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0.1 Preface

This report is a summary of the results of an off-campus final project entitled
”Mathematical modelling of bias and uncertainty in accident risk assessment”
executed by the author at the National Aerospace Laboratory NLR, Amster-
dam for a period of 28 weeks from December 2001 to June 2002. Execution
of a final project is one of the necessary requirements for graduating with a
Master of Science (M.Sc) degree in Engineering Mathematics at the Faculty of
Mathematical Sciences, University of Twente, The Netherlands.

The report is divided into two parts. The first part, consisting of Chapters 1
through 5, contains mathematical background materials for uncertainty analysis
of accident risk assessment while the second part, consisting of Chapters 6, 7,
and 8, is devoted to a discussion of the simulation results and conclusions that
can be drawn based on the work done during the 28 weeks.

The author would like to express his gratitude to the many people who have
made contributions to this study. First of all the author would like to thank
his supervisor Prof. Dr. Arunabha Bagchi at the University of Twente for his
continuous support and for his insights and suggestions on various aspects of
the problem being studied. Secondly the author is grateful to Dr. Henk A.P.
Blom, for giving him the opportunity to execute a final project at the NLR
, for reading the manuscript and providing feedback, and for the interesting
ideas he had shared. The author is indebted to his supervisor at the NLR,
ir. Mariken H.C. Everdij for the many fruitful discussions and the numerous
feedback, for her careful reading of the manuscript and not too mention for
being understanding and patient with the author during the duration of his
stay at the NLR. A special thanks goes to ir. Bert Bakker for providing the
author with some Matlab R© m-files for simulation, for the many discussions, for
reading sections of the manuscript related to his area of expertise and for looking
carefully at some proofs proposed by the author. The author is also indebted
to the head of the LL department, ir. Jan C. Terlouw, for swiftly taking care
of a working permit problem way back in December 2001. Finally, the author
thanks his room mate in Kamer 55.1.07 of the LL Building, ir. Marco van der
Park, and all other members of NLR’s ATM group (Margriet, Sybert, Edwin
and newcomer Bart) for the relaxing chit chat while working or during lunch at
the NLR canteen.

Amsterdam, June 6, 2002

Hendra I. Nurdin
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Chapter 1

Introduction

1.1 Air Traffic Management Safety

In the design or selection of advanced air traffic management (ATM) concepts,
safety is now recognized as a key factor even when capacity and efficiency are
the drivers of development. The safety target is often described as ’equal or
better’ in comparison with existing practice, allowing a large freedom in the
way to express safety[Blom01]. One may, for example, express it by the number
of headlines in the news, or by assessing the availability of some vital aircraft
systems, or by counting the number of collisions occurring.

In this final project report we will use accident risk as a measure for safety,
where one collision counts as two accidents. Moreover, we consider the NLR
developed methodology of assessing accident risk[Blom01]. According to this
methodology, accident risk is assessed by evaluating the incrossing risk (i.e.
integral of incrossing rate between two aircraft or more) for a particular scenario
of an ATM operation. The Generalized Reich framework[Bakk93] is used to
express the incrossing rate in terms of the joint probability density function of
position and velocity of the separation process between two aircraft. In practice,
it is usually very difficult or impossible to determine this joint probability density
function from actual data. To overcome this problem, a stochastic dynamic
model of the ATM operation is developed, incorporating aircraft evolution under
all kinds of hazardous situations. Next, accident risk is decomposed into sums
and factors, and Monte Carlo simulations on the stochastic dynamic model are
used to evaluate these sums and factors. Finally, the incrossing rate and accident
risk can be evaluated by combining these sums and factors and be compared
with the required low levels.

1.2 Uncertainties in Accident Risk Assessment

Naturally there will be differences between a mathematical model and reality
due to inherent uncertainties in the model. Below we mention some types of
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4 CHAPTER 1. INTRODUCTION

uncertainties that can be encountered in mathematical modelling of a real life
phenomenon:

1. Uncertainty due to assumptions adopted during the modelling process,
etc. It can be the case that some assumptions made during a modelling
process are not completely true.

2. Uncertainty of proper values for the parameters that are part of the math-
ematical model.

3. In some instances a mathematical model cannot be solved analytically
in order to evaluate a desired quantity. In this case the solution has
to be approximated numerically and this introduces uncertainty due to
simulation numerical errors, e.g. discretization of continuous time systems,
computer round-off etc.

For a complete uncertainty analysis, one should try to include the differ-
ent types of uncertainties, although this may not always be possible. At NLR,
Everdij and Blom in [Ever02] have proposed a framework for assessing uncertain-
ties due to modelling assumptions and uncertainty of proper parameter values.
Numerical errors in Everdij&Blom are treated by estimating their upper bounds.
In another literature, Stern et al.[Ster01] have developed a framework for ana-
lyzing uncertainty for Computational Fluid Dynamics (CFD) simulations by so
called verification and validation procedures. According to Stern et al, there is
currently no known way to evaluate errors due to modelling assumptions, so in
their approach errors from modelling assumptions are excluded from uncertainty
analysis. However, they take into account errors due to use of previous data,
such as fluid properties, and numerical errors. Everdij&Blom tries to evaluate
uncertainty due to modelling assumptions by exploiting expert judgements. We
summarize these two approaches in Figure 1.1. An important difference is that
Stern et al.[Ster01] do not suggest to make use of operational expert judge-
ment on the differences between truth and model while Everdij&Blom[Ever02]
recommends to use this.

In this final project the scope of the study is limited to analyzing uncertainty
in accident risk due to uncertainty in the proper parameter values. Our primary
interest will be to investigate efficient techniques to carry out such analysis.

1.3 Organization of the Report

The report is divided into two main parts. The first part, consisting of Chap-
ters 1, 2, 3, 4 and 5, is devoted to brief explanations of accident risk and
methods for assessment of uncertainty in accident risk due to uncertainty in
parameter values, while the second part, consisting of Chapters 6, 7 and 8, is
for test results and conclusions. In Chapter 2, we will discuss the mathemat-
ical theory of incrossing risk developed in [Bakk93]. The next three chapters
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Figure 1.1: Different type of uncertainties that are analyzed by the uncertainty
analysis approaches of Stern et al.[Ster01] and Everdij&Blom[Ever02]

deal with mathematical tools for uncertainty analysis. In Chapter 3, we will
provide a problem description for this thesis and give a short description of
the Everdij&Blom[Ever02] approach to uncertainty analysis. In Chapters 4
and 5 other methods of uncertainty analysis from the literature are discussed.
Chapters 6 and 7 present the results of two simulations. Finally, in Chapter 8
conclusions that can be drawn from this final project are given along with some
suggestions for efficient steps in performing uncertainty analysis and ideas for
future research.
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Chapter 2

Mathematical Theory of
Incrossing Risk

In this chapter, we give a brief introduction to the mathematical theory of
incrossing risk for a pair of aircraft, following [Bakk93]. We first consider the
theory of the (first) hitting of an absorbing boundary by a Markov process.
Since the characterization of (first) hitting is expressed in terms of a partial
differential equation with boundary conditions, its numerical evaluation is too
complex for the situation of many aircraft. In view of this, we next consider the
incrossing of a transient boundary to evaluate the collision probability and the
incrossing rate of a pair of aircraft. Finally, the relation between incrossing and
collision risk is discussed.

2.1 Absorbing Boundary Approach

To evaluate the probability of a collision between a pair of aircraft, we assume
their behaviour can be described by a stochastic differential equation for the
joint state: (e.g ξt = col{ξ1

t , ξ
2
t} where ξit denotes the state of aircraft i at time

t)

dξt = f(ξt, t)dt+ g(ξt, t)dwt, ξt ∈ R
N

where{wt} is a multi dimensional standard Brownian motion independent of ξ0.
Let the R

n-valued separation process, n < N , satisfy

xt = s(ξt), xt ∈ R
n (2.1)

where s is continuous mapping of R
N to R

n.
Next we introduce the collision area of {xt} and {ξt}. Let D=Sc denote the

collision area of {xt} where S ⊂ R
n is some open set with boundary ∂S ⊂ Sc

and Sc is the complement of S. If D denotes the collision area of {ξt} then it
is obvious that D = s−1(D).

7



8 CHAPTER 2. MATHEMATICAL THEORY OF INCROSSING RISK

Define the hitting time τ as

τ
∆= inf

t
{t > 0;xt ∈ D}

where inf {} �∞. Then we also know that

τ
∆= inf

t
{t > 0; ξt ∈ D}

The time τ is called the first hitting time of D. The sets Dc and D are now
referred to as the continuation and collision areas of {ξt}, respectively. Further-
more, define the absorbed process

ψt
∆=
{

ξt if t < τ
ξτ if t ≥ τ

Notice that ξt can be called the transient boundary process. For clarity, Figure
2.1 illustrates one case of a transient boundary process ξt and the corresponding
absorbed process ψt. We can see from the figure that the difference between
these two processes is that after some time, i.e. τ , the absorbed process ψt

enters the area D where it remains at the value ξτ while the transient process
does not.

Figure 2.1: Transient and boundary absorption process (the black dots represent
the points of in-crossing)

2.2 The Collision Rate

In this section we evaluate the probability of a collision between a pair of aircraft
in a certain time period (t1, t2] which corresponds to the probability of the
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absorbed process having entered the collision area, following [Bakk93]. This
can be written mathematically as follows:

P (ψt2 ∈ D, ψt1 ∈ Dc), t2 ≥ t1 ≥ 0

Hence, using the property of ψt, we have

P (ψt2 ∈ D, ψt1 ∈ Dc) =P (ψt2 ∈ D)−P (ψt2 ∈ D, ψt1 ∈ D)
= P (ψt2 ∈ D)− P (ψt1 ∈ D) (2.2)

By further evaluation of equation (2.2) under the assumption that ξ0 admits
a density vanishing outside D and that ∂P (ψt∈D|ξ0=ξ)

∂t exists, it can be shown
[Bakk93] that

P (ψt2 ∈ D,ψt1∈ Dc) =
∫ t2

t1

µ(t)dt (2.3)

where µ(t) is called the collision rate at time t and is defined as:

µ(t) ∆=
∫
D

∂P (ψt ∈ D|ξ0 = ξ)
∂t

pξ0
(ξ)dξ (2.4)

with P (ψt ∈ D|ξ0 = ξ) satisfying a parabolic partial differential equation (PDE)
with Dirichlet type boundary condition.

With the evaluation of equations (2.3) and (2.4), it is obvious that the com-
plexity of a numerical evaluation of such a boundary valued PDE prohibits
its application to the evaluation of probability of collision and collision rate be-
tween two aircraft. Hence, in order to avoid the boundary-valued PDE, the only
alternative seems to be to extend the classical crossing theory for a transient
boundary.

2.3 Transient Boundary Approach and the Gen-
eralized Reich Model

In this section, we evaluate the incrossing rate for the transient boundary situ-
ation following [Bakk93]. Let us go back to Figure 2.1. The incrossings of the
transient boundary process ξt are represented by the black dots. From that
figure, we see that incrossing can happen many times. We also notice that the
absorbed process at time τ is the first incrossing.

We reconsider the separation process {xt} for aircraft which is given in equa-
tion (2.1). For the separation process {xt}, every time a path enters D is called
an incrossing. The incrossing rate represents the expected number of incrossings
at time t per unit time and it is denoted by ϕ(t). In [Bakk93] it is defined as:

ϕ(t) ∆= lim
∆↓0

P (xt ∈ D,xt−∆ ∈ Dc)
∆

(2.5)
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assuming that the limit in equation (2.5) exists. In order for the incrossing rate
to be well defined (see assumption A.1 below), [Bakk93] strictly assumes that
{xt} has no Brownian motion component, i.e

dxt = vtdt (2.6)

with {vt} is a right continuous stochastic process with left limit or càdlàg (con-
tinue à droite avec des limites à gauche). It is also assumed the separation
process {xt} satisfies the following assumptions:

Assumption A.1

P ({xt∈ D, (xt−∆vt) ∈ D
c
, xt−∆∈ D})− P ({xt∈ Dc, (xt−∆vt) ∈ D,xt−∆∈ Dc}) = o(∆)

Assumption A.2

D = D1 ×D2 × ...×Dn

Assumption A.3

Di = [−si, si], si > 0 ∀i
Assumption A.4
For any i, t there is a constant Li such that:

Ev2
i,t ≤ Li

E[v2
i,t|xi,t = xi] ≤ Li, for all i, xi ∈ [−si, si]

Assumption A.5
For any t, the pair (xt, vt) admits a density function pxt,vt(·) such that for all
i ∈ {1, 2, ..., n}:

(i)
∫

Di−1

∫
Ri−1

i−1∏
j=1

1[−sj ,sj ](xj−∆vj)
2si/∆∫

0

−si+∆vi∫
−si

pxt,vt(x, v)dxidvidv̂i−1dx̂i−1

=
∫

Di−1

∫
Ri−1

2si/∆∫
0

∆vipxt,vt(x1, . . . ,−si, . . . , xn, v)dvidv̂i−1dx̂i−1+o(�)

and

(ii)
∫

Di−1

∫
Ri−1

i−1∏
j=1

1[−sj,sj ](xj−∆vj)
0∫

−2si/∆

si∫
si+∆vi

pxt,vt(x, v)dxidvidv̂i−1dx̂i−1

=
∫

Di−1

∫
Ri−1

0∫
−2si/∆

−∆vipxt,vt(x1, . . . ,−si, . . . , xn, v)dvidv̂i−1dx̂i−1+o(�)
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where

∫
Di−1

(. . .)dx̂i−1 =

s1∫
−s1

. . .

si−1∫
−si−1

(. . .)dxi−1 . . . dx1

∫
Ri−1

(. . .)dv̂i−1 =

∞∫
−∞

. . .

∞∫
−∞

(. . .)dvi−1 . . . dv1

and

lim
�↓0

o(�)
� = 0

The dynamic model (2.6) in which vt is càdlàg and the process {xt, vt} satis-
fies assumptions A.1 through A.5 constitutes NLR’s Generalized Reich model.
Under all of the above assumptions the following Theorem holds (Theorem 1 in
[Bakk93]):

Theorem 2.1 Under assumptions A.1 through A.5 the incrossing rate satisfies

ϕ(t) =
n∑

i=1

∫
Di

∞∫
0

vipxi,t,xi,t,vi,t(xi,−si, vi)dvi +
0∫

−∞
− vipxi,t,xi,t,vi,t(xi, si, vi)dvi

 dxi
with Di � D1 × . . .×Di−1 ×Di+1 × . . .×Dn (Di = {} if n = 1)
and xi � (x1, . . . , xi−1, xi+1, . . . , xn).

If all assumptions are satisfied then Theorem 2.1 provides us with a nice
formula to characterize the incrossing rate. The quantity that we are actually
interested in is not the incrossing rate but rather the incrossing risk or the
probability that an incrossing occurs in a certain time frame, say [T1, T2], with
0 ≤ T1 ≤ T2. Let us denote the probability of incrossing in [T1, T2] by R[T1,T2],
then

R[T1,T2] = P (xT2 ∈ D,xT1 ∈ Dc) =

T2∫
T1

ϕ(t)dt

Note that R[T1,T2] is a probability measure therefore it always satisfies the con-
straint:

0 ≤ R[T1,T2] ≤ 1

Since the event of an incrossing is rare but not impossible, in practice we usually
have that 0 < R[T1,T2] << 1. In the following pages we will use the term
incrossing risk to mean R[·,·] on some specified interval.
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2.4 Relation Between Incrossing and Collision

Risk

In reality a collision is the event of the first incrossing. Therefore the incrossing
risk forms an upper bound for collision risk, i.e.

Probability of collision in [T1, T2] ≤ Probability of incrossing in [T1, T2]

but this difference can be made arbitrarily small by appropriate modelling of
the aircraft evolution[Blom02].

2.5 Contributions to the Generalized Reich Model

The remainder of this chapter presents some contributions to the Generalized
Reich model, made as part of this study.

2.5.1 Sufficient Conditions for Assumption A.5 to Hold

Assumption A.1 in the previous section is an assumption made on the stochastic
joint process {xt, vt}. It would probably be difficult to verify in practice, but at
a glance it seems like a reasonably mild assumption. We will not try to derive
sufficient conditions for Assumption A.1 here but it is an interesting question
which should be given consideration in the near future. Assumptions A.2 to
A.4 are clearly not restrictive, in fact the only assumption which is not intuitive
and looks very complicated is Assumption A.5. A contribution of this work
to the Generalized Reich model is in the derivation of sufficient conditions for
pxt,vt(·) under which Assumption A.5 is true. As we shall soon see, the sufficient
conditions for A.5 are easy to understand and justifies the use of Theorem 2.1.
For this purpose the following technical lemma is important:

Lemma 2.1 Let −∞ ≤ ak < bk ≤ ∞ for k = 1, . . . , n, and x = (x1, x2, ..., xn).
Let Hi denote the set

Hi = [a1, b1]× . . .× [ai−1, bi−1]× [αi − ε, αi + ε]× [ai+1, bi+1]× . . .× [an, bn]

where αi ∈ (ai, bi), ε is a small positive number and [−∞,∞] is to be inter-
preted as (−∞,∞). Suppose that p : Hi → R is bounded on Hi and p(·) is
continuous w.r.t. xi at the points {xi = αi} ∩Hi. Then there exists a function
Oi(·) : [−ε, ε]→ [0,M ] for some M > 0 with the following properties:
1. |p(x1, ..., xi−1, αi +∆, xi+1, ..., xn)− p(x1, ..., xi−1, αi, xi+1, ..., xn)| ≤ Oi(∆).
2. Oi(·) is a bounded, non-negative, even function that is non-decreasing in [0, ε].
3. lim

∆→0
Oi(∆) = 0 = Oi(0).

Proof. The proof is by construction. Since p is bounded ∃M > 0 such that

|p(x1, ..., xi−1, αi +∆, xi+1, ..., xn)− p(x1, ..., xi−1, αi, xi+1, ..., xn)| ≤M
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on Hi. Let xi = (x1, ..., xi−1, xi+1, ..., xn) and keep it fixed for the time being.
By the definition of continuity w.r.t. xi at x = (x1, ..., xi−1, αi, xi+1, ..., xn), for
every ε > 0 there exists δ > 0 depending on ε and the value taken by xi such
that

|p(x1, ..., xi−1, αi +∆, xi+1, ..., xn)− p(x1, ..., xi−1, αi, xi+1, ..., xn)| < ε

if |∆| < δ.
Define the sequence {εk, k = 1, 2, ...} where εk = M

2k−1 . Note that εk+1 < εk.
Since ε1 = M we may trivially set δ1 = ε and then in a sequential manner for
k = 2, 3, ... we can choose δk > 0 such that

|p(x1, ..., xi−1, αi +∆, xi+1, ..., xn)− p(x1, ..., xi−1, αi, xi+1, ..., xn)| < εk

for |∆| < δk with lim
k→∞

δk = 0 and δk < δk−1 (this is always possible since by

definition we can always find δk ≤ δk−1 if εk < εk−1. In the case δk = δk−1

then simply choose δ
′
k = δk−1 − h where 0 < h << δk−1 and then set δk = δ

′
k).

