ϑ◦; q−1) ut + wt+1

ut = S(σt; q
−1) yt + [1 −R(σt; q

−1)] + nt.



The proof of this fact follows exactly the same steps as that of the case when
no dither noise is used, hence is omitted. Based on the stability property
of the dwell time switching scheme with dither noise, we now prove the
consistency of ϑt.

Theorem 4 Suppose that the true system is controllable, i.e., qssA(ϑ◦; q−1)
and qss−1B(ϑ◦; q−1) are coprime. Then, the parameter estimate ϑt computed
in (3) based on the data collected from the dwell time switching scheme with
dither noise is consistent, i.e., limt→∞ ϑt = ϑ◦, a.s.

Proof. This theorem is proven by showing that ϑ̂t is a consistent estimate of
ϑ◦. The consistency of ϑt then easily follows from definition (3) and the fact
that the dwell time function determining the switching times is uniformly
bounded (see equation (19) in the proof of Theorem 1).
Given that the true system is controllable and the switched control system is
stable, we can apply Theorem 6.2 in [18], thus getting λmin(

∑t
s=0 ϕs−1ϕ

T
s−1) ≥

c̄ t1−(ss+ns)2ζ , ∀t ≥ t̄, a.s., where ζ is the constant introduced in (27).
As for the growing rate of λmax(

∑t
s=0 ϕs−1ϕ

T
s−1), by the stability property

λmax(
∑t

s=0 ϕs−1ϕ
T
s−1) = O(

∑t
s=0 ‖ϕs−1‖2) = O(t), a.s. Since ‖ϑ̂t − ϑ◦‖2 =

O
(

log(λmax(
∑t

s=0 ϕs−1ϕT
s−1))

λmin(
∑t

s=0 ϕs−1ϕT
s−1)

)
a.s. ([19]), this concludes the proof. �

5 Conclusions

The focus in the literature on switching control is generally on the stability
issue, and mostly for deterministic systems subject to bounded noise. In
this paper, we have studied switching control schemes for stochastic linear
system affected by a possibly unbounded noise, and addressed for this class
of systems not only stability, but also optimality issues.
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