Define the set Hi as

Hi = [a1, b1]× . . .× [ai−1, bi−1]× [ai+1, bi+1]× . . .× [an, bn]

and define the function

Õi(∆;xi) =

 0 if ∆ = 0
εk if δk+1 ≤ |∆| < δk, k = 1, 2, ...
M if |∆| = ε

on [−ε, ε]×Hi. Bear in mind that the δ′ks depend on xi. Hence we may write

|p(x1, ..., xi−1, αi +∆, xi+1, ..., xn)− p(x1, ..., xi−1, αi, xi+1, ..., xn)| ≤ Õi(∆;xi)

Since Õi(∆;xi) is a bounded function of xi on Hi for any fixed value of ∆, sup
Hi

Õi(∆;xi) exists for each ∆ (note that ifHi is compact then sup
Hi

Õi(∆;xi) = max
Hi

Õi(∆;xi)). Now define the function

Oi(∆) = sup
Hi

Õi(∆;xi)

in particular Oi(0) = sup
Hi

Õi(0;xi) = sup
Hi

0 = 0. We may now write

|p(x1, ..., xi−1, αi +∆, xi+1, ..., xn)− p(x1, ..., xi−1, αi, xi+1, ..., xn)| ≤ Oi(∆)

on Hi and by construction Oi(∆) has properties 1, 2 and 3.
The following lemma provides sufficient conditions under which Assumption

A.5 holds true:
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Lemma 2.2 Let (x, v) ∈ R
n×R

n where x = (x1, x2, ..., xn) and v = (v1, v2, ..., vn).
For i = 1, 2, ..., n let W+

i and W−
i ⊂ R

n × R
n denote the sets

W+
i =

[
i−1⊗
j=1

[−sj , sj ]
]
× [si − εi, si + εi]×

[
n⊗

j=i+1
(−∞,∞)

]
×
[

n⊗
j=1

(−∞,∞)
]

and

W−
i =

[
i−1⊗
j=1

[−sj , sj ]
]
× [−si− εi,−si+ εi]×

[
n⊗

j=i+1
(−∞,∞)

]
×
[

n⊗
j=1

(−∞,∞)
]

where 0 < εi < si.
Then assumption A.5 holds true if for all i ∈ {1, 2, .., n} there exists Mi > 0
such that pxt,vt(x, v) = 0 if |vi| > Mi (in other words pxt,vt(·) has compact
support in the v′is) and there exists a choice of ε1, ε2, ..., εn such that
1. pxt,vt(·) is bounded on W+

i and W−
i for i = 1, 2, ..., n.

2. For each i, pxt,vt(x1, ..., xi, ..., xn, v) is continuous w.r.t. the argument xi at
the points
{xi = si} ∩W+

i and {xi = −si} ∩W−
i .

Proof. We will show the result for part (i) of Assumption A.5, the proof
for part (ii) is similar. Furthermore, recall that ∆ > 0 (∆ ↓ 0) by the definition
of incrossing rate.

We introduce the following notation:

∫
Mj−1

(. . .)dv̂j−1 =

M1∫
−M1

. . .

Mj−1∫
−Mj−1

(. . .)dvj−1 . . . dv1

The proof follows four steps.
Step 1 Suppose that we have a plausible choice of ε1, ε2, ..., εn. Let us choose
real positive numbers ∆k such that εk

∆k
≥Mk for k = 1, 2, ..., n. For the following

analysis let us take a fixed i ∈ {1, 2, ..., n}. By choosing ∆ such that 0 < ∆ <
min{∆k} we obtain

2si/∆∫
0

−si+∆vi∫
−si

pxt,vt(x, v)dxidvi =

Mi∫
0

−si+∆vi∫
−si

pxt,vt(x, v)dxidvi

We write
pxt,vt(x, v) = pxt,vt

(x1, ...,−si+xi+si, ..., xn, v)
By virtue of our choice of ∆ we also have (x, v) ∈ W−

i in the domain of inte-
gration and due to the hypothesis on pxt,vt(·) by Lemma 2.1 we have that∣∣∣pxt,vt(x, v)− pxt,vt

(x1, ...,−si, ..., xn, v)
∣∣∣≤ Oi(xi+si) ≤ Oi(∆vi)

for some function Oi(·) having the properties stated in the lemma. In particular,

pxt,vt(x, v) ≤ pxt,vt
(x1, . . . ,−si, . . . , xn, v) +Oi(∆vi)
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Since vi ∈ [0,Mi] it follows that |∆vi| ≤ |∆Mi| and

pxt,vt(x, v) ≤ pxt,vt
(x1, . . . ,−si, . . . , xn, v) +Oi(∆M i)

Thus

Mi∫
0

−si+∆vi∫
−si

pxt,vt(x, v)dxidvi ≤
Mi∫
0

−si+∆vi∫
−si

[pxt,vt(x1, . . . ,−si, . . . , xn, v) +Oi(∆M i)] dxidvi

=

Mi∫
0

[pxt,vt
(x1, . . . ,−si, . . . , xn, v) +Oi(∆M i)]∆vidvi

=

Mi∫
0

pxt,vt(x1, . . . ,−si, . . . , xn, v)∆vidvi+
1
2
Oi(∆M i)∆M

2
i

In a similar fashion we can also show that

2si/∆∫
0

−si+∆vi∫
−si

pxt,vt(x, v)dxidvi≥
Mi∫
0

pxt,vt(x1, . . . ,−si, . . . , xn, v)∆vidvi−
1
2
Oi(∆M i)∆M

2
i

hence ∣∣∣∣∣∣∣
∫

Di−1

∫
Mi−1

i−1∏
j=1

1[−sj ,sj ](xj−∆vj)
2si/∆∫

0

−si+∆vi∫
−si

pxt,vt(x, v)dxidvidv̂i−1dx̂i−1

−
∫

Di−1

∫
Mi−1

i−1∏
j=1

1[−sj,sj ](xj−∆vj)
Mi∫
0

pxt,vt(x1, . . . ,−si, . . . , xn, v)∆vidvidv̂i−1dx̂i−1

∣∣∣∣∣∣
≤
∫

Di−1

∫
Mi−1

i−1∏
j=1

1[−sj ,sj ](xj−∆vj)
1
2
Oi(∆M i)∆M

2
i dv̂i−1dx̂i−1

Step 2 Observe that∫
Di−1

∫
Mi−1

i−1∏
j=1

1[−sj ,sj ](xj −∆vj)
1
2
Oi(∆Mi)∆M2

i dv̂i−1dx̂i−1

=
1
2
Oi(∆Mi)∆M2

i

i−1∏
j=1

 sj∫
−sj

Mj∫
−Mj

1[−sj ,sj ](xj −∆vj)dvjdxj


=

1
2
Oi(∆Mi)∆M2

i K
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for some 0 < K <∞.

Hence, since

lim
∆↓0

1
∆
1
2
Oi(∆Mi)∆M2

i K

= lim
∆↓0

1
2
Oi(∆Mi)M2

i K

= 0

we have

∫
Di−1

∫
Ri−1

i−1∏
j=1

1[−sj ,sj ](xj−∆vj)
2si/∆∫

0

−si+∆vi∫
−si

pxt,vt(x, v)dxidvidv̂i−1dx̂i−1

=
∫

Di−1

∫
Ri−1

i−1∏
j=1

1[−sj,sj ](xj−∆vj)
2si/∆∫

0

∆vipxt,vt(x1, . . . ,−si, . . . , xn, v)dvidv̂i−1dx̂i−1 + oi(∆)

=
∫

Di−1

∫
Ri−1

i−1∏
j=1

1[−sj ,sj ](xj−∆vj)
Mi∫
0

∆vipxt,vt(x1, . . . ,−si, . . . , xn, v)

dvidv̂i−1dx̂i−1 + oi(∆)(2.7)

where

lim
∆↓0

oi(∆)
∆

= 0

Step 3 Let xi = (x1, . . . , xi−1, xi+1, . . . , xn) and vi = (v1, . . . , vi−1, vi+1, . . . , vn)

and define gi(xi, vi) =
Mi∫
0

∆vipxt,vt(x1, . . . ,−si, . . . , xn, v)dvi. This integral ex-
ists since vi is bounded and since pxt,vt(x1, . . . ,−si, . . . , xn, v) is also bounded
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by hypothesis. Let k be an integer, 1 ≤ k ≤ i− 1. We then have the following:

sk∫
−sk

∞∫
−∞

1[−s
k
,s

k
](xk−∆vk)gi(xi, vi)dvkdxk

=

∞∫
−∞

sk∫
−sk

1[−sk,sk](xk−∆vk)gi(xi, vi)dxkdvk

=

Mk∫
−Mk

sk∫
−sk

1[−sk,sk](xk−∆vk)gi(xi, vi)dxkdvk

=

0∫
−Mk

sk+∆vk∫
−sk

gi(xi, vi)dxkdvk +

Mk∫
0

sk∫
−sk+∆vk

gi(xi, vi)dxkdvk

=

0∫
−Mk

 sk∫
−sk

gi(xi, vi) +

sk+∆vk∫
sk

gi(xi, vi)

 dxkdvk
+

Mk∫
0

 sk∫
−sk

gi(xi, vi)−
−sk+∆vk∫

−sk

gi(xi, vi)

 dxkdvk
=

0∫
−Mk

sk∫
−sk

gi(xi, vi)dxkdvk +

Mk∫
0

sk∫
−sk

gi(xi, vi)dxkdvk

+

0∫
−Mk

sk+∆vk∫
sk

gi(xi, vi)dxkdvk −
Mk∫
0

−sk+∆vk∫
−sk

gi(xi, vi)dxkdvk

=

sk∫
−sk

Mk∫
−Mk

gi(xi, vi)dvkdxk +

0∫
−Mk

sk+∆vk∫
sk

gi(xi, vi)dxkdv

−
Mk∫
0

−sk+∆vk∫
−sk

gi(xi, vi)dxkdvk
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We note that

0 ≤
sk+∆vk∫

sk

gi(xi,vi)︷ ︸︸ ︷
Mi∫
0

∆vipxt,vt(..., xk, ...,−si, ..., v)dvidxk

=

sk+∆vk∫
sk

Mi∫
0

∆vipxt,vt(..., sk + xk − sk, ...,−si, ..., v)dvidxk

Lemma 2.1≤
sk+∆vk∫

sk

Mi∫
0

∆vi[pxt,vt(..., sk, ...,−si, ..., v) +Ok(xk − sk)]dvidxk

≤
sk+∆vk∫

sk

Mi∫
0

∆vi[pxt,vt(..., sk, ...,−si, ..., v) +Ok(∆vk)]dvidxk

vk∈[−Mk,0]

≤
sk+∆vk∫

sk

Mi∫
0

∆vi[pxt,vt(..., sk, ...,−si, ..., v) +Ok(∆Mk)]dvidxk

= ∆vk

Mi∫
0

∆vipxt,vt(..., sk, ...,−si, ..., v)dvi +
1
2
(Mi)2Ok(∆Mk)∆2vk (2.8)

where Ok(·) is some function having the properties stated in Lemma 2.1. Now,
using (2.8) and since pxt,vt(·) is bounded, it is not hard to verify that

lim
∆ ↓ 0

1
∆

0∫
−Mk

sk+∆vk∫
sk

gi(xi, vi)dxkdvk = 0 (2.9)

Similarly we also have

lim
∆ ↓ 0

1
∆

Mk∫
0

−sk+∆vk∫
−sk

gi(xi, vi)dxkdvk = 0 (2.10)

Hence using (2.9) and (2.10) we get:
sk∫
−sk

∞∫
−∞

1[−sk,sk](xk−∆vk)gi(xi, vi)dvkdxk

=

sk∫
−sk

Mk∫
−Mk

gi(xi, vi)dvkdxk + ok(∆) (2.11)

=

sk∫
−sk

∞∫
−∞

gi(xi, vi)dvkdxk + ok(∆)
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where ok(∆) has the property lim
�↓0

ok(∆)
∆ .

Step 4 Recall from (2.7) that

∫
Di−1

∫
Ri−1

i−1∏
j=1

1[−sj ,sj ](xj−∆vj)
2si/∆∫

0

−si+∆vi∫
−si

pxt,vt(x, v)dxidvidv̂i−1dx̂i−1

=
∫

Di−1

∫
Ri−1

i−1∏
j=1

1[−sj,sj ](xj−∆vj)
Mi∫
0

∆vipxt,vt(x1, . . . ,−si, . . . , xn, v)dvidv̂i−1dx̂i−1 + oi(∆)

=
∫

Di−1

∫
Mi−1

i−1∏
j=1

1[−sj,sj ](xj−∆vj)
Mi∫
0

∆vipxt,vt(x1, . . . ,−si, . . . , xn, v)dvi︸ ︷︷ ︸
gi(xi,vi)

dv̂i−1dx̂i−1

+oi(∆)(2.12)

Substituting (2.11) into (2.12) consecutively for k = i− 1, i− 2, ..., 1 gives

∫
Di−1

∫
Ri−1

i−1∏
j=1

1[−sj ,sj ](xj−∆vj)
2si/∆∫

0

−si+∆vi∫
−si

pxt,vt(x, v)dxidvidv̂i−1dx̂i−1

=
∫

Di−1

∫
Mi−1

Mi∫
0

∆vipxt,vt(x, v)dxidvidv̂i−1dx̂i−1 +
i−1∑
k=1

ok(∆)

 dv̂i−1dx̂i−1 + oi(∆)

=
∫

Di−1

∫
Mi−1

Mi∫
0

∆vipxt,vt(x, v)dxidvidv̂i−1dx̂i−1 +
∫

Di−1

∫
Mi−1

(
i−1∑
k=1

ok(∆)

)
dv̂i−1dx̂i−1 + oi(∆)

=
∫

Di−1

∫
Ri−1

2si/∆∫
0

∆vipxt,vt(x, v)dxidvidv̂i−1dx̂i−1 +

(
i−1∑
k=1

ok(∆)

) ∫
Di−1

∫
Mi−1

dv̂i−1dx̂i−1 + oi(∆)

=
∫

Di−1

∫
Ri−1

2si/∆∫
0

∆vipxt,vt(x, v)dxidvidv̂i−1dx̂i−1 + o(∆)

where

o(∆) =

(
i−1∑
k=1

ok(∆)

) ∫
Di−1

∫
Mi−1

dv̂i−1dx̂i−1 + oi(∆)

Since ∫
Di−1

∫
Mi−1

dv̂i−1dx̂i−1 <∞

lim
∆↓0

ok(∆)
∆

= 0 for k = 1, 2, ..., i− 1
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lim
∆↓0

oi(∆)
∆

= 0

it follows that

lim
∆↓0

o(∆)
∆

= 0

2.5.2 Implications of the Sufficient Conditions

In reality every joint density function of the position and velocity should have
compact support in the v′is since the velocity range of any aircraft is always
limited. However, in practice pxt,vt(·) is usually fitted with some well known
continuous distribution such as a multivariate Gaussian distribution or a Gaus-
sian mixture which is continuous everywhere but does not have compact support
in the v′is. Therefore based on Lemma 2.2 we do not know whether the fitted
distribution satisfies assumption A.5. Fortunately we do know that its value
decreases to zero rapidly at points sufficiently far away from the mean. To be
able to use Lemma 2.2 we simply assume that the fitted density function has
values very close to the actual distribution for {|vi| ≤ Mi, i = 1, . . . , n} and
then use it in Theorem 2.1 to obtain ϕ(t) approximately. The approximation
should be quite close to the true value of ϕ(t). Note that this technique not
only applies to multivariate Gaussian distributions but also to other well known
distributions that go to zero fast enough for large values of {|vi|} and is close
to the actual density function within the actual function’s support.

From the previous discussion we see that Theorem 2.1 can be applied to a
rather general class of density functions (e.g. is continuous and decreases to
zero fast for large values of the velocity components) although it gives only an
approximation of the value of the actual incrossing rate. However it is reasonable
to expect that the value of the approximation will be close to the real value.



Chapter 3

Uncertainty Analysis of
Model-Based Accident Risk

3.1 Background

As we had already discussed in the introduction, an accident risk model is very
complex and is usually dependent on a large number of parameters (for an
example of a mildly complex accident risk model see [Ever02]). Let us view the
accident risk model as a system (with many interrelated components) and let us
call the aforementioned parameters as system parameters. In general the values
of these parameters are not precisely known; in one approach uncertainty is
introduced by modelling each system parameter as a random variable[Ever02].
This kind of approach has also been taken by some researchers in chemical
engineering (for example see [Isuk99] and [Webs96]). We can view accident risk,
or incrossing risk (for example the probability of incrossing between two aircraft
in a certain time frame) as the output of our system and the system parameters
as inputs, see Figure 3.1.

Although the dynamics of the accident risk model are represented by a set
of simultaneous mathematical equations, it is not always feasible to solve them
analytically. Even for simple operations such a solution of the mathematical
equations may not be obtainable. Therefore to evaluate the incrossing risk,
Monte Carlo simulations of the model are executed and the value of the incross-
ing risk is numerically approximated. Consequently we might not have available
an explicit functional relationship between incrossing risk and the parameters.
In this case we may consider our model as a black box. In the sections to follow
we will formalize some notations that will be used throughout the remaining
parts of this document and give a concise description of the problem.

Next, we give an outline and some limitations of the approach developed in
[Ever02] to accident risk uncertainty analysis. Finally, we make some contribu-
tions to this approach by developing some additional derivations.

21
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3.2 Notations and Symbols

During the development of any model, usually several model assumptions are
adopted. Let’s say that we have na (na is a positive integer) possible assump-
tions which we may decide to keep or discard in our model. Following the
notation in [Ever02], let bi, i = 1, ..., na be Boolean variables, i.e. bi = 0 or 1
and let B = (b1, b2, ..., bna). The b′is are to be interpreted as follows: if bi = 1
then we are using assumption i in our model, on the other hand if bi = 0 it
means we are not using assumption i. If we take all assumptions to be true
then B = (1, 1, ..., 1). For short hand we will write (1, 1, ..., 1) as 1. Let us also
say that our model has np parameters which we represent by random variables
denoted as V1, V2, ..., Vnp and let V = (V1, V2, ..., Vnp).

The time interval that will be of interest to us here is [0,∞). For a particular
ATM scenario, the incrossing risk value will depend on how we model the op-
eration (B) and on the particular setting of the parameters (V )[Ever02], hence
R[0,∞) is a function of B and V . For convenience we shall write R[0,∞) as R.
We will also adopt the convention that R = ρ(B, V ) for some function ρ(·, ·).
In this report we will only consider the case where all modelling assumptions
hold true, i.e. R = ρ(1, V ). The case for general B, i.e. where uncertainty
due to modelling assumptions are taken into account, is covered in [Ever02].
Hereinafter ρ(1, V ) will sometimes be written as ρ(V ) where it will not cause
confusion.

Figure 3.1: View of accident risk assessment as a black box

We will also need the following definition:

Definition 3.1 (Credibility Interval) For 0 < α < 1 and a random variable
X, an interval [a, b], b > a, is called the (1−α)×100% credibility interval (CrI)
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of X if a is the smallest real number such that P (X < a) = α/2 and b is the
largest real number such that P (X > b) = α/2.

3.3 Statement of the Problem

Since ρ(V ) takes on very small values (near zero because collision is a rare event)
and since ρ(V ) can change in orders of magnitude for small changes in some of
the parameters (which we shall see later in Chapter 6), it is more suitable to
express ρ(V ) as ρ(V ) = eg(V ) for some unknown function g(·). For this reason
it will be more convenient for us to work with g(V ) = ln ρ(V ) instead of directly
with ρ(V ). The problem that is to be considered during the execution of the
final project is the following:

Determine suitable methods to estimate the statistical properties
of the random variable ln ρ(V ), particularly the mean and 95%
credibility interval, based on only a limited number of simulation
runs (i.e. with only a small sample of ln ρ(V ) available).

Note that out of these statistical properties the most important quantity
seems to be the upper bound of the 95% CrI since it indicates how high ln ρ(V )
can become 95% of the time under the prescribed uncertainty. If [A,B] is the
95% CrI of ln ρ(V ) then trivially the 95% CrI of ρ(V ) is [eA, eB].

We should keep in mind that we also have apriori information about the
problem at hand, i.e. in real scenarios we have

0 < ρ(V ) < 1⇔ −∞ < ln ρ(V ) < 0

3.4 Everdij&Blom’s Approach to Accident Risk

Uncertainty Analysis

Everdij and Blom[Ever02] have developed an initial method to assess the bias
and uncertainty in model based accident risk, due to bias and uncertainty in
assumptions adopted and parameter values adopted. During the development
of this method, several bias and uncertainty model assumptions are adopted,
which are discussed on interpretation and practical use. We will now briefly
review this method, restricting to the bias and uncertainty due to parameter
value uncertainty.

3.4.1 Definitions and Assumptions

Let the nominal value for the parameters be Vi = vi, i = 1, 2, ..., np and
v = (v1, v2, ..., vnp). Throughout this section we will assume that there is a
basic probability space (Ω,F , P ) to which the stochastic variables V1, V2, ..., Vnp
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representing the parameters are measurable. Define the following:

ϕi(xi) =
ρ(1, (v1, . . . , vi−1, xi, vi+1, ..., vnp))
ρ(1, (v1, . . . , vi−1, vi, vi+1, ..., vnp))

ϕ′
i(xi, xi+1, . . . , xnp) =

ρ(1, (v1, . . . , vi−1, xi, xi+1, ..., xnp))
ρ(1, (v1, . . . , vi−1, vi, xi+1, ..., xnp))

Hi = lnϕi(Vi)
γi = E{Hi}
θ2
i = E{(Hi − γi)

2}
ω3
i = E{|Hi − γi|3}

Γ =
np∑
i=1

γi

Θ2 =
np∑
i=1

θ2
i

Ω3 =
np∑
i=1

ω3
i

NLR’s approach begins with the following assumptions:

Bias and Uncertainty Model Assumption 1
V1, V2, . . . , Vnp are mutually independent.

Bias and Uncertainty Model Assumption 2
For any i = 1, . . . , np and xi, xi+1, . . . , xnp , ϕ

′
i(xi, xi+1, . . . , xnp) = ϕi(xi)

Bias and Uncertainty Model Assumption 3
For each i = 1, 2, ..., np the expectation and variance of lnVi exist and satisfy:
E{lnVi} = µi and V ar{ln Vi} = σ2

i .

Bias and Uncertainty Model Assumption 4
Each Vi, i = 1, 2, ..., np is lognormally distributed.

Bias and Uncertainty Model Assumption 5
Each ϕi(Vi), i = 1, 2, ..., np is lognormally distributed with parameters γi and
θ2
i . Notation: ϕi(Vi) ∼ Λ(γi, θ

2
i ).

Bias and Uncertainty Model Assumption 6
The inverse of ϕi(·), denoted by ϕinv

i (·) exists.

Bias and Uncertainty Model Assumption 7
For i = 1, 2, ..., np, there exists βi such that
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• E{lnϕi(Vi)} = βi(E{ln(Vi)} − ln vi)

• E{(lnϕi(Vi)− E{lnϕi(Vi)})2} = β2
iV ar{ln(Vi)}

Bias and Uncertainty Model Assumption 8
lim

np→∞
Ω
Θ = 0.

Bias and Uncertainty Model Assumption 9
The number of parameters np goes to infinity: np →∞.

For the rest of this section we will refer to bias and uncertainty model as-
sumption simply as ”BUMA”. We will see later that we can actually say more
about BUMA 2 and relax BUMA 6.

3.4.2 Main Lemmas, Theorems and Corollaries

Based on BUMAs 1 to 9 the following inferences are made. Note that all proofs
are omitted since they can be found in [Ever02].

Theorem 3.1 If BUMA 2 holds true, ρ(1, V ) = ρ(1, v)
np∏
i=1

ϕi(Vi)

Lemma 3.1 If BUMAs 1 and 6 hold true, ϕ1(V1), ..., ϕnp
(Vnp) are independent

stochastic variables.

Lemma 3.2 If BUMAs 3, 4, 5, 6 and 7 hold true, ϕi(Vi) = (Vi

vi
)βi , i =

1, 2, ..., np with βi as in BUMA 7.

Theorem 3.2 If BUMAs 1, 3, 4, 5, 6 and 7 hold true,

E

{ np∏
i=1

ϕi(Vi)

}
= exp

( np∑
i=1

(
βi(µi − ln vi) + β2

i

σ2
i

2

))
Theorem 3.3 Let

∆− =
np∑
i=1

βi(µi − ln vi)− 2

√√√√ np∑
i=1

β2
iσ

2
i

∆+ =
np∑
i=1

βi(µi − ln vi) + 2

√√√√ np∑
i=1

β2
iσ

2
i

then if BUMAs 1, 3, 4, 5, 6 and 7 hold true,

P

{ np∏
i=1

ϕi(Vi) ∈
[
exp(∆−), exp(∆+)

]
)

}
= 0.95



26CHAPTER 3. UNCERTAINTY ANALYSIS OF MODEL-BASED ACCIDENT RISK

Corollary 3.1 If BUMAs 1, 2, 3, 4, 5, 6 and 7 hold true

E{ρ(1, V )} = ρ(1, v) exp

(
np∑
i=1

(
βi(µi − ln vi) + β2

i

σ2
i

2

))

and
P
{
ρ(1, V ) ∈ [ρ(1, v) exp(∆−), ρ(1, v) exp(∆+)

]}
= 0.95

Lemma 3.3 If BUMAs 1, 6, 8 and 9 hold true,
np∏
i=1

ϕi(Vi) ∼ Λ(Γ,Θ2).

Theorem 3.4 If BUMAs 1, 6, 8 and 9 hold true:

E

{
np∏
i=1

ϕi(Vi)

}
= exp(Γ +

Θ2

2
)

Theorem 3.5 If BUMAs 1, 6, 8 and 9 hold true:

P

{ np∏
i=1

ϕi(Vi) ∈ [exp(Γ− 2Θ), exp(Γ + 2Θ)]

}
= 0.95

Corollary 3.2 If BUMAs 1, 2, 6, 8 and 9 hold true:

E {ρ(1, V )} = ρ(1, v) exp
(
Γ +

Θ2

2

)
and

P {ρ(1, V ) ∈ [ρ(1, v) exp(Γ− 2Θ), ρ(1, v) exp(Γ + 2Θ)]} = 0.95

Corollary 3.3 If BUMAs 1, 2, 3, 6, 7, 8 and 9 hold true:

E {ρ(1, V )} = ρ(1, v) exp

( np∑
i=1

(
βi(µi − ln vi) + β2

i

σ2
i

2

))

and
P
{
ρ(1, V ) ∈ [ρ(1, v) exp(∆−), ρ(1, v) exp(∆+)

]}
= 0.95

Note that in [Ever02] it is argued that Γ and Θ usually cannot be determined
in practice, hence the most important result are Corollaries 3.1 and 3.3 which
allow us to determine the β′

is (this is not directly the case for Corrolary 3.3, a
method to evaluate the β′

is is proposed in Appendix IV of [Ever02]), evaluate
E{ρ(1, V )} and obtain a 95% credibility interval for ρ(1, V ).
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3.5 Determining values for the β ′is

Everdij&Blom in [Ever02] have also proposed techniques to determine the values
of β′

is. The β
′
is are evaluated according to one of the following formulas:

β∗
i =

ln(ρ(v1,...,livi,...,vnp )

ρ(v1,...,vi,...,vnp) )

ln li
or

β∗∗
i = −

ln(ρ(v1,...,vi/li,...,vnp)

ρ(v1,...,vi,...,vnp) )

ln li
where li = exp(2σi) for i = 1, 2, ..., np (for more details on l′is refer to Subsection
6.2.2). Everdij&Blom also propose that a safety conservative approach be taken
by setting βi to β

∗
i or β∗∗

i for i = 1, 2, ..., np such that the upper bound of the
95% CrI is as large as possible, but did not specify the exact method do it. An
obvious way to do it is choosing {β1, β2, ..., βnp

}, βi ∈ {β∗
i , β

∗∗
i }, such that the

quantity
np∑
i=1

βi(µi − ln vi) + 2

√√√√ np∑
i=1

β2
iσ

2
i (3.1)

is maximized. However, this method is not feasible for large np because we
have to search through 2np possible combinations (because for each i, βi can be
set to either β∗

i or β∗∗
i ) and then determining a combination which maximizes

(3.1). In this report we propose a less expensive approximate method: choose
{β1, β2, ..., βnp

}, βi ∈ {β∗
i , β

∗∗
i }, such that the quantity

βi(µi − ln vi) + 2 |βiσi| (3.2)

is maximized for each i ∈ {1, 2, ..., np}. The idea behind this approach is that
for each i we set βj = 0, j �= i, and choose βi ∈ {β∗

i , β
∗∗
i } which minimizes

(3.1). Hence we have for i = 1, 2, ..., np

βsafety conservative
i =

{
β∗
i if β∗

i (µi − ln vi) + 2 |β∗
i σi| ≥ β∗∗

i (µi − ln vi) + 2 |β∗∗
i σi|

β∗∗
i otherwise

3.6 Limitation of the Bias and Uncertainty As-

sessment Methodology

The remainder of this chapter presents some contributions to the Everdij&Blom
approach, made as part of this study. First, we will summarize some limitations
of the approach.

The crux of the described bias and uncertainty assessment methodology is
that under the collection of BUMAs {2, 3, 4, 5, 6, 7}we have the following special
form for ρ(V ):

ρ(V ) = ρ(v)
np∏
i=1

(
Vi
vi
)βi (3.3)
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from which the β′
is are to be evaluated according to the techniques in Section

3.5.
The following issues deserve further attention (they have already been iden-

tified in [Ever02]):

• We should be careful when we have that β∗
i or β

∗∗
i is very small. Intuitively

we would presume that ρ(V ) is insensitive to paramater Vi but we should
remember that this insensitivity arises on the condition that all other
parameters Vj , j �= i are kept at their nominal values. If some of the V ′

j s
are not at their nominal values then it is possible that the insensitivity
will no longer hold.

• Due to the special form that is assumed, ρ(V ) follows a lognormal distri-
bution and ln ρ(V ) follows a normal distribution. Consequently, since a
normal distribution has infinite tails, it is possible that P{ln ρ(V ) > 0}
becomes significant which contradicts our apriori knowledge that theoret-
ically −∞ < ln ρ(V ) ≤ 0 (i.e. P{ln ρ(V ) > 0} = 0).

3.7 Some Additional Derivations

In this section we will

• Discuss BUMA 2 and show that it can be interpreted in a different way.

• Discuss BUMA 6 and show that in some of the results it can be relaxed.

3.7.1 Discussion on BUMA 2

We will show that BUMA 2 can be interpreted in a different way. For this
purpose we introduce the following lemma and theorem:

Lemma 3.4 BUMA 2 holds if and only if ρ(1, (V1, V2, . . . , Vnp)) =
np∏
i=1

ηi(Vi)

for some functions ηi(·), i = 1, 2, . . . , np.

Proof. The if part is easy to proof. It goes as follows:
Take any arbitrary i,



3.7. SOME ADDITIONAL DERIVATIONS 29

ϕ′
i(xi, xi+1, . . . , xnp) =

ρ(1, (v1, v2, . . . , xi, xi+1, . . . , xnp))
ρ(1, (v1, v2, . . . , vi, xi+1, . . . , xnp))

=

i−1∏
j=1

ηj(vj)× ηi(xi)×
np∏

j=i+1

ηj(xj)

i∏
j=1

ηj(vj)×
np∏

j=i+1

ηj(xj)

=
ηi(xi)
ηi(vi)

=
ρ(1, (v1, v2, . . . , xi, vi+1, . . . , vnp))
ρ(1, (v1, v2, . . . , vi, vi+1, . . . , vnp))

= ϕi(xi)

The only if part can also be shown easily. First we note the following for
i = 1 :

ϕ′
1(x1, x2, . . . , xnp) =

ρ(1, (x1, x2 . . . , xnp))
ρ(1, (v1, x2 . . . , xnp))

= ϕ1(x1)

Note that ϕi(vi) = 1. Since v1 is fixed we can write ρ(1, (v1, x2 . . . , xnp)) =
φ1(x2, . . . , xnp) for some function φ1(·). Hence ρ(1, (x1, x2 . . . , xnp)) = ϕ1(x1)×
φ1(x2, . . . , xnp). Repeating the previous procedure for i = 2 we have

ϕ′
2(x2, . . . , xnp) =

ρ(1, (v1, x2 . . . , xnp))
ρ(1, (v1, v2 . . . , xnp))

=
ϕ1(v1)× φ1(x2, . . . , xnp)
ϕ1(v1)× φ1(v2, . . . , xnp)

=
φ1(x2, . . . , xnp)
φ1(v2, . . . , xnp)

= ϕ2(x2)

Again since v2 is constant we can again define φ1(v2, . . . , xnp) = φ2(x3 , . . . , xnp)
for some function φ2(·). We have φ1(x2, . . . , xnp) = ϕ2(x2) × φ2(x3 , . . . , xnp)
hence ρ(1, (x1, x2 . . . , xnp)) = ϕ1(x1) × φ1(x2, . . . , xnp) = ϕ1(x1) × ϕ2(x2) ×
φ2(x3 , . . . , xnp). Continuing for i = 3, 4, . . . , np − 1 we obtain:

ρ(1, (x1, x2, . . . , xnp)) =
np−1∏
i=1

ϕi(xi)× φnp−1(xnp)

As in previous steps we know that
φnp−1(xnp )

φnp−1(vnp) = ϕnp
(xnp) but since ϕi(vi) = 1 it

is clear that φnp−1(vnp) = ρ(1, (v1, v2, . . . , vnp)) hence φnp−1(xnp) = ρ(1, (v1, v2, . . . , vnp))×
ϕnp

(xnp) and

ρ(1, (x1, x2, . . . , xnp)) = ρ(1, (v1, v2, . . . , vnp))×
np∏
i=1

ϕi(xi)
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Now just define η1(x1) = ρ(1, (v1, v2, . . . , vnp))×ϕ1(x1) and ηi(xi) = ϕi(xi) for
i = 2, . . . , np. We can rewrite the previous equality as:

ρ(1, (x1, x2, . . . , xnp)) =
np∏
i=1

ηi(xi)

It directly follows that

ρ(1, (V1, V2, . . . , Vnp)) =
np∏
i=1

ηi(Vi)

Theorem 3.6 ρ(1, (V1, V2, . . . , Vnp)) = ρ(1, (v1, v2, . . . , vnp))×
np∏
i=1

ϕi(Vi) if and

only if BUMA 2 holds true.

Proof. The if part has been shown in [Ever02]. Hence we will only show

the only if part: ρ(1, (V1, V2, . . . , Vn)) = ρ(1, (v1, v2, . . . , vn))×
np∏
i=1

ϕi(Vi)⇒ for

any i = 1, . . . , np and xi, xi+1, . . . , xnp , ϕ
′
i(xi, xi+1, . . . , xnp) = ϕi(xi). Take any

i, then

ϕ′
i(xi, xi+1, . . . , xnp) =

ρ(1, (v1, v2, . . . , xi, xi+1, . . . , xnp))
ρ(1, (v1, v2, . . . , vi, xi+1, . . . , xnp))

=
ρ(1, (v1, v2, . . . , vnp))×

i−1∏
j=1

ϕj(vj)×
np∏
j=i

ϕj(xj)

ρ(1, (v1, v2, . . . , vnp))×
i∏

j=1

ϕj(vj)×
np∏

j=i+1

ϕj(xj)

=
ρ(1, (v1, v2, . . . , vnp))×

i−1∏
j=1

ϕj(vj)× ϕi(xi)

ρ(1, (v1, v2, . . . , vnp))×
i∏

j=1

ϕj(vj)

=
ρ(1, (v1, v2, . . . , vnp))×

i−1∏
j=1

ϕj(vj)× ϕi(xi)×
np∏

j=i+1

ϕj(vj)

ρ(1, (v1, v2, . . . , vnp))×
i∏

j=1

ϕj(vj)×
np∏

j=i+1

ϕj(vj)

=
ρ(1, (v1, v2, . . . , xi, vi+1, . . . , vnp))

ρ(1, (v1, v2, . . . , vnp))
= ϕi(xi)
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Corollary 3.4 ρ(1, (V1, V2, . . . , Vnp)) = ρ(1, (v1, v2, . . . , vnp))×
np∏
i=1

ϕi(Vi) if and

only if ρ can be factored as ρ(1, (V1, V2, . . . , Vnp)) =
np∏
i=1

ηi(Vi) for some functions

ηi(·).
Proof. This follows directly by combining the results of Lemma 3.4 and

Theorem 3.6.

Remark 3.1 The previous corollary shows that it is not possible to reduce
BUMA 2 in order to obtain the special relation between ρ(1, (v1, v2, . . . , vnp))
and ρ(1, (V1, V2, . . . , Vnp) as in Theorem 3.1. It turns out that the factorizability
of ρ(1, (V1, V2, . . . , Vnp)) is not only sufficient but also necessary for BUMA 2
to be true.

Based on the preceeding arguments we can replace BUMA 2 with BUMA 2’
(stated below) and discard Theorem 3.1 since it is no longer necessary.

Bias and Uncertainty Model Assumption 2’

The function ρ(1, V ) satisfies ρ(1, (V1, V2, . . . , Vnp)) =
np∏
i=1

ηi(Vi) for some func-

tions ηi(·), i = 1, 2, . . . , np.

3.7.2 Discussion on BUMA 6

In the proofs of Lemmas 3.1 and 3.3, Theorems 3.4 and 3.5, and Corollaries
3.2 and 3.3, BUMA 6 can be relaxed and replaced with BUMA 6’. It is then
necessary that Lemma 3.1 be substituted by Lemma 3.5 below:

Bias and Uncertainty Model Assumption 6’
The functions ϕi, i = 1, 2, . . . , np are measurable with respect to the Borel
σ-algebra � of R.

Lemma 3.5 Under BUMAs 1 and 6’, ϕi(Vi), i = 1, 2, . . . , np are independent
random variables.

Proof. It is only necessary to prove the statement for two arbitrary mea-
surable functions f(·) and g(·), i.e. V1, V2 are independent =⇒ f(V1), g(V2) are
independent.

In probability theory, two sigma algebras A, B ⊂ F are said to be indepen-
dent if for any set A ∈ A and B ∈ B we have that P (A∩B) = P (A)P (B). In a
similar fashion two random variables X and Y are independent if the σ-algebras
σ(X) and σ(Y ) are independent.

Now (fV1)−1(�) = V −1
1 (f−1(�)) ⊂ σ(V1) since f−1(�) ⊂ � and similarly

(fV2)−1(�) ⊂ σ(V2). Since V1 and V2 are independent we have σ(V1) and σ(V2)
are independent, hence so are σ(fV1) ≡ (fV1)−1(�) ⊂ σ(V2) and σ(fV2) ≡
(fV2)−1(�) ⊂ σ(V2).
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3.8 An Alternative Approach to Yield the Re-

sult in Corollary 3.1

Let us introduce the following new BUMA:

Bias and Uncertainty Model Assumption 10
For all i = 1, 2, ..., np, ϕi(Vi) = (Vi

vi
)βi for some βi ∈ R

With the above BUMA in place we have the following result:

Theorem 3.7 If BUMAs 1, 2, 3, 6’, 8, 9 and 10 hold true then

E{ρ(1, V )} = ρ(1, v) exp

( np∑
i=1

(
βi(µi − ln vi) + β2

i

σ2
i

2

))
and

P
{
ρ(1, V ) ∈ [ρ(1, v) exp(∆−), ρ(1, v) exp(∆+)

]}
= 0.95

Proof. From Corollary 3.2 we already have that if BUMAs {1, 2, 6′, 8, 9}
hold true (note that although BUMA 6’ is a relaxed version of BUMA 6 it can
be easily checked that the result of the corollary still holds)

E{ρ(1, V )} = ρ(1, v) exp
(
Γ +

Θ2

2

)
and

P {ρ(1, V ) ∈ [ρ(1, v) exp(Γ− 2Θ), ρ(1, v) exp(Γ + 2Θ)]} = 0.95

Hence we need to determine Γ and Θ. Recall that by definition

Γ =
np∑
i=1

E{lnϕi(Vi)}

and

Θ2 =
np∑
i=1

V ar{lnϕi(Vi)}

By BUMA 10 we can readily evaluate E{lnϕi(Vi)} and V ar{lnϕi(Vi)} for
all i ∈ {1, 2, ..., np}. We do this as follows:

E{lnϕi(Vi)} = E{βi(lnVi − ln vi)} = βi(E{lnVi} − ln vi) = βi(µi − ln vi)

V ar{lnϕi(Vi)} = V ar{βi(lnVi−ln vi)} = β2
i V ar{lnVi−ln vi} = β2

iV ar{lnVi} = β2
iσ

2
i

Therefore

Γ =
np∑
i=1

βi(µi − ln vi)
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and

Θ2 =
np∑
i=1

β2
iσ

2
i

hence the result.
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Chapter 4

Statistical Estimation with
Polynomial Chaos
Expansion

4.1 Introduction to the Approach

Recently, researchers in Chemical Engineering have also considered the problem
of uncertainty analysis (see [Webs96][Isuk99] and the references therein). The
setting of their problem is similar to the one considered here; the objective is
to quantify the uncertainty in the output of a black-box model as a result of
uncertainty in the model parameters based on a small number of simulation
runs. The difference is that their black-box is the mathematical model of a
chemical process while in our context the black-box is the mathematical model
of an operation in ATM.

Both [Webs96] and [Isuk99] based their uncertainty analysis on polynomial
chaos expansion (PCE). PCE was formulated by Norbert Wiener and is elab-
orated in [Ghan95]. The two methods of uncertainty analysis in the literature
also differ:

1. [Webs96] uses PCE with the so called Probabilistic Collocation Method.

2. [Isuk99] uses PCE with the so called Regression Method with Improved
Sampling.

This chapter first discusses the concept of PCE, and next discusses the two
approaches mentioned above. Finally, we explain the relation between these
PCE based uncertainty analysis approaches and the Everdij&Blom method of
Chapter 3.

35
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4.2 Motivation for Using Polynomial Chaos Ex-

pansion

In some situations obtaining a single output value of a black box model cor-
responding to a particular setting of the input may be very time consuming.
Hence if the inputs are random with known distributions and we are interested
in studying the statistical properties of the output, running a large number of
Monte Carlo runs, say 10,000 or more, to estimate the output mean or variance
is not practical. If one knows a simpler parametric model as a susbstitute for the
black box model then it is much simpler to evaluate that black box. The poly-
nomial chaos expansion can serve as such a substitute model. If the polynomial
chaos expansion behaves closely to the actual model, the results of Monte Carlo
runs on the expansion will be very close to the results that would be obtained if
the Monte Carlo runs were executed on the actual model. The desired statistical
estimates are then obtained from the polynomial chaos expansion instead of the
actual model.

4.3 Definition of Polynomial Chaos

We will briefly discuss the theory of homogeneous polynomial chaos, for a more
detailed exposition the reader is referred to [Ghan95] and [Scho00] upon which
most of the discussion materials here are based.

Let us denote Θ as a space of square-integrable random variables w.r.t some
probability triplet (Ω,F , P ), i.e. if Y is a random variable and Y ∈ Θ then
EY 2 < ∞. Let {Xi}∞i=1 be a set of mutually independent standard normal
random variables. Consider the space Ψ̂p of all polynomials in {Xi}∞i=1 of degree
not exceeding p. The definition of polynomials in {Xi}∞i=1 of order p is made
clear in the following example:

Example 4.1 A polynomial in {Xi}∞i=1 of degree two has the form

P (Xi1 , Xi2) = a0 + ai1Xi1 + ai2Xi2 + ai1i2Xi1Xi2

while a polynomial of degree three has the form

P (Xi1 , Xi2 , Xi3) = a0 + ai1Xi1 + ai2Xi2 + ai3Xi3 + ai1i2Xi1Xi2 +
ai1i3Xi1Xi3 + ai2i3Xi2Xi3 + ai1i2i3Xi1Xi2Xi3

where i1, i2, i3 ∈ {1, 2, ...} and a0, ai1 , ai2 , ... are arbitrary constants in R.

Let Ψp represent the set of all polynomials in Ψ̂p orthogonal to Ψ̂p−1 and let
us denote Ψp as the space spanned by Ψp. Define Ψ0 to be the set containing the
constant polynomial 1. Then we call the subspace Ψp of Θ the pth homogeneous
chaos, and Ψp is called a polynomial chaos of order p. Note that since random
variables are actually functions, it is clear that polynomial chaoses are functions
of functions returning a real number and hence are functionals.
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The set of polynomial chaoses is a linear subspace of the space of square-
integrable random variables Θ and is a ring with respect to the functional mul-
tiplication ΨpΨq(>) = Ψp(>)Ψq(>), > ∈ Ω. Let the Hilbert space spanned by
{Xi}∞i=1 be denoted by Θ(X), then the resulting ring which we denote by ΦΘ(X)

is called the ring of functions generated by Θ(X). It can be shown under some
general conditions that the ring ΦΘ(X) is dense in Θ, hence any element of Θ can
be approximated arbitrarily closely by elements from ΦΘ(X). The convergence
of the approximation is taken to be in the mean square sense. Therefore any
random variable Y ∈ Θ admits the representation:

Y =
∑
p≥0

∑
n1+n2+...+np=p

∑
r1,r2,...,rp

an1,n2,...,np
r1,r2,...,rp

Γp(Xr1 , Xr2 , ..., Xrp) (4.1)

where Γp(Xr1 , Xr2 , ..., Xrp) is a polynomial in Ψp with argumentsXr1 , Xr2 , ..., Xrp

and the superscript ni denotes the number of times that Xri occurs in the argu-
ment list for Γp. Representation (4.1) can be easier understood if it is rewritten
in the following equivalent form:

Y = a0Γ0︸︷︷︸
constant

+
∞∑

ii=1

ai1Γ1(Xi1)︸ ︷︷ ︸
1st order terms

(4.2)

+
∞∑

ii=1

i1∑
i2=1

ai1i2Γ2(Xi1 , Xi2)︸ ︷︷ ︸
2nd order terms

+
∞∑

ii=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3Γ3(Xi1 , Xi2 , Xi3)︸ ︷︷ ︸
3rd order terms

+
∞∑

ii=1

i1∑
i2=1

i2∑
i3=1

i3∑
i4=1

ai1i2i3i4Γ4(Xi1 , Xi2 , Xi3 , Xi4)︸ ︷︷ ︸
4th order terms

+ . . .

Polynomial chaos terms of different order are orthogonal to each other as are
polynomial chaos terms of the same order but with a different argument list.
Note that for k ≥ 1, there is an infinite number of kth order terms in the
expansion. Later we shall see the case where there are only a finite number of kth

order terms in the expansion. It can be shown that since the polynomial chaoses
are orthogonal w.r.t the Gaussian probability measure, they are identical to the
corresponding multidimensional Hermite polynomials. Hence Γn(Xi1 , ..., Xin)
can be obtained as:

Γn(Xi1 , ..., Xin) = (−1)ne− 1
2X

T X ∂n

∂Xi1 ...∂Xin

e−
1
2X

T X
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whereX = (Xi1 , ..., Xin). The expansion of a square-integrable random variable
in terms of polynomial chaoses is called a polynomial chaos expansion (PCE).

Note that other types of polynomials other than multidimensional Hermite
polynomial are also possible if the set of mutually independent variables {Xi}∞i=1

follow some other distribution, for details see [Scho00].

4.4 Polynomial Chaos Expansion with a Finite
Number of Terms

We saw in Section 4.3 that the number of kth order terms, k ≥ 1, in a PCE
is infinite. Even if we decide to truncate the series using only terms up to the
nth order with n <∞, we would still end up with an infinite series. This poses
computational problems in practical applications. However, we will see that
in our particular application (and in other applications of similar nature) we
obtain an expansion where the number of kth order terms are finite. We will
explain this in the context of determining a PCE for the the natural logarithm
of the incrossing risk lnR (recall from Chapter 3 that we have defined R =
ρ(V )). Let us recall that V = (V1, ..., Vnp) where we assume (see BUMA 1,
Chapter 3) that the V ′

i s are mutually independent random variables. Suppose
that we can generate the V ′

i s by generating np mutually independent standard
normal random variables X1, ..., Xnp , i.e. there exists for each i ∈ {1, 2, ..., np}
a measurable function Gi such that Vi = Gi(Xi). Then we may write R =
ρ(V ) = ρ((V1, ..., Vnp)) = ρ((G1(X1), ..., Gnp(Xnp)) = ρ̃(X1, X2, ..., Xnp) and
regard X1, X2, ..., Xnp as our new random variables. Suppose now that we
extend our set of standard normal variables by adding the set {Xk, k > np}
of mutually independent standard random variables which are independent of
X1, ..., Xnp . Hence we now have the infinite set {Xi}∞i=1. Assuming that lnR
is square integrable then by the theory in the previous section, lnR has a PCE
of the form:

lnR = a0Γ0
constant

+
∞∑

ii=1

ai1Γ1(Xi1)

+
∞∑

ii=1

i1∑
i2=1

ai1i2Γ2(Xi1 , Xi2)

+
∞∑

ii=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3Γ3(Xi1 , Xi2 , Xi3)

+
∞∑

ii=1

i1∑
i2=1

i2∑
i3=1

i3∑
i4=1

ai1i2i3i4Γ4(Xi1 , Xi2 , Xi3 , Xi4)

+ . . .

Remark 4.1 We choose to identify the PCE of the log of the random variable
of interest because of the nature of our application (discussed in Section 3.3). In
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[Webs96] and [Isuk99], it was the PCE of the random variable of interest that
was identified.

However, we know apriori that lnR is a function of X1, ..., Xnp . Since
X1, ..., Xnp are independent of Xnp+1, Xnp+2, ... then lnR is also independent
of Xnp+1, Xnp+2, ... implying that ai1i2...in = 0 if ik > np for some 1 ≤ k ≤ n.
Hence we may write

lnR = a0Γ0
constant

+
np∑
ii=1

ai1Γ1(Xi1) (4.3)

+
np∑
ii=1

i1∑
i2=1

ai1i2Γ2(Xi1 , Xi2)

+
np∑
ii=1

i1∑
i2=1

i2∑
i3=1

ai1i2i3Γ3(Xi1 , Xi2 , Xi3)

+
np∑
ii=1

i1∑
i2=1

i2∑
i3=1

i3∑
i4=1

ai1i2i3i4Γ4(Xi1 , Xi2 , Xi3 , Xi4)

+ . . .

Thus we have that the kth order terms are finite although there is still an
infinite sum to contend with. In order to approximate lnR we may truncate
this series to include only terms up to the nth order, leaving a finite sum which
is computable. Note that we shall use the following terminology: if a PCE
contains terms up to the nth order we call this PCE an nth order PCE.

4.5 Summary of Assumptions for the PCEMethod

Some assumptions were made in the previous sections so that the PCE method
can be applied. We summarize them as follows:

1. V1, V2, ..., Vnp are mutually independent.

2. If our independent parameters V1, V2, ..., Vnp do not have standard normal
distributions then we need to find transformations G1(.), G2(.), ..., Gnp(.)
such that Vi = Gi(Xi) for i = 1, ..., np where X1, X2, ..., Xnp are mutu-
ally independent standard normal random variables (i.e., the V ′

i s can be
generated by the X ′

is).

3. Some general conditions under which the ring Θ(X) is dense in Θ. These
general conditions are not explicitly stated in [Ghan95] but references are
provided therein.

4. The function ln ρ̃(X1, X2, ..., Xnp) is square-integrable. We can expect this
assumption to hold true because if it does not then ln ρ̃(X1, X2, ..., Xnp)
would have infinite variance.
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4.6 Number of Terms in a PCE

The number of coefficients in a PCE depends on the number of variables (in our
context, the number of uncertain parameters) and the order of the expansion.
Figure 4.1 shows this relation.

Figure 4.1: Number of terms necessary in a polynomial chaos expansion

4.7 Determining the Coefficients of the PCE

If lnR = ln ρ̃(X1, X2, ..., Xnp) satisfies the assumptions in the previous section
then it has an expansion of the form (4.3). Now we need to determine the coef-
ficients a0, a1, a2, ... efficiently. In the literature there are two methods proposed
to do this:

1. The Probabilistic Collocation Method (PCM) [Webs96]

2. Regression Method with Improved Sampling [Isuk99]

Both methodologies use the principle of collocation. Let us expand lnR
in an nth order PCE and let us denote this truncated expansion as lnRn =
ln ρ̃n(X1, X2, ..., Xnp). The principle of collocation imposes the requirement
that lnRn is exact (= lnR) at a set of chosen collocation points, thus making
the residual at those points equal to zero. The number of collocation points
should be equal to the number of unknown coefficients to be found. Thus, for
each output metric, a set of linear equations results with the coefficients as the
unknowns; these equations can be solved using standard linear solvers. The two
methods mentioned above differ in how the collocation points are chosen.

4.7.1 The Probabilistic Collocation Method (PCM)

In this method, the collocation points are chosen to correspond to the roots of
the one-dimensional Hermite polynomial of a degree one higher than the order
of the PCE. This method can be applied to multi-dimensional problems and
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for one-dimensional problems it gives the same results as Galerkin’s method ,
and hence is regarded as an “optimal method”[Isuk99]. For example, in order
to solve for second order PCE in two variables , the roots of the third order
Hermite polynomial −4x(2x2 − 3), i.e. 1

2

√
6, − 1

2

√
6 and 0, are used. Hence the

possible collocation points are (0, 0), (1
2

√
6, 0), (0, 1

2

√
6), (0,− 1

2

√
6), (− 1

2

√
6, 0),

(1
2

√
6, 1

2

√
6), (1

2

√
6,− 1

2

√
6), (− 1

2

√
6, 1

2

√
6) and (− 1

2

√
6,− 1

2

√
6).

There are certain limitations in relation to selecting the collocation points.
For example, for the two variables case described above, there are nine possible
collocation points but with a second order PCE only six unknowns have to be
determined. Similarly, for systems with more variables and for higher order
approximations, the number of available collocation points is always greater
than the number of points needed. In the absence of selection criteria, in the
PCM method collocation points are selected at random from the set of available
points; however, this may result in a poor approximation. Indeed, in [Isuk99] it
is shown that in some cases the PCM cannot consistently guarantee convergence
of the approximation to the true probability density with an increasing order of
the PCE.

4.7.2 Regression Method with Improved Sampling (RMIS)

Due to the shortcoming of the PCM approach, an alternative approach of de-
termining the collocation points was proposed in [Isuk99]. In this alternative
approach, a set of points is selected from regions of high probability; this set
forms a regression basis for calculating the unknown coefficients. These points
are selected using a simple heuristic technique that is explained in the follow-
ing. For each term of the series expansion, “corresponding” basis points are
chosen. For example, the point corresponding to the constant term of a PCE
is the origin, i.e. all variables X1, X2, ..., Xnp are set to value zero. For terms
involving only one variable Xi, the regression basis points are chosen by setting
all other parameters (Xj , j �= i and 1 ≤ j ≤ np) to zero value and letting Xi

take on values equal to the roots of the next order Hermite polynomial. For
terms involving two or more variables, the values of the corresponding parame-
ters are set to the values of the roots of the next order polynomial and all other
variables are set to zero. If more points “corresponding” to a set of terms are
available than needed, the points which are closer to the origin are preferred, as
they typically fall in regions of higher probability. Further, when there is still
an unresolved choice, the regression basis points are chosen so that the overall
distribution of these points is more symmetric with respect to the origin. The
advantage of this method is that the behavior of the model is captured reason-
ably well at points corresponding to regions of high probability. Further, if a
higher number of points are selected than the minimum required this method
leads to an estimation of parameter values and corresponding probability den-
sities that is more robust compared to that obtained by other methods such
as the PCM[Isuk99]. To make the concept more clear we provide the following
example:
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Example 4.2 Let Y = f(X1, X2) be an unknown function of two independent
standard normal random variables X1, X2. Let us try to expand Y as a third
order PCE. The roots of the fourth order Hermite polynomial 4(4x4− 12x2+3)
are -1.6507, -0.5246, 0.5246, and 1.6507. For this particular case there are 25
choices of possible collocation points:

(0, 0) (−1.6507, 0) (−0.5246, 0) (0.5246, 0)
(1.6507, 0) (0,−1.6507) (0,−0.5246) (0, 0.5246)
(0, 1.6507) (−1.6507,−1.6507) (−1.6507,−0.5246) (−1.6507, 0.5246)
(−1.6507, 1.6507)) (−0.5246,−1.6507) (−0.5246,−0.5246) (−0.5246, 0.5246)
(−0.5246, 1.6507) (0.5246,−1.6507) (0.5246,−0.5246) (0.5246, 0.5246)
(0.5246, 1.6507) (1.6507,−1.6507) (1.6507,−0.5246) (1.6507, 0.5246)
(1.6507, 1.6507)

In order to determine the coefficients of the chaos expansion we only need to
choose 10 collocation points (see Figure 4.1), however we may wish use to choose
more points in which case the PCE coefficients can be determined by some least
squares method. One possible choice of collocation points (it is not unique since
it is a heuristical method) according to the RMIS principle is:

(0, 0) (−1.6507, 0)
(−0.5246, 0) (0.5246, 0)
(1.6507, 0) (0,−1.6507)
(0,−0.5246) (0, 0.5246)
(0, 1.6507) (0.5246,−0.5246)

Since the input variables are all assumed to be standard normal random
variables, 99% of the time each random variable would take a value in the
interval [−2.5, 2.5]. From a practical point of view, it may be efficient not to use
roots of the Hermite polynomials outside [−2.5, 2.5] because it falls in a region
of low probability.

To summarize, the basic idea of this method is to sample the unknown
function at collocation points, including the origin, which are assumed to be

”representative” of the function in the input region
np⊗
i=1

[−2.5, 2.5]. However, a
problem which is not mentioned in [Isuk99] can arise in practice when choosing
the collocation points, this is discussed in Subsection 4.9.1.

4.7.3 Additional Guidelines

Let the number of coefficients in a PCE be denoted by N and let the number of
all possible collocation points be denoted by M . In practice, not any arbitrary
collection of K collocation points, K ≥ N, from the M possible collocation
points is feasible for determining the PCE coefficients. The reason for this is
the following:
Let Y = g(X1, X2, ..., Xnp) where g is some unknown function andX1, X2, ..., Xnp
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are mutually independent standard normal random variables. We assume that
g(.) has a PCE. Let n be the order of the PCE and let Ŷ denote the PCE
of Y . Denote xi = (xi1, x

i
2, ..., x

i
np
) as some collocation point indexed by i,

i ∈ {1, 2, ...,K}, and let

Ŷ i = g(xi1, x
i
2, ..., x

i
np
) = h(xi)a

where
a = (a0, a1, a2, ...)︸ ︷︷ ︸

N terms

T

are the PCE coefficients and

h(xi) = (1, xi1, ..., x
i
np
, ...)︸ ︷︷ ︸

N terms

Note that h(xi)a is a compact way of writing the PCE of Y (refer to equation
(4.3)) evaluated at the collocation point xi. Since we have K collocation points
we may write:

Ŷ = Ha (4.4)

where H is a K ×N matrix of the form:

H =


h(x1)
h(x2)
.
.

h(xK)


and Ŷ is a K × 1 vector Ŷ = (Ŷ 1, Ŷ 2, ..., Ŷ K)T . To be able to solve equation
(4.4) to evaluate a, i.e. by solving a linear set of equations in the case K = N
or by a least squares method if K ≥ N , we need that rank(H) = N .

Example 4.3 Returning to Example 4.2, the number of the PCE coefficients
in a third order expansion is 10. Out of the 25 possible collocation points the
following 10 collocation points will make rank(H) = 10 :

(0, 0) (1.6507, 0)
(0, 1.6507) (0.5246, 0)
(0, 0.5246) (−0.5246, 0)
(0,−0.5246) (−1.6507,−1.6507)

(1, 6507, 1.6507) (1.6507, 0.5246)

4.8 Assessing the Fit of the PCE

After the coefficients of the PCE have been determined, we need to assess how
good the fit of the PCE is to the actual model. This can be done by collecting
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a number of additional test points, different from the points which were used
to determine the coefficients of the PCE, and then evaluating the average or
weighted average of the square of the difference between the model-based value
of incrossing risk at those test points and the value predicted by the PCE. We
assume that the fit is good if the average or weighted average of the squared
difference is small.

4.9 Limitations of the PCE Method

The PCE method is not without its limitations. First of all we will discuss the
problem of determining collocation points and secondly the number of simula-
tion runs.

4.9.1 Practical Problem in Choosing the Collocation Points

In Subsection 4.7.3 it was explained that not every arbitrary collection of K
collocation points will make the matrix H satisfy the constraint rank(H) = N .
For a function of many parameters and a high order PCE, the possible number
of collocation points M is huge. Searching for a collection of K collocation
points such that rank(H) = N out of the M possible collocation points is
a computationally demanding and time-consuming task. From our experience,
this search seems to be practical only for PCEs which have up to around 600-700
coefficients.

4.9.2 Number of Simulation Runs

The number of simulation runs that have to be executed increases rapidly with
increasing number of variables and increasing order of the PCE (Figure 4.1). If
there are 30 parameters and one uses a PCE expansion of order 2 then there are
already 496 terms in the expansion. If we know apriori, for example based on
experience, that the actual model is insensitive to some specific parameters, or
if we are interested in the sensitivities for a few parameters only, then we need
not evaluate all these parameters.

In the next chapter we propose a small sample Monte Carlo simulation ap-
proach of estimating statistical properties.

4.10 Relation Between the Everdij&BlomMethod

and the PCE

In this section we will argue that under some conditions, certain Everdij&Blom
results can be interpreted as a first order PCE. According to the Everdij&Blom
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methodology we have that if BUMAs 2, 3, 4, 5 and 7 hold true,

ρ(V ) = ρ(v)
np∏
i=1

(
Vi
vi
)βi

Taking the natural log of both sides of the previous equation we have

ln ρ(V ) = ln ρ(v) +
np∑
i=1

βi(lnVi − ln vi) (4.5)

Assuming that the gradient of ln ρ(V ) with respect to the natural log of the
parameters exists, we may interpret this as a first order Taylor expansion of
ln ρ(V ) with respect to the variables (lnV1, lnV2, ..., lnVnp) around the point
(ln v1, ln v2, ..., ln vnp) for appropriate values of the β

′
is.

Since the β′
is can be interpreted as the coefficients of the Taylor expansion

of ln ρ(V ) w.r.t (lnV1, lnV2, ..., lnVnp) around (ln v1, ln v2, ..., ln vnp) then ideally

βi =
∂ ln ρ(V )
∂ lnVi

∣∣∣
lnVi=ln vi

. In the Everdij&Blommethod, β∗
i and β

∗∗
i are essentially

estimates of ∂ ln ρ(V )
∂ lnVi

∣∣∣
lnVi=ln vi

. This suggests that the method can be improved

upon by evaluating

βavg
i =

β∗
i + β∗∗

i

2
or by more elaborate numerical schemes for derivative approximation proposed
in the literature. This idea is illustrated in Figure 4.2.

We should note that due to its linear nature, a first order expansion will not
be able to capture any sort of curvature in the function that is to be expanded.

We will now proceed to argue that in the unbiased case the Everdij&Blom
method can be interpreted as a first order PCE. If the nominal values are un-
biased we have ln vi = µi = E{lnVi} and vi = eµi = ci. Let us first rewrite
equation (4.5) as follows:

ln ρ(V ) = ln ρ(v) +
np∑
i=1

βi(lnVi − ln vi)

= ln ρ(c) +
np∑
i=1

βiσi
(lnVi − µi)

σi

where c = (c1, c2, ..., cnp) and σ2
i = V ar{ln Vi}. Denoting Xi = (lnVi−µi)

σi
,

X = (X1, X2, ..., Xnp) and ρ̃(X) = ρ(eµ1+σ1X1 , ..., e
µnp

+σnpXnp ), we have that
Xi ∼ N(0, 1), hence

ln ρ̃(X) = ln ρ(c) +
np∑
i=1

βiσiXi

= a0 +
np∑
i=1

aiXi (4.6)
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Figure 4.2: Interpreting βi

where, a0 = ln ρ(c) and ai = βiσi. We immediately recognize (4.6) as having
the form of a first order PCE. Furthermore,

• The evaluation of β∗
i for i = 1, 2, ..., np corresponds to the evaluation of

the a′is based on the collocation points x0, x1, ..., xnp where

xi =
{

(0, ..., 0, ..., 0) for i = 0
(0, 0, ..., 2, ..., 0, 0) with the term 2 in the ith position for i = 1, ..., np

• The evaluation of β∗∗
i for i = 1, 2, ..., np corresponds to the evaluation of

the a′is based on the collocation points z0, z1, ..., znp where

zi =
{

(0, ..., 0, ..., 0) for i = 0
(0, 0, ...,−2, ..., 0, 0) with the term− 2 in the ith position i = 1, ..., np

To see this result, we observe that a0 = ln ρ̃(x0) = ln ρ(c) and ln ρ̃(xi) =

ln ρ(c) + 2ai for i = 1, ..., np. Hence ai may be evaluated as a∗i =
ln

ρ̃(xi)
ρ(c)

2 =

σi
ln ρ̃(xi)

ρ(c)

ln li
= σiβ

∗
i since by definition (see Section 3.5) ln li

σi
= 2 for i = 1, ..., np.

Similarly, we can show that ai may also be evaluated according to a∗∗i =
ln ρ̃(zi)

ρ(c)

−2 = σi

(
− ln ρ̃(zi)

ρ(c)

ln li

)
= σiβ

∗∗
i . Hence in the case of unbiased nominal val-

ues the Everdij&Blom method results in a first order PCE for ln ρ(V ). We
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should make note that in the unbiased case, E{ln ρ(V )} is always estimated as
a0 = ln ρ(c). This is another drawback of a first order expansion because it may
not always be true that E{ln ρ(V )} ≈ ln ρ(c).

In the biased case where ln vi �= µi, Xi will not have zero mean, hence in this
case (4.6) cannot be interpreted as a first order PCE. However, the reason why
the estimates in the biased case are not satisfactory is that if (ln v1, ..., ln vnp) is
subtantially far from (µ1, µ2, ..., µnp

) or if ln ρ(V ) changes rapidly as we move
(lnV1, ..., lnVnp) away from (µ1, µ2, ..., µnp

), the first order Taylor expansion
of ln ρ(V ) about (ln v1, ..., ln vnp) may not give good approximation for values
of ln ρ(V ) about (µ1, µ2, ..., µnp

). Since the region surrounding (µ1, µ2, ..., µnp
)

is a region of high probability, approximation errors will affect the statistical
estimates significantly. Based on this we may expect that the Everdij&Blom
approach may still tolerate relatively small bias. For simulation results on this,
see Section 6.4.

Based on the interpretation of the Everdij&Blom method as a first order
PCE, another alternative method of determining the β′

is can be suggested:
collect more than np + 1 collocation points (since at least np + 1 collocation
points will be needed to evaluate the β′

is) and use a least squares method to
determine the β′

is.
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Chapter 5

Small Sample Monte Carlo
Simulation Based
Assessment

5.1 Introduction

In the previous chapter we discussed the PCE as an alternative approach in
estimating the statistical properties of lnR. We also saw that a drawback of
this method was the rapid increase in the number of coefficients of the PCE
as the number of parameters and order of the PCE increased. This situation
is due to the fact that in the PCE method we were trying to approximate a
functional relationship between lnR and V , i.e. we have to perform multivariate
function approximation/interpolation. It is intuitively clear that multivariate
function approximation or interpolation in many variables can be very expensive
depending on the unknown relation between the variables. Therefore, if our goal
is to estimate the mean and 95% CrI of lnR, perhaps we are doing too much. In
the case where the PCE fails or is not feasible to provide a reasonable statistical
estimate we should think of yet other alternative methods to estimate these
statistical properties.

A further motivation for investigating alternative methods is that some sim-
ulations (to be discussed in Chapters 6 and 7) suggests that the distribution
of − lnR follows a lognormal distribution, i.e. ln(− lnR) ∼ N(µ, σ2). If this
property holds in general when the parameters are modelled as lognormal ran-
dom variables and if the variance of ln(− lnR) is not large then we may hope to
obtain reasonably reliable estimates of µ and σ2 and hence obtain a reasonable
fit for the density of − lnR even for small sample sizes. From the estimated
density of − lnR we may then derive other statistical estimates of interest

It seems more natural or intuitive that − lnR follows a lognormal distribu-
tion rather than a normal distribution (as in the Everdij&Blom method) since

49
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we automatically have the property

P (R > 1) = P (lnR > 0) = P (− lnR < 0) = 0

Furthermore, the normal distribution can be considered as a special approxi-
mating case of the lognormal for small σ (σ ↓ 0).

5.2 Small Sample Monte Carlo Based Estima-
tion

Assume we have generated random samples of V , {V1, V2, ..., VN}, and have
used these to generate random samples of lnR, {x1 = lnR1, x2 = lnR2, ...,
xN = lnRN}. Let us now view lnR as a stand-alone random variable, ignoring
its relationship with V . The idea is that we would like to obtain reasonable
statistical estimates with only few samples of lnR available (with N equal to,
say, a few hundred samples). First of all we will review some basic and useful
statistical tools.

5.2.1 Estimating the Mean and 95% CrI of lnR
Estimating the mean of E{lnR} is straightforward, we simply average the sam-
ples of lnR available, i.e. x1, x2, ..., xN . Evaluating the 95% CI of the mean is
also straightforward and a general method based on student’s t-distribution is
available[Rice95]. The (1 − α)× 100% CI formula (0 < α < 1) for the mean is
as follows:

(1− α)× 100% CI for mean : [X − S√
N
tN−1(

α

2
), X +

S√
N
tN−1(

α

2
)] (5.1)

where

X =
1
N

N∑
i=1

xi

S =

√√√√ 1
N − 1

N∑
i=1

(xi −X)2

and tN−1(α2 ) denotes the point beyond which the t-distribution with N − 1
degrees of freedom has a probability α

2 .
Let the 95% CrI be denoted by [A,B] and its estimate be denoted by [A,B].

Let α = 0.05 and let the number of samples be N . Order the samples of lnR in
increasing value then let Nl = N ∗ α

2 and Nu = N ∗(1− α
2 ). Then A is evaluated

as the value of sample number Nl while B is evaluated as the value of sample
number Nu. Based on [A,B], 95% CIs for both A and B can be estimated by
bootstrapping (Section 5.4) or by a binomial distribution based method (Section
5.5).



5.2. SMALL SAMPLE MONTE CARLO BASED ESTIMATION 51

Note that the estimate of the 95% CrI obtained by the above approach may
not be reliable in the case of long-tailed distributions. For this reason, in the
next subsection we explain a few approaches to improve on this situation.

5.2.2 Fitting a Continuous Density to Empirical Data

A second type of approach would be to use the samples {x1, x2, ..., xN} to esti-
mate a density function for lnR and to use this density function to determine
E{lnR} and the 95% CrI. For this purpose there seem to be three possible
approaches of this type:

1. After collecting a number of samples of the random variable of interest,
a histogram can be constructed. If the observed histogram suggests that
the data (or the data after being transformed) can be fitted with some
parametric density model (such as a normal distribution or lognormal
distribution), fit a parametric density function to the observed data by first
estimating the parameters of the parametric model by standard statistical
techniques such as by maximum likelihood[Rice95].

2. Fit a continuous density f
l̂nR as an estimate of the density flnR of lnR

by the non-parametric method of kernel density estimation described in
[Wand95] and employ f

l̂nR to estimate the mean and 95% CrI.

3. Fit a continuous density f as an estimate of the density flnR of lnR
by a newly introduced method of density estimation by support vector
machines (SVMs) as explained in [Vapn98] and employ f

l̂nR to estimate
the mean and 95% CrI.

Method (1) is quite standard in statistics but depends on whether there is a
suitable parametric model available to model the data. Method (3) is innovative
and quite recent. It differs from (2) in that the continuous density estimate is
obtained by viewing density estimation as a problem of solving an ill-posed
integral equation. The ill-posedness of the problem is removed by employing a
so called regularizer term [Vapn98]. However, to the best of our knowledge this
method is not yet widely used and there are still many issues to be resolved.
The density estimate obtained by method (3) is not guaranteed to be a density
function (the estimate can take on negative values and may not integrate to
one) and practical techniques to assess how well it can fit an unknown density
function still need to be researched. The first problem with the SVM approach
(3) does not appear in the kernel density estimation method of (2). However,
in method (2) determining the optimal value of the so called bandwidth that
achieves minimum fitting error is quite difficult unless the unknown density
function is of some specific type such as a normal distribution. In cases where
we have an idea of the specific density function, it is probably more convenient
to employ a parametric fitting approach, i.e. method (1).

In the parts to follow in this chapter we will briefly discuss the basic ideas
behind method (1), but because of the practical problems identified above we
will not pursue methods (2) and (3).
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5.3 Parametric Density Fitting

If a plot of the histogram of the data suggests that the data may follow a known
parametric distribution then we could try fitting the parametric distribution to
the data. In this section we will briefly discuss techniques to fit a normal or
lognormal density to data.

In the special case where the random samples x1, x2, ..., xN were drawn from
a normally distributed random variable, a formula for the (1−α)×100% CI for
the variance is:

(1− α)× 100% CI for variance : [
Nσ̂2

χ2
N−1(α/2)

,
Nσ̂2

χ2
N−1(1 − α/2)

] (5.2)

where

σ̂2 =
1
N

N∑
i=1

(xi −X)2 (5.3)

and χ2
N−1(α/2) denotes the point beyond which the chi squared distribution

with N − 1 degrees of freedom has a probability α
2 . Note that for large N

(>120) we may use the approximation (Appendix B in [Rice95]):

χ2
N (α) =

1
2

(
z(α) +

√
2N − 1

)2

where z(α) denotes the point beyond which the standard normal distribution
has a probability α.

If the distribution of a random variable Y can be modelled with a normal
distribution N(µ, σ2) or lognormal distribution Λ(µ, σ2) which is parametrized
by the mean, µ, and variance, σ2, of some other random variable X which is
related to Y , i.e. X = Y in the case of a normal distribution and X = lnY in
the case of a lognormal distribution, then by maximum likelihood µ is estimated
by µ̂ = X and σ2 is estimated by σ̂2[Rice95]. The estimates µ̂ and σ̂2 can be
used to substitute for µ and σ2 in the original parametric model.

5.4 Bootstrapping

The bootstrap, is a powerful and versatile computer-based method for assessing
estimation variability. It is a well established and widely accepted technique in
the statistics community. This section is devoted to an explanation of the ideas
that motivated the development of the bootstrap method.

5.4.1 Plug-In Principle

Let x = (x1, x2,..., xN ) be a sample of size N drawn from a scalar real valued
random variable X with an unknown distribution function F . Let’s say we are
interested in some parameter of X . Formally, a parameter of X is defined as
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a function of F . Denoting θ as a parameter, we write this functional relation
as θ = t(F ) where t(F ) means applying some numerical procedure t(·) to the
distribution function F . Based on the sample x we can construct a so called
empirical distribution function F̂ defined as:

F̂ (x) =
#{xi ≤ x}

N
, x ∈ R

where #{xi ≤ x} denotes the number of samples in x that have a value less
than x. Note that F̂ assigns a probability of 1

N to each individual sample xi
and is a random function because it depends on the realization of the random
sample. A plug-in estimate θ̂ of θ is based on substituting F̂ for F in t(·), i.e.
θ̂ = t(F̂ ). Note that θ̂ is a statistic, i.e. it is a function of the sample x, say
θ̂ = s(x). Statistics like θ̂ which are used to estimate parameters are commonly
called summary statistics, estimates or estimators.

5.4.2 Non-Parametric and Parametric Bootstrapping

Once we obtain an estimate θ̂ we probably would also like to know how good our
estimate is, for example we might wish to evaluate the standard error /deviation
of θ̂. Unfortunately, for a general statistic θ̂ this is not always possible since to
do this we need to know F , which we do not. The basic idea of non-parametric
bootstrapping is to use F̂ instead of F in the estimation of the standard error,
or any other appropriate measure of “goodness”, of θ̂.

Let θ̂ = s(x). We generate B bootstrap samples x∗
1,x

∗
2, ...,x

∗
B , (x∗

i ∈
R

N ), by resampling from the sample vector x = (x1, x2,..., xN ) according to
F̂ , i.e. putting uniform probability of 1

N for each xi. Hence x∗
i could be

(x1, x2, x2, ...., xN ), (x1, x1, x2, x3, x3, ...., xN−2), (x2, x2, x4, ..., xN ), et cetera.
Based on these samples we obtain θ̂

∗
= (θ̂

∗
1, θ̂

∗
2, ..., θ̂

∗
N ), where θ̂

∗
i = s(x∗

i ) is
called a bootstrap replication of θ̂. With an appropriate estimator (this has to
be treated case by case, depending on the parameter to be estimated), we may
use θ̂

∗
to estimate quantities such as the standard error of θ̂. Note that this ap-

proach can be applied to virtually any statistic, no matter how mathematically
complicated s(·) might be.

The method explained above is called non-parametric since no special func-
tional form was assumed for F̂ , such as a normal or exponential distribution
function. It is possible that we have knowledge that F follows some specific
distribution with unknown parameters, in this case we may wish to model F̂ as
having the specified distribution but using the estimated parameters instead of
the true parameters. In this case we can again generate θ̂

∗
as above and the

technique is called parametric bootstrapping.

5.4.3 Bootstrap Confidence Intervals

A problem which has been studied intensively by researchers in the area of
bootstrapping is that of bootstrap estimation of the (1− α)× 100% confidence
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interval (CI) of a parameter θ, where 0 < α < 1 (for a background on the
concept of CIs the reader may consult [Rice95]). Several methods have been
proposed to do this, among which are the bootstrap-t method, the bootstrap
percentile method and the BCa algorithm [Efro93]. The most sophisticated
algorithm of the three is the BCa algorithm. BCa stands for bias corrected
and accelerated, the mathematical motivation for this naming can be found in
Chapter 22 of [Efro93]. We describe this algorithm below, for more detail refer
to Chapter 14 and 22 of [Efro93].

As before let θ̂ = s(x) be an estimate of θ, where x is a sample of size
N . Based on x let us generate B bootstrap replications of θ̂, i.e. θ̂

∗
1, θ̂

∗
2, ..., θ̂

∗
N .

Define

ẑ0 = Φ−1

(
#{θ̂∗i < θ̂}

B

)
(called the bias correction)

where Φ−1(·) indicates the inverse of the standard normal cumulative distribu-
tion function, e.g. Φ−1(0.95) = 1.645. Let x(i) denote x with the ith point xi
removed and let θ̂(i) = s(x(i)). Define

θ̂(·) =

N∑
i=1

θ̂(i)

N

and

â =

N∑
i=1

(θ̂(·) − θ̂(i))3

6{
N∑
i=1

(θ̂(·) − θ̂(i))2}3/2

(called the acceleration)

Let

α1 = Φ
(
ẑ0 +

ẑ0 + z(α/2)

1− â(ẑ0 + z(α/2))

)
α2 = Φ

(
ẑ0 +

ẑ0 + z(1−α/2)

1− â(ẑ0 + z(1−α/2))

)
where z(α) denotes the 100α percentile point of a standard normal distribution,
e.g. z(0.95) = 1.645. Then the BCa estimate of the CI of θ is given by:

BCa CI:
[
θ̂lo, θ̂up

]
=
[
θ̂
∗(α1)

, θ̂
∗(α2)

]
where θ̂

∗(α1)
(θ̂

∗(α2)
) denotes the 100α1 (100α2) percentile point of the bootstrap

replications.
The BCa method has been shown to have two theoretical advantages:

1. The BCa method is transformation respecting, meaning that BCa end-
points transform correctly if we change the parameter of interest from θ
to some monotonic function of θ.
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2. If
[
θ̂lo, θ̂hi

]
is a perfect estimate then we would have

P{θ < θ̂lo} = α

2
and P{θ > θ̂hi} = α

2

Unfortunately it is not a perfect estimate. However, it has been proven
that it is second order accurate. This means that

P{θ < θ̂lo} = α

2
+
clo
N

and P{θ > θ̂hi} = α

2
+
chi
N

for two constants clo and chi. The other two methods mentioned earlier
are only first order accurate, i.e.

P{θ < θ̂lo} = α

2
+

clo√
N

and P{θ > θ̂hi} = α

2
+

chi√
N

The second order accuracy of the BCa algorithm suggests that it is a possible
candidate for our purpose. A second order accuracy is more desirable than a
first order since it has better convergence with respect to sample size.

5.5 A Simpler Technique for 95% CI Estimation

We should mention here that in fact for sufficiently large N it is not really
necessary to employ the bootstrap to estimate the 95% CI of a percentile point
such as A and B. To see this let’s say that we would like to estimate the 100α
percentile of a random variable X , let X∗ denote the 100α percentile point of
X and let X1, X2, ..., XN be N random samples of X . Note that P (Xi ≤ X∗) =
α for i = 1, ..., N . Let us first reorder X1, X2, ..., XN in ascending order and
denote the ordered samples as X ′

1, X
′
2, ..., X

′
N . Define Yi as follows:

Yi =
{

0 if X ′
i > X∗

1 if X ′
i ≤ X∗

for i = 1, 2, ..., N . Clearly Yi is a Bernoulli random variable with P (Yi = 1) =
α and P (Yi = 0) = 1− α. Consider the random variable

Z =
N∑
i=1

Yi

then Z follows a binomial distribution and Z can be interpreted as the number of
samples in {X ′

1, X
′
2, ..., X

′
N} which fall below the pointX∗. IfNα > 5 andN(1−

α) > 5 then the binomial distribution Z can be approximated reasonably well
by a normal random variable with mean Nα and variance Nα(1 − α)[Rice95].
Hence for sufficiently large N (> 200), the 95% CI for Z can be approximated
as: [

Nα− 1.96
√
Nα(1 − α), Nα+ 1.96

√
Nα(1− α)

]
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and the 95% CI for X∗ is roughly[
X ′


Nα−1.96
√

Nα(1−α)�, X
′

Nα+1.96

√
Nα(1−α)�

]
where #·$ denotes the operation of rounding towards the nearest integer.

However, the above only applies in the special case of estimating the 95% CI
of a quantile and is not for general purpose. On the other hand, the bootstrap
can be employed to derive a CI estimate of almost any statistic. Thus it will
very useful if we would later be interested in a quantity other than the 95% CrI.
Furthermore the bootstrap does not make use of any “approximately normal”
arguments.

Therefore we proceed to use the bootstrap anyway, to illustrate its usefulness
and also because it might find further applications in future research.

5.6 Non-Parametric or Parametric Bootstrap-

ping?

In the case of estimating a quantile CI, the choice of parametric or non-parametric
bootstrap can be crucial. When we have a small sample of a random variable
X we should first observe the histogram of X . If it seems that X has long tails,
then the non-parametric bootstrapping method for quantile CI estimation will
be likely to perform poorly due to the fact that the samples may not represent
the tails adequately. In such cases it is imperative to use a parametric method
where we fit some specific functional form F̂parametric for the observed distri-
bution (assuming that such a functional exists). A parametric approach will
allow the long tails to be modelled more adequately and tail samples can be
generated by drawing a large number of samples from a random variable which
has a distribution according to F̂parametric.

Finally, we would like to conclude this chapter with the following remark:

Remark 5.1 If no known parametric density function seem to fit the histogram
of the random samples then we don’t have much choice but to apply the small
sample non-parametric bootstrap to evaluate standard error or confidence inter-
vals even if it seems that the distribution has long tails. However, we should
note that in most situations it is unlikely for lnR to have long tails to the right
(towards zero) since lnR is bounded from above by zero. Hence we may still
expect to obtain a reasonable estimate of the upper bound of the 95% CrI of
lnR.



Part II

Simulation and Analysis of
Results
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Chapter 6

First Test Case: Gaussian
Lateral Deviations

In this chapter we implement the theories discussed in the preceeding chapters
to evaluate the uncertainty of incrossing risk due to uncertainty in the parameter
values, using a simple scenario involving a pair of jointly Gaussian aircraft.

6.1 Model of Evolution of Two Aircraft

First we give a description of the particular scenario that will be studied. The
model was adopted from [Prib00]. Consider two aircraft flying at roughly the
same altitude in parallel but opposite directions. Let the nominal distance of
their parallel paths be S (see Figure 6.1).

Figure 6.1: Two parallel aircraft flying in opposite directions

Let xi = (xi1, x
i
2, x

i
3)

T and vi = (vi1, v
i
2, v

i
3)

T denote the position and velocity

59
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of aircraft i in the x, y, z direction (the subscripts 1, 2, 3 correspond to the
motion component in the x, y and z direction, respectively). We model the
aircraft motion based on the following hypothetical assumptions:

1. The motion of each aircraft in the x, y, z directions are independent of
each other.

2. The motions of the two aircraft are independent of each other.

For each motion component of aircraft i we assume the following dynamical
model:

xij(t) = xij(t) + x̃ij(t)

vij(t) = vij(t) + ṽij(t)

dṽij(t) = −aijx̃ij(t)dt− bij ṽ
i
j(t)dt+ cijdw

i
j(t), ṽ

i
j(0) ∼ N(0, (αi

j)
2), αi

j ≥ 0

vij(t) = vij,nom

xij(t) = xij,0 + vij,nomt

dx̃ij(t) = ṽij(t)dt, x̃
i
j(0) ∼ N(0, (βi

j)
2), βi

j ≥ 0

where aij, b
i
j , c

i
j , v

i
j,nom, x

i
j,0 are positive real constants for all i, j, ṽ

i
j(0) and x̃

i
j(0)

are independent real-valued random variables and wi
j(t) are mutually indepen-

dent standard Brownian motions for all i, j. Let z̃i(t) = (x̃i(t)T , ṽi(t)T )T ,
zi(t) = (xi(t)T , vi(t)T )T and wi(t) = (wi

1(t), w
i
2(t), w

i
3(t))

T . For notational
convenience we shall sometimes write zi(t), xi(t), wi(t) etc as zit, x

i
t, w

i
t etc. We

can rewrite the previous dynamical model in a more compact form as follows:

d

dt
z̃i(t) =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
−ai1 0 0 −bi1 0 0
0 −ai2 0 0 −bi2 0
0 0 −ai3 0 0 −bi3


︸ ︷︷ ︸

Ai

z̃i(t) +


0
0
0
ci1
ci2
ci3


︸ ︷︷ ︸

Bi

N i(t) (6.1)

z̃i(0) =


x̃i1(0)
x̃i2(0)
x̃i3(0)
ṽi1(0)
ṽi2(0)
ṽi3(0)


zi(t) = zi(t) + z̃i(t)

where N i(t) = dwi(t)
dt (white noise). Since z(t) is jointly Gaussian for t ≥ 0, it

is completely characterized by its mean vector, µi
t = E{zit}, and its covariance

matrix, P i(t) = E{(zit − Ezit)(zit − Ezit)T }. It is easy to see that

µi
t = zi(t)



6.1. MODEL OF EVOLUTION OF TWO AIRCRAFT 61

According to [Bagc93], the symmetric positive definite matrix P i(t) satisfies the
following matrix differential equation:

d

dt
P i(t) = AiP i(t) + P i(t)(Ai)T +Bi(Bi)T

with
P i(0) = P i

0

which can be solved to obtain the entries for P i(t). However, we will be primarily
interested in the steady state condition in which lim

t→∞
d
dtP

i(t) = 0, i.e. P i(t) =

P i
∞ where P i

∞ is a constant symmetric positive definite matrix. P i
∞ can be

obtained by solving the algebraic Riccati equation (ARE):

AiP i
∞ + P i

∞(Ai)T +Bi(Bi)T = 0

Solving the ARE we obtain P i∞ =
[
P i

1 P i
2

P i
2 P i

3

]
where for k, l = 1, 2, 3

(P i
1)kl =

(cik)
2

aikb
i
k

δkl = (γik)
2δkl

(P i
2)kl = 0

(P i
3)kl=

(cik)
2

2bik
= (ωi

k)
2δkl

where γik =
ci

k√
ai

kb
i
k

, ωi
k =

ci
k√
2bi

k

and δkl is Kronecker’s delta:

δkl=
{

1 if k = l
0 if k �= l

Let xst = x1
t−x2

t and v
s
t = v1

t −v2
t . Denote st = ((xst )

T , (vst )
T )T as the separation

process st = z1
t − z2

t . It is quite clear that since both aircraft are independent
of each other that

E{st} = µs
t = z1(t)− z2(t)

E{(st − µs
t )(st − µs

t )
T } = P s

∞ = P 1
∞ + P 2

∞
hence the joint distribution of the position and velocity component of the sep-
aration process is:

pxs
t ,v

s
t
(x, v) =

1√
2π |P s∞|

e−(s−µs
t )T (P s

∞)−1(s−µs
t ) where s = (xT , vT )

After obtaining pxs
t ,v

s
t
(x, v) we may evaluate the incrossing risk with Theorem

2.1. However, for the case of jointly Gaussian aircraft the evaluation of incross-
ing risk may be further simplified and is summarized in Theorem 1 of [Blom02].
As we shall see later on (Subsection 6.4.3), the evaluation of the incrossing risk
may be simplified once again in the case of steady state jointly Gaussian aircraft.
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6.2 Parameter Values

In this section we will discuss the nominal values taken for the parameters and
how we model the uncertainty about the values of the parameters.

6.2.1 Nominal parameter values

Let the collision area surrounding aircraft one be a box of dimension s1×s2×s3.
In our scenario we take S = 15, 000 m (corresponding to 15 km), s1 = 50 m,
s2 = 50 m, s3 = 15 m, x1

1,0 = −20, 000 m, x2
1,0 = 20, 000 m, x1

2,0 = 0 m, x2
2,0 = S,

x1
3,0 = x2

3,0 = 10, 000 m, and vi2,nom = vi3,nom = 0 m/s for i = 1, 2. Note that
αi
j and β

i
j can have any arbitrary value for i = 1, 2 and j = 1, 2, 3 since they do

not effect the steady state distribution. We assume that the nominal values for
the parameters ωi

1, ω
i
2, ω

i
3, γ

i
1, γ

i
2, γ

i
3, v

i
1,nom for i = 1, 2 are:

Parameter Nominal value Dimension
v1

1,nom v1 =240 m/s
γ1

1 v2 =1000 m
γ1

2 v3 =900 m
γ1

3 v4 =20 m
ω1

1 v5 =10 m/s
ω1

2 v6 =10 m/s
ω1

3 v7 =1 m/s∣∣v2
1,nom

∣∣ v8 =240 m/s
γ2

1 v9 =1000 m
γ2

2 v10 =900 m
γ2

3 v11 =20 m
ω2

1 v12 =10 m/s
ω2

2 v13 =10 m/s
ω2

3 v14 =1 m/s

Remark 6.1 We do not consider the parameters aij , b
i
j, c

i
j separately, but lump

them into the parameters γij and ωi
j (i = 1, 2, j = 1, 2, 3) since we have the

relation γij =
ci

j√
ai

jb
i
j

and ωi
k =

ci
j√
2bi

j

. Hence instead of modelling the uncertainty

of aij , b
i
j , c

i
j separately, we model the uncertainty of γ

i
j and ω

i
j.

Hence (v1, v2, ..., v14) is our set of nominal values. Note that the actual sign
of v2

1,nom is negative since aircraft 2 is travelling a direction opposite to aircraft
1; this sign is incorporated in the simulations to follow but the value that is
varied is that of

∣∣v2
1,nom

∣∣.
6.2.2 Model of Uncertainty in the Parameter Values

We assume that the uncertainty about the value of a parameter Vi can be
modelled as a random variable Λ(µi, σ

2
i ) such that the 95% credibility interval
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(CrI) of Vi (see Definition 3.1) is the interval [exp(µi)/li, li exp(µi)] where li =
exp(2σi). Conversely we could also have started by defining that 95% of the
time Vi lies in [ci/li, cili] for some constants ci and li, and to achieve this we
assume that Vi ∼ Λ(ln(ci), 1

4 (ln(li))
2). Note that it may occur that ci �= vi. In

such a case, according to [Ever02] we say that vi is biased. In Figure 6.2 we
summarize how the uncertainty in each parameter is modelled.

Figure 6.2: Modelling of uncertainty in the parameters

Figure 6.2 indicates that the list contains four nominal values that are biased,
i.e. for which ci �= vi. These are v1, v8, v3 and v10.

6.3 Results from Direct Monte Carlo Simulation

Given the fixed and random valued parameters in Section 6.2, we can use direct
Monte Carlo simulations on the actual model to estimate E{ln(R)} and the
95% CrI of ln(R). Note that throughout the rest of this chapter an estimate of
E{ln(R)} will be denoted by ln(R)

The results of 20,000 Monte Carlo runs are presented in Figure 6.3.
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Figure 6.3: Statistical estimates obtained via direct Monte Carlo simulations

Since the bootstrap CI for A and B are relatively tight, we may assume that
[A,B] is a good estimate of the true 95% CrI.

6.4 Results from the Everdij&Blom Method

In this section we use the bias and uncertainty assessment method of [Ever02]
to estimate E{ln(R)} and the 95% CrI of ln(R). Note that in the terminology
of Chapter 3, according to the Everdij&Blom method

lnR = E

{
ln

[
ρ(1,v)

np∏
i=1

(
Vi
vi

)βi

]}

= E

{
ln ρ(1,v) +

np∑
i=1

βi(ln Vi − ln vi)

}

= ln ρ(1,v) +
np∑
i=1

βi(µi − ln vi)

and the 95% CrI of lnR is evaluated by taking the natural logs of the Everdij
& Blom 95% CrI (due to the monotonicity of ln(·), if P (a ≤ R ≤ b) = α then
P (ln a ≤ lnR ≤ ln b) = α).

6.4.1 Estimation using biased nominal parameter values

Note from Figure 6.2 that four of the parameter values used are biased; the
nominal values were not in the centre of the 95% CrI, i.e. v �= c. Instead
of evaluating and using ln ρ(1, c) to estimate E{ln ρ(1, V )}, the Everdij&Blom
bias and uncertainty assessment method evaluates ln ρ(1, v) and next tries to

compensate for the bias in parameter values by adding the term
np∑
i=1

βi(µi−ln vi),
with µi = ln ci. In this subsection and Subsection 6.4.2 we try to evaluate if
this compensation method works.

The values of the β′
is are evaluated in three different ways, using β∗

i , β
∗∗
i

and βsafety conservative
i as explained in Section 3.5.

First, the natural log of ρ(1, v) was determined:

ln ρ(1,v) = −73.77
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next a bias compensation term
14∑
i=1

βi(µi−ln vi) was added to ln ρ(1,v). This term
appeared to be equal to about -23.2, depending on the method used to evaluate
βi. Figures 6.4, 6.5 and 6.6 show the results of applying the Everdij&Blom
method to estimate E{ln(R)} and the 95% CrI for ln(R) using the nominal
values of the parameters in Section 6.2.

Figure 6.4: Results of applying the Everdij/Blom method when some of the vis
are biased

Figure 6.5: Values of the β′
is evaluated with the Everdij/Blom method

From Figures 6.4 and 6.6 we can observe that the mean of the Everdij&Blom
estimate is biased to the right of the Monte Carlo estimate (compare the Everdij
& Blom lnR estimate −96.91 with the Monte Carlo estimate −101.53) and
so are the 95% CrI estimates (compare the Everdij & Blom 95% CrI estimate
[−106.15,−87.68] with the direct Monte Carlo estimate [−114.79,−89.51]). Fur-
thermore, the Everdij&Blom estimate of the width of the 95% CrI (e.g. 106.15−
87.68 = 18.47) is considerably smaller than the direct Monte Carlo estimate of
114.79− 89.51 = 25.28.

We can also observe that the three methods of determining βi give results
which almost coincide with each other. The reason for this is because there are
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Figure 6.6: Comparison of direct Monte Carlo histogram with the Everdij/Blom
density estimates when some of the v′is are biased

two dominant values of βi, i.e. β3 and β10. All other β
′
is are much smaller than

β3 and β10 hence their effect becomes negligible. Because the three methods give
more or less the same estimate for β3 and β10, different estimates for the other
β′
is do not really matter, hence the three methods seem to coincide. However,

we should not make an inference from this particular example that the three
methods will coincide in all cases.

6.4.2 Estimation using unbiased nominal parameter val-
ues

We now repeat the Everdij&Blom procedure for the case where the nominal
values of the parameters take on the following unbiased values:
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Parameter Nominal value Dimension
v1

1,nom v1 = c1 =228 m/s
γ1

1 v2 = c2 =1000 m
γ1

2 v3 = c3 =760 m
γ1

3 v4 = c4 =20 m
ω1

1 v5 = c5 =10 m/s
ω1

2 v6 = c6 =10 m/s
ω1

3 v7 = c7 =1 m/s∣∣v2
1,nom

∣∣ v8 = c8 =228 m/s
γ2

1 v9 = c9 =1000 m
γ2

2 v10 = c10 =760 m
γ2

3 v11 = c11 =20 m
ω2

1 v12 = c12 =10 m/s
ω2

2 v13 = c13 =10 m/s
ω2

3 v14 = c14 =1 m/s

The natural log of the nominal risk in this unbiased case is:

ln(ρ(1, v)) = ln(ρ(1, c)) = −101.51

Note that since all nominal values are unbiased we have that
14∑
i=1

βi(µi−ln vi) = 0,

hence ln(R) = ln ρ(1, c). The results of the Everdij&Blom method are shown in
Figures 6.7 and 6.8. It is clear that in this case the Everdij&Blom method gives
a much better estimate of E{ln(R)} and its 95% CrI compared to the biased
case.

Figure 6.7: Results of applying the Everdij/Blom method when the v′is are un-
biased.

This confirms the Everdij&Blom suggestion that the method may perform
better in the case where all nominal values are unbiased. However, their rea-
soning was that under the assumption that all parameter values are unbiased
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Figure 6.8: Comparison of the direct Monte Carlo histogram and the
Everdij/Blom density estimates when the v′is are unbiased.

BUMA 7 (i.e. there exists βi as a solution of two different equations, see Sub-
section 3.4.1) will hold because the first equation becomes zero and clearly there
will always be some βi which will satisfy the second equation. From our point
of view, the method works better in the unbiased case because the effect of ap-
proximation errors due to a first order Taylor expansion is reduced (see Section
4.10 and Figure 4.2).

Again we see that the three methods of determining the β′
is give results

which almost coincide. The reason for this is the same as that given in the
analysis of the case of biased nominal values.

Although Figure 6.8 indicates that the density of lnR can be closely approx-
imated by a Gaussian density, we can also observe that the histogram of lnR
has a slightly negative skew (longer tail to the left); this implies that − lnR has
a positive skew and suggests that − lnR may have an approximately lognormal
distribution (see also Figure 6.10).

6.4.3 Sensitivity of Incrossing Risk to the Parameters

From the values of the β′
is in Figure 6.5 we observe two large ones: β3, corre-

sponding to V3 = γ1
2, and β10, corresponding to V10 = γ2

2. This indicates that R
is very sensitive to these two parameters, R can change in orders for magnitude
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for a small change in V3 or V10 when the other parameters are kept at their
nominal values.

This unusual insensitivity is not due to simulation coding error, but can be
shown to be a property due to the jointly Gaussian model of the aircraft and
due to the setup of the particular scenario. In the following we will argue why
this sensitivity is true.

Let xt, vt ∈ R
3 denote the position and velocity component of the separa-

tion process. Since we have a steady state scenario all covariance matrices are
constant. Let Qx, Qv denote the covariance matrix of xt, vt, respectively, and
let Qx,v be the cross-covariance matrix between x and v. For our scenario we
have that:

Qx =

 (γ∗1)
2 0 0

0 (γ∗2)2 0
0 0 (γ∗3)

2

 , Qv =

 (ω∗
1)

2 0 0
0 (ω∗

2)2 0
0 0 (ω∗

3)
2


and

Qx,v =

 0 0 0
0 0 0
0 0 0

 , µv = [v1,0, 0, 0]T

where µv = E{vt}, v1,0 = v1
1,nom − v2

1,nom, (γ
∗
k)

2 = (γ1
k)

2 + (γ2
k)

2 and (ω∗
k)

2 =
(ω1

k)
2 + (ω2

k)
2 for k = 1, 2, 3.

Following the notation in [Blom02] define

ak(t) =
1
2
[Qvk

−QT
x,vk

Q−1
s Qx,vk

]−1

dk(x, t) = µvk
(t) +QT

x,vk
Q−1

x (x− µx(t))

v+
k (x, t) =

e−ak(t)d2
k(x,t)

4π |ak(t)| +
1
2
dk(x, t)[1 + erf(dk(x, t)

√
ak(t)]

v−k (x, t) =
e−ak(t)d2

k(x,t)

4π |ak(t)| − 1
2
dk(x, t)[1 − erf(dk(x, t)

√
ak(t)]

for k = 1, 2, 3, where a(t), d(t) ∈ R
3, ak(t), dk(t), µvk

(t) are the kth compo-
nent of a(t), d(t), µv respectively, Qvk

, Qx,vk
are the kth column of Qv, Qx,v,

respectively, and µx(t) = E{xt}.
Note that due to the fact that Qx,vk

= [0, 0, 0]T for k = 1, 2, 3, we have

ak(t) = 1
2Qvk

= 1
2(ω∗

k)2

dk(x, t) =


v10 if k = 1
0 if k = 2
0 if k = 3

hence both ak(t) and dk(x, t) are constants independent of x and t. As a con-
sequence, v+

k (x, t) and v−k (x, t) are also constants. To simplify the notation let
us write v±k (x, t) simply as v±k . Then starting from Theorem 1 in [Blom02] we
may further simplify the evaluation of the incrossing risk as follows:
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ϕ(t) =
3∑

k=1

∫
Dk

[
v+
k (xk,−sk, t)pxk,t,xk,t

(xk,−sk) + v−k (xk, sk, t)pxk,t,xk,t
(xk, sk)

]
dxk

=
3∑

k=1

v+
k

∫
Dk

pxk,t,xk,t
(xk,−sk)dxk + v−k

∫
Dk

pxk,t,xk,t
(xk, sk)dxk


Since x1, x2, x3 are independent of each other we may also write:

pxk,t,xk,t
(xk,±sk) = pxi,t(xi)pxj,t(xj)pxk,t

(±sk)
where i, j ∈ {1, 2, 3} and i �= j �= k. Hence

ϕ(t) =
3∑

k=1

v+
k pxk,t

(−sk)
∫
Dik

pxik,t(y)dy
∫
Djk

pxjk,t(y)dy

+ v−k pxk,t
(sk)

∫
Dik

pxik,t(y)dy
∫
Djk

pxjk,t(y)dy


=

3∑
k=1

[v+
k pxk,t

(−sk) + v−k pxk,t
(sk)]

∫
Dik

pxik,t(y)dy

∫
Djk

pxjk,t(y)dy

 (6.2)

where ik, jk ∈ {1, 2, 3} and ik �= jk �= k for each k,.
Now, we make the following observation:∫

D2

px2(y)dy =
1√
2πγ∗2

s2∫
−s2

e
− 1

2
(y−S)2

(γ∗
2)2 dy

≈ 1√
2πγ∗2

s2∫
−s2

e
− 1

2
S2

(γ∗
2)2 dy

=
2s2√
2πγ∗2

e
− 1

2
S2

(γ∗
2)2

because S >> |s2| (for example, in the simulation S = 15000 while s2 = 50).
We also observe that

px2(s2) =
1√
2πγ∗2

e
− 1

2
(s2−S)2

(γ∗
2)2 ≈ 1√

2πγ∗2
e
− 1

2
S2

(γ∗
2)2
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Finally, we note that for large S, the term e
− 1

2
S2

(γ∗
2)2 is very sensitive to changes

in γ∗2 and hence also to γ1
2 and γ2

2. Since this term appears in every term on
the right hand side of (6.2) it directly influences the incrossing risk. Next we
provide a numerical example to show the claimed sensitivity.

Example 6.1 Let S = 15000 m, γ1
2 = γ2

2 = 1 × 103 m. In this case we have
that (γ∗2)

2 = 2× 106 m2 and

e
− 1

2
S2

(γ∗
2)2 = 3.7234× 10−25

Let us now change γ1
2 to γ1

2 = 2 × 103 m and keep γ2
2 as before. We then have

(γ∗2)
2 = 5× 106 m2 and

e
− 1

2
S2

(γ∗
2)2 = 1.6919× 10−10

resulting in a change in the order of 1015.

6.5 Results from PCE Method

Based on a number of collocation points (see Figure 4.1) selected with the Re-
gression Method with Improved Sampling (Subsection 4.7.2), second and third
order PCEs for the actual model were identified. Next, Monte Carlo simula-
tions were performed using the PCEs to estimate E{ln(R)} and the 95% CrI of
ln(R).

Figure 6.9 presents the results from running 20,000 Monte Carlo simulations
on the second and third order PCEs (by drawing 20,000 samples of the param-
eters (V1, V2, ..., V14) and then evaluating the incrossing risk for each sample).

Figure 6.10 compares the histograms of ln(R) obtained from this PCE ap-
proach with those of the direct Monte Carlo simulation approach of Section 6.3.
One can clearly see that in this particular case study the histograms obtained
from both approaches are almost indistinguishable. The estimates obtained
from the direct Monte Carlo and the PCEs are very close as can be seen by
comparing the results in Figure 6.9 with those in Figure 6.3. Based on the
values of average error squared (e2) it is clear that the fits of the PCEs to the
actual model are quite good; in this case a second order PCE is already suf-
ficient. Bias that is attributed to approximation errors is also small since e is
small. Furthermore, the second order PCE is also able to capture the presence
of skewness in the distribution of lnR. On the other hand the Everdij&Blom
method or first order PCE cannot do this since the estimated distribution will
be normal, which is always symmetric about the mean.

Note the computational savings that can be made by using a second order
PCE: with only 120 evaluations of the accident risk model we can obtain es-
timates which compare well with 20,000 runs of the accident risk model in a
direct Monte Carlo simulation. Furthermore, this result indicates that a higher
order PCE may not be necessary. An intuitive explanation as to why a higher
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Figure 6.9: Results of Monte Carlo simulation on 2nd and 3rd order PCEs

Figure 6.10: Comparison of histograms obtained from direct Monte Carlo sim-
ulation and Monte Carlo simulations of 2nd and 3rd order PCEs.

order PCE may not be necessary is that we are essentially approximating ln(R)
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as a function of X1, X2, ..., Xnp in a bounded region
np⊗
i=1

[−2.5, 2.5] ([−2.5, 2.5] is
the 99% probability region of Xi since Xi ∼ N(0, 1)) and if ln(R) is sufficiently
smooth and does not have too much curvature or fluctuations in that region
then it is reasonable to expect that a low order expansion would suffice.

Figures 6.7 and 6.8 even indicates that a first order PCE (i.e. the Everdij&Blom
method in the case of unbiased parameter values) can be considered sufficient.

6.6 Results of Fitting a Parametric Density

Figure 6.11 displays the histogram of 320 samples of − lnR and Figure 6.12
displays the histogram of ln(− lnR). One can notice that − lnR has longer tails
to the right while ln(− lnR) looks more symmetic and normal. This suggests
that − lnRmay have an approximately lognormal distribution. Also notice that
the spread of ln(− lnR) is quite narrow, thus it will have small variance.

Figure 6.11: Histogram of 320 random samples of − lnR

Let Y = − lnR; we will try to fit a lognormal distribution to Y . In order to
do this we must first estimate the mean and variance of lnY = ln(− lnR) by
using the formulas discussed in Section 5.3. Based on the 320 samples of lnY
we obtain the following estimates:

µ̂lnY = 4.6157, 95% CI for µlnY = [4.6086, 4.6228]
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Figure 6.12: Histogram of 320 random samples of ln(− lnR)

σ̂2
lnY = 4.1750× 10−3, 95% CI for σ2

lnY = [3.6119× 10−3, 4.9308× 10−3]

Based on µ̂lnY and σ̂2
lnY and on the assumption that lnY follows a normal

distribution we find that the 95% CrI of lnY is

[µ̂lnY − 1.96σ̂lnY , µ̂lnY + 1.96σ̂lnY ] = [4.4891, 4.7423]

Hence the 95% CrI for Y = [e4.4891, e4.7423] = [89.0374, 114.7027] and it directly
follows that the 95% CrI for lnR = [−114.7027,−89.0374]. Notice how this
estimate of the 95% CrI is not too different from the direct Monte Carlo estimate
of [−114.79,−89.51] of Section 6.3 which was based on 20,000 samples.

We may also estimate the mean of Y by the lognormal formula (see [Ever02])

µ̂Y = exp(µ̂lnY +
1
2
σ̂2

lnY )

from which we get
µ̂Y = 101.27

hence
µ̂lnR = −101.27

Again note how the small sample estimate −101.27 is quite close to the direct
Monte Carlo estimate of −101.53.
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6.7 Results FromNon-Parametric Bootstrapping

Method

In this section we present the result of applying the plug-in principle and the
bootstrap to estimate the mean and 95% CrI of ln(R) based on around 320-680
samples of ln(R). Figure 6.13 displays the results.

Figure 6.13: Results of non-parametric bootstrapping

We carry out the bootstrapping for different sample sizes of ln(R), i.e. sam-
ple sizes 320, 520, and 680. Compared with the direct Monte Carlo estimates
shown in Figure 6.3, the estimate of the mean from all three sample sizes were
quite good while the estimates of the 95% CrI were better for sample sizes of
520 and 680. A noticeable difference is that in the small sample case the width
of the CI of the estimates are wider, which we would expect since the size of
the data is small, and hence is more conservative. An important observation
that we can make here is that although the CIs are more conservative, they do
cover the CI obtained from the large sample Monte Carlo simulation in Section
6.3. In practice this is important since for the CI upper bound of B it is safety
conservative to have an estimate which overestimates risk than one which un-
derestimates the risk. The estimates from a data size of 680 samples do not
differ very much from estimates obtained based on only 520 samples, suggesting
that 520 could be sufficient for our purposes.

We may use the bootstrap results to obtain a safety conservative estimate
of the 95% CrI by taking the upper bound of the CI of A and the upper bound
of the CI of B. Hence for example, based on 520 samples and 2000 bootstraps
we may take [−113.39,−88.48] as our conservative estimate.
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Chapter 7

Second Test Case: Double
Exponential Lateral
Deviations

7.1 Model of Evolution of Two Aircraft

In the previous chapter we discussed the modelling of a pair of aircraft as being
jointly Gaussian. However, according to Civil Aviation Authority (CAA), based
on actual flight data, the distribution of the lateral deviation of an aircraft (devi-
ation in the y-direction) from its straight line course might better be modelled as
double double exponential [CAA91]. A double double exponential distribution
is a three parameter distribution with the following density function:

f(x) = α
1
2λ1

e−
|x−µ|

λ1 + (1− α)
1
2λ2

e−
|x−µ|

λ2

where α, λ1, λ2 are the parameters with 0 < α < 1, and λ1, λ2 > 0 (we do not
consider µ ∈ R as a parameter to conform with the standard definition of a
double double exponential distribution as a three parameter distribution. In
standard form µ is taken to be zero). If a random variable X follows a double
double exponential distribution with parameters α, λ1, λ2 (which we shall write
as X ∼ DDE(α, λ1, λ2)) then

E{X} = µ

V ar{X} = 2αλ2
1 + 2(1− α)λ2

2

However, in this chapter we will consider the special case of the double double
exponential where λ1 = λ2 = λ, called the double exponential distribution.
Therefore the density in this special case is:

f(x) =
1
2λ

e−
|x−µ|

λ

77



78CHAPTER 7. SECOND TEST CASE: DOUBLE EXPONENTIAL LATERAL DEVIATIONS

This distribution can be used to model an aircraft which only flies in one mode,
e.g. the nominal mode, where it is assumed the aircraft never gets itself into
a non-nominal mode. NLR has proposed a dynamic model for the motion of
an aircraft such that in steady state the deviation in position in a particular
direction has a double exponential distribution and the distribution of the devi-
ation of the velocity in that direction is Gaussian [Daam99]. We will reuse the
notation introduced in Subsection 6.1. For the dynamics in the x and z (x1 and
x3, respectively) direction we use the equations already derived in the previous
chapter. However, we now model the dynamics in the y direction as follows:

xi2(t) = xi2(t) + x̃i2(t)

vi2(t) = vi2(t) + ṽi2(t)

dṽi2(t) = −ai2sgn(x̃i2(t))dt− bi2ṽ
i
2(t)dt+ ci2dw

i
2(t), ṽ

i
2(0) ∼ N(0, (αi

2)
2), αi

2 ≥ 0

vi2(t) = vi2,nom

xi2(t) = xi2,0 + vi2,nomt

dx̃i2(t) = ṽi2(t)dt, x̃
i
2(0) follows some initial distribution

where

sgn(x) =


−1 if x < 0
0 if x = 0
1 if x > 0

It can be shown that by solving the associated Fokker Planck equation for the
steady state case (t −→ ∞), x̃i2(t) and ṽi2(t) are independent of each other,
ṽi2(t) follows a Gaussian distribution while x̃i2(t) follows a double exponential
distribution (see Chapter 1 of [Risk89]). Consequently, vi2(t) is Gaussian and
xi2(t) is double exponential as t −→∞.

In order for us to be able to use Theorem 1 of [Blom02] for the double
exponential case, we exploit the fact that a double exponential density can be
approximated by a sum of Gaussian density functions[Blom02]. We may write
for some N1, N2:

px1
2,t
(x) ≈

N1∑
j=1

χ1
jp

1
Gj,t

(x)

p−x2
2,t
(x) ≈

N2∑
j=1

χ2
jp

2
Gj,t

(x)

where

p1
Gj,t

(x) =
1√

2πσ̂j,1

exp

(
−1
2

(
x− x1

2(t)
σ̂j,1

)2
)

p2
Gj,t

(x) =
1√

2πσ̂j,2

exp

(
−1
2

(
x+ x2

2(t)
σ̂j,2

)2
)
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σ̂i,j ≥ 0, χi
j ≥ 0 and

Ni∑
j=1

χi
j = 1. Recall that xs2,t = x1

2,t − x2
2,t. Since x1

2,t and

−x2
2,t are independent we have that

pxs
2,t
(x) = (px1

2,t
∗ p−x2

2,t
)(x)

where ∗ denotes convolution. Hence

pxs
2,t
(x) ≈

∫
R

 N1∑
j=1

χ1
jp

1
Gj,t

(z)

( N2∑
k=1

χ2
kp

2
Gk,t

(z − x)

)
dz

=
N1∑
j=1

N2∑
k=1

χ1
jχ

2
k

∫
R

p1
Gj,t

(z)p2
Gk,t

(z − x)dz


=

N1∑
j=1

N2∑
k=1

χ1
jχ

2
k(p

1
Gj,t

∗ p2
Gk,t

)(x) (7.1)

=
N1∑
j=1

N2∑
k=1

χ1
jχ

2
kpGjk

(x) (7.2)

where

pGjk,t
(x) =

1√
2πσ̂jk

exp

(
−1
2

(
x− xs2(t)

σ̂jk

)2
)

xs2(t) = x1
2(t)− x2

2(t)

σ̂jk =
√
(σ̂1,j)2 + (σ̂2,k)2

With the above knowledge we may evaluate the incrossing risk by replacing
pxs

2,t
(x) with the double Gaussian sum (7.2), evaluate the incrossing risk for

each Gaussian term by Theorem 1 of [Blom02] and then sum the incrossing risk
associated with each Gaussian term.

7.2 Parameter Values

In this second simulation we will use the same nominal parameter values and
the same model of uncertainty of the parameters as in the previous chapter.

7.3 Results from Direct Monte Carlo Simulation

Given the fixed and random valued parameters in Section 6.2, we can use direct
Monte Carlo simulations on the actual model to estimate E{ln(R)} and the
95% CrI of ln(R). We proceed as in the previous chapter and the results of
10,000 Monte Carlo runs are presented in Figure 7.1. Only 10,000 samples were
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Figure 7.1: Statistical estimates obtained via direct Monte Carlo simulation

evaluated, compared to 20,000 in the simulation in Chapter 6, because the time
needed to evaluate the incrossing risk in this case was significantly longer. As
in Chapter 6, ln(R) denotes an estimate of E{ln(R)}.

Since the bootstrap CI for A and B are relatively tight, we may assume that
[A,B] is a good estimate of the true 95% CrI.

7.4 Results from the Everdij&Blom Method

In this section we use the bias and model uncertainty assumption method of
[Ever02] to evaluate ln(R) and the 95% CrI of ln(R).

7.4.1 Estimation using biased nominal parameter values

Figures 7.2, 7.3 and 7.4 show the results of applying the Everdij&Blom method
to estimate E{ln(R)} and a 95% CrI for ln(R) using the biased nominal value
of the parameters in Section 6.2.

The natural log of the nominal risk in this biased case is:

ln(ρ(1, v)) = −24.40

The bias compensation term
14∑
i=1

βi(µi − ln vi) that needs to be added to

this nominal risk appeared to be around -4 depending on the method used to
evaluate βi.

The values of the β′
is were calculated in three different ways, using β

∗
i and β

∗∗
i

as explained in Section 3.6 and using a safety conservative approach. However,
in addition we applied another method of estimating the β′

is by

βavg
i =

β∗
i + β∗∗

i

2

From Figures 7.2 and 7.4 we can observe that the Everdij&Blom mean esti-
mates are biased. Furthermore, estimates obtained based on β∗∗

i coincide with
the safety conservative approach estimates. By studying Figure 7.4, we can also
see that the safety conservative approach does actually yield a safety conserva-
tive estimate of the 95% CrI.
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Figure 7.2: Results of applying the Everdij/Blom method when some of the v′is
are biased

Figure 7.3: Values of the β′
is evaluated with the Everdij/Blom method

7.4.2 Estimation using unbiased nominal parameter val-
ues

We now repeat the Everdij&Blom procedure for the case where the nominal
values of the parameters take on unbiased values. The natural log of the nominal
risk in this unbiased case is:

ln(ρ(1, v)) = ln(ρ(1, c)) = −28.33
Since in this case the bias compensation is equal to zero, we have that lnR =
ln ρ(1, c).

The results of the unbiased Everdij&Blom method are shown in Figures 7.5
and 7.6. As we have seen in Chapter 6, in this case the Everdij&Blom method
gives a much better estimate of E{ln(R)} and its 95% CrI compared to the
biased case. Note that the estimates based on β∗

i coincide with that of the
safety conservative estimates.
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Figure 7.4: Comparison of a direct Monte Carlo histogram with the
Everdij/Blom density estimates when some of the v′is are biased

Figure 7.5: Results of applying the Everdij/Blom method when the v′is are un-
biased

Both figures indicate the improvement gained by using βavg
i , i.e. the estimate
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Figure 7.6: Comparison of the Monte Carlo histogram and the Everdij/Blom
density estimates when the v′is are unbiased

of the 95% CrI estimate and the estimated density better matches the direct
Monte Carlo results.

7.5 Results from PCE Method

Based on a number of collocation points (see Figure 4.1) selected with the Re-
gression Method with Improved Sampling (Subsection 4.7.2), second and third
order PCEs for the actual model were identified. Monte Carlo simulations were
performed using the PCEs to estimate E{ln(R)} and the 95% CrI of ln(R).

Figure 7.7 presents the results from running 10,000 Monte Carlo simulations
on the second and third order PCEs (by drawing 10,000 samples of the param-
eters (V1, V2, ..., V14) and then evaluating the incrossing risk for each sample).

Figure 7.8 compares the histograms of ln(R) obtained from the direct Monte
Carlo simulations of Sections 7.3 and PCE based Monte Carlo simulations. The
histograms obtained from the actual model and its 2nd order PCE are almost
indistinguishable. Based on the values of average error squared (e2) it is clear
that the fit of the 2nd order PCE to the actual model is quite good. Once again
we observe that the second order PCE is able to capture the skewness in the
distribution of lnR. However, the 3rd order PCE does not perform quite as
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Figure 7.7: Results of Monte Carlo Simulations on 2nd and 3rd order PCEs

Figure 7.8: Comparison of histograms obtained from direct Monte Carlo simu-
lation and Monte Carlo simulations of 2nd and 3rd order PCEs

well. There could be several reasons for this phenomenon, one possible one is
that perhaps the choice of collocation points here is inadequate and maybe more
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collocation points can be added to obtain a better fit. However, in the context
of this project it is not really important since in practice we would not go to a
3rd order PCE due to the large number of collocation points required.

7.6 Results of Fitting a Parametric Density

Figure 6.11 displays the histogram of 320 samples of − lnR and Figure 6.12
displays the histogram of ln(− lnR). In this case it is not so obvious that − lnR
follows a lognormal distribution. Both histograms in fact look as if they follow
a normal distribution. However, in the following we assume that − lnR can be
adequately modelled by a lognormal distribution and observe the estimates that
we get under this assumption. Once again note how the spread of ln(− lnR) is
quite narrow, thus it will have small variance.

Figure 7.9: Histogram of 320 random samples of − lnR

Let Y = − lnR; we will try to fit a lognormal distribution to Y , in order to
do this we must first estimate the mean and variance of lnY = ln(− lnR) by
using the formulas discussed in Section 5.3. Based on the 320 samples of lnY
we obtain the following estimates:

µ̂lnY = 3.3453, 95% CI for µlnY = [3.3417, 3.3489]

σ̂2
lnY = 1.0791× 10−3, 95% CI for σ2

lnY = [9.3352× 10−4, 1.2744× 10−3]
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Figure 7.10: Histogram of 320 random samples of ln(− ln(R))

Based on µ̂lnY and σ̂2
lnY and on the assumption that lnY follows a normal

distribution we find that the 95% CrI of lnY is

[µ̂lnY − 1.96σ̂lnY , µ̂lnY + 1.96σ̂lnY ] = [3.2809, 3.4097]

Hence the 95% CrI for Y = [e3.2809, e3.4097] = [26.5997, 30.2562] and it directly
follows that the 95% CrI for lnR = [−30.2562,−26.5997]. Notice how this
estimate of the 95% CrI is not too different from the direct Monte Carlo estimate
of [−30.13,−26.63] of Section 6.3 which was based on 10,000 samples.

We may also estimate the mean of Y by the lognormal formula (see [Ever02])

µ̂Y = exp(µ̂lnY +
1
2
σ̂2

lnY )

from which we get
µ̂Y = 28.38

hence
µ̂lnR = −28.38

Again note how the small sample estimate −28.38 is quite close to the direct
Monte Carlo estimate of −28.34. Based on the closeness of the small sample
estimates to the direct Monte Carlo estimates it seems plausible that − lnR
may indeed follow a lognormal distribution.



7.7. RESULTS FROM NON-PARAMETRIC BOOTSTRAPPING METHOD87

7.7 Results FromNon-Parametric Bootstrapping

Method

In this section we present the result of applying the plug-in principle and the
bootstrap to estimate the mean and 95% CrI of ln(R) based on 320 to 680
samples of ln(R). Figure 7.11 displays the results.

Figure 7.11: Results of non-parametric bootstrapping

Based on 520 samples we take [−30.10,−26.52] as our conservative 95%
CrI estimate. Comparing with the direct Monte Carlo conservative estimate of
[−30.09,−26.57], the bootstrap estimate seems quite acceptable.
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Chapter 8

Conclusions and
Suggestions

8.1 Conclusions

In this report we have studied possible methods to analyze uncertainty in ATM
accident risk assessment due to uncertainty in the values of the model parame-
ters. We analyzed the method proposed by Everdij&Blom in [Ever02] for lnR,
studied and implemented for lnR the PCE based approach proposed in [Webs96]
and [Isuk99], and investigated the possibility of using small sample Monte Carlo
based methods. We showed that the Everdij&Blom methodology can be reinter-
preted in terms of a first order Taylor expansion of lnR and as a first order PCE
in the case of unbiased nominal values and suggested methods to improve deter-
mination of the β′

is. Furthermore, two simulations that were executed indicate
that the method performs better when the nominal values of the parameters are
unbiased. In the biased case it seems the Everdij&Blom method can still yield
a reasonable but conservative estimate of the 95% CrI. A minor detail which
should be taken into account when working with the Everdij&Blom method is
that small values of a particular β∗

i or β
∗∗
i may lead to the conclusion that ρ(V )

is insensitive to Vi. However, we should keep in mind that this insensitivity
arises on the condition that all other parameters Vj , j �= i are kept at their
nominal values. If some of the V ′

j s are not at their nominal values then it is
possible that the insensitivity will no longer hold (Section 3.6).

We implemented the PCE method on the two simulations mentioned above.
The corresponding second order PCE performed well for both simulations, need-
ing only 120 simulation runs to give statistical estimates which were very close
to estimates obtained through 20,000 or 10,000 direct Monte Carlo runs of the
accident risk model. However, the PCE is no longer efficient when the number
of parameters becomes large and there is always the possibility that a second
order PCE may not provide a good fit. Hence in this case other techniques
have to be utilized. In such a situation we propose small sample Monte Carlo

89
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based methods that use only few hundred samples of lnR. We propose carry-
ing out parametric density fitting or application of the plug-in principle with
the bootstrap method to assess the confidence interval of the statistical pa-
rameters of interest. The motivation for the parametric fitting method is the
observation, based on the simulations, that − lnR seems to follow a lognormal
distribution while the main reason for proposing the bootstrap is that it can
be implemented in a non-parametric fashion, this is particularly useful if our
assertion that − lnR follows a lognormal distribution does not hold true. The
simulations results indicate that the parametric density fitting approach and
bootstrapping can yield acceptable estimates of E{ln ρ(V )} and the 95% CrI.

We also made a contribution to the Generalized Reich model by deriving
sufficients conditions for which Assumption A.5 of the model holds true and
made some additional derivations for the Everdij&Blom framework.

8.2 Suggestions

Based on the study that has been carried out, in this section we suggest an
outline of efficient steps in carrying out uncertainty analysis of ATM accident
risk assessment due to uncertainty in the parameter values. The basic idea is
given below:

• Model the parameters as lognormal random variables as in [Ever02].

• Apply the Everdij&Blom method with as low bias as possible based on
βavg
i (Chapter 4) or βsafety conservative

i (Chapter 3) unless the number of
parameters to be considered is too large to handle. If so, perform the
small sample based Monte Carlo simulation (Chapter 5, for examples see
the simulations in Chapters 6 and 7).

• Assess the approximation errors in the Everdij&Blom method. If the
error level is not satisfactory and the number of parameters is large (say
> 25), do the small sample Monte Carlo method and then stop. Otherwise
implement the second order PCE (Chapter 4).

• Assess the approximation errors of the second order PCE. If error is sat-
isfactory then stop. Otherwise attempt to refit the second order PCE or
do a small sample Monte Carlo simulation.

Details on the steps suggested above are given in the Appendix.

8.3 Future Research

An observation that was made during this study is that when the parameters
are modelled as lognormal random variables the distribution of − lnR seems to
approximately follow a lognormal distribution Λ(µ, σ2) (note that this includes
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the normal distribution as a special approximate case when the parameter σ is
small. Refer to Chapters 6 and 7, particularly Figures 6.8, 6.11, 7.6 and 7.9).
This is quite interesting and leads us to wonder under what conditions we may
expect this property to hold. Further research on this could start by performing
a small Monte Carlo simulation on a more complex system to observe whether
this phenomenon still occurs. If it turns out that under some conditions this
is a consistent property of − lnR and if the variance of ln(− lnR) is not large,
then we can have some confidence that Monte Carlo based parametric methods
(i.e. fitting of a lognormal distribution) can produce good estimates even when
there are hundreds of uncertain parameters and only a few hundred samples of
lnR available.

In general, the incrossing risk is formulated as[Ever02]:

R[T1,T2] =
N∑
i=1

R(Ki)× P (Ki) (8.1)

where K1,K2, ...,KN are specific events, R(Ki) is the Ki conditional accident
risk and P (Ki) is the probability of the occurence of event Ki. Future research
can also be focused on how to carry out uncertainty analysis for such a general
formulation of the incrossing risk.

Another topic that can be the theme of further research is the determination
of collocation points for the second order PCE. The methods that are available
in the literature at the moment and implemented in this study are based on
heuristics, where the selection of collocation goes by the principle of sampling
the unknown function at points which can be regarded as being ”representative”.
However, it would be very helpful if we could determine if there does indeed exist
some optimal choice of collocation points in cases where we want to approximate
lnR by using a second order PCE when in fact lnR can be closely modelled by
a dth order PCE (for some d > 2). A similar question is the topic of research in
the area of surface response methods and experiment designs[Khur96], it would
be interesting to see if some of these methods can be extended to the case of
the PCE. This direction may also involve exotic elements from approximation
and interpolation theory.
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Appendix

In this appendix we provide more detail on the efficient steps for uncertainty
analysis due to uncertainty in the parameter values suggested in Chapter 8. A
flowchart of the scheme is provided in Figure 1.

The detailed explanation is as follows:

1. Define a lognormal distribution for the uncertainty of each parameter, i.e.
Vi ∼ Λ(µi, σ

2
i ) (see Chapter 3).

2. If the number of parameters to be considered is too large to be handled by
the Everdij&Blom method (Chapter 3) proceed to step 5, otherwise go to
the next step. A large number of parameters means that many accident
risk model evaluations will be needed to evaluate the β′

is, hence in such
cases the Everdij&Blommethod would be less efficient than a small sample
Monte Carlo based approach.

3. Implement the Everdij&Blom method with as low bias as possible or with
unbiased nominal parameter values (i.e., use vi = eµi). We recommend
that the β′

is be determined by the averaging method (Chapter 4), i.e.
βavg
i = β∗

i +β∗∗
i

2 , or by the safety conservative approach (Chapter 3).

Let N denote the number of coefficients in a second order PCE expansion.
Generate K > N collocation points, x1, x2, ..., xK , such that rank(H) =
N (see Subsection 4.9.1). Select a suitable number of M collocation
points from the K collocation points and evaluate lnRi = ln ρ̃(xi) and
the Everdij&Blom approximation ln R̂i,EB at those points where

ln R̂i,EB = ln ρ(c) +
np∑
j=1

βiσiz
i
j

zi = (zi1, ..., z
i
np
), zi ∈ {x1, x2, ..., xK} for i = 1, ...,M and zi �= zj for

i �= j. Finally evaluate the average squared approximation error:

e2 =
M∑
i=1

wi(lnRi − ln R̂i,EB)2

95
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Figure 1: Flowchart of suggested efficient steps in uncertainty analysis

where wi ≥ 0 is some suitable weighing function, e.g. wi =
f(xi)

M∑
i=1

f(xi)

where

f(xi) is the density of X = (X1, X2, ..., Xnp) at xi or wi = 1
M . If e2 is

deemed satisfactory (i.e. a reasonable fit is obtained) then we use the
Everdij&Blom estimates as our estimates of the mean and 95% CrI, if
not proceed to step 4. Determining how small e2 should be is depends
on the goal of the uncertainty analysis: whether we want to get a rough
estimate of the statistical parameters of interest or an accurate estimate.
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The simulations show that in the case of the Everdij&Blom method with
biased parameters, errors can be large yet the method was still able to
provide a reasonable estimate of the upper bound of the 95% CrI. Based
on the simulations, to get accurate estimates then e2 < 10−2 would be
desirable while for a rough estimate then e2 in the range of 10−2 to 1 (or
even > 1) seems acceptable.

4. Carry out this step only if the number of uncertain parameters is not
large (say less than or equal to 25), if not go to step 5. Partition the
K collocation points in step 3 into two parts: partition A containing K1

collocation points to determine the coefficients of the PCE and partition B
containing K2 collocation points to assess the fit of the second order PCE
(as in step 3), where K1 +K2 = K. Note that the collection of points in
partition A should be such that rank(HA) = N (HA denotes the matrix
H corresponding to the K1 collocation points in A, see Subsection 4.7.3).
Evaluate lnRi = ln ρ̃(xi) for the collocation points in A and determine
the coefficients of the second order PCE by solving a linear equation (if
K1 = N) or by a least squares method (if K1 > N). Evaluate lnRi and
ln R̂i,PCE (to denote the PCE approximation to lnRi) at the remaining
collocation points in B. Check for the quantity e2 as in step 3. If e2

is satisfactory then use the second order PCE estimates as our estimate
of the E{lnR} and 95% CrI, if not then we may choose to repeat this
step by adding points from partition B to partition A, reevaluating the
PCE coefficients and recalculating e2 (note that the number of points in
B becomes smaller), or we may choose to go to step 5.

5. Collect a small number of random samples of lnR, e.g. 320 or 520 samples.
Observe the histogram of lnR; if the distribution seems to follow a normal
or lognormal distribution then try to fit a normal or lognormal density (see
Section 5.3), otherwise apply the non-parametric bootstrap (Section 5.4).
Use the small sample Monte Carlo estimate of the mean and 95% CrI as
the estimates which we will present (see for example Subsection 6.7 and
7.7).